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The tyrosinase enzyme plays an essential role in the pigmentation of human 
skin, fruits, and vegetables. It has been tied with several human skin diseases 
and post-harvest problems. Hence, the tyrosinase enzyme becomes an excellent 
therapeutic target to overcome these issues. This study aimed to screen 
tyrosinase inhibitors by synthesizing halogen-substituted pyrazolopyridine 
derivatives. The pyrazolopyridine compound was obtained through two stages 
of synthesis. First, the intermediate compound, a derivative of 3,5-
bis(arylidene)-4-piperidone, was synthesized through the Cleisen-Schmidt 
condensation reaction of 4-piperidone and benzaldehyde derivatives. 
Furthermore, the intermediate compound was reacted with phenylhydrazine 
through a cyclocondensation reaction to produce the titled compound with an 
11% yield. The chemical structure of the target compound was identified through 
the interpretation of UV, FTIR, NMR, and HRMS spectra. Then an in vitro assay 
was conducted on the tyrosinase enzyme of the fungus Agaricus bisporus by 
detecting the presence of dopachrome at a wavelength of 492 nm. As a result, 
the in vitro assay showed that the titled compound had a weak inhibitory activity, 
and the IC50 value was > 500 µM. Thus, the synthesized compound is considered 
inactive. 

 

1. Introduction 

Tyrosinase is the rate-limiting enzyme of the 
melanogenic pathway, a copper-containing 
glycoprotein. The tyrosinase enzyme is the most 
common target for treating hyperpigmentation [1, 2]. 
The biosynthesis of the two primary forms of melanin, 
black/brown eumelanin and yellow/red pheomelanin, is 
catalyzed by tyrosinase [3]. The formation of melanin 
can lead to unwanted things such as the browning of 
fruits, fungi, vegetables, and hyperpigmentation on 
human skin [4, 5, 6]. Excessive melanin formation can 
cause human skin diseases such as hyperpigmentation, 
lentigo, vitiligo, and skin cancer [7, 8]. Furthermore, the 
role of the tyrosinase enzyme in the browning of fruits 
and vegetables can also cause post-harvest losses [9, 10]. 

Kojic acid, a fungal metabolite, is the most widely 
used tyrosinase inhibitor today. However, animal 
experiments have shown that kojic acid has weak 
carcinogenicity; thus, its usage in humans is limited up 
to a concentration of 1% [11]. Hydroquinone is also a 
tyrosinase inhibitor that has been used clinically in the 
treatment of hyperpigmentation in leading cosmetics 
[12]. However, it has also been found to cause several 
problems by generating reactive oxygen species (ROS), 
which causes oxidative lipid damage and permanent loss 
of melanocytes. Furthermore, hydroquinone has been 
banned for general use by the European Committee and 
can only be prescribed by a dermatologist. This has urged 
researchers and scientists to focus on identifying, 
isolating, synthesizing, and characterizing new safe 
tyrosinase inhibitors for various applications in the food, 

,=( Jurnal Kimia-Sains &
AplikasiVJ

%
Check for
updates

http://ejournal.undip.ac.id/index.php/ksa
mailto:adel.zamri@lecturer.unri.ac.id
https://doi.org/10.14710/jksa.25.5.185-191
http://crossmark.crossref.org/dialog/?doi=10.14710/jksa.25.1.6-11&domain=pdf


 Jurnal Kimia Sains dan Aplikasi 25 (5) (2022): 185–191 186 

cosmetic and pharmaceutical industries [13, 14, 15]. 
However, very few inhibitors qualify for clinical use. 

One group of compounds that have received great 
attention in the search for tyrosinase inhibitor 
compounds is pyrazole derivatives. Among them are the 
pyrazole derivatives 3-benzofuran-2-yl-5-(4-
dimethylamino-naphthalene-1-yl)-4,5-dihydro-
pyrazole-1-carboxylate-(4-chloro-phenyl)-amide has 
been reported, it exhibits high inhibitory activity against 
the tyrosinase enzyme, with an IC50 value of 5.13 µM [16]. 
In this matter, the pyrazolo[4,3c]pyridine compound is 
also a pyrazole derivative compound and hence 
potentially has similar activity [17]. This compound has 
various bioactivities, including analgesic, anticancer, 
anti-inflammatory, antioxidant, antituberculosis, 
antiviral, and antimicrobial [18, 19, 20, 21, 22]. However, 
no literature on the tyrosinase inhibitory activity of this 
pyrazolo[4,3c]pyridine compound has been reported. 
Moreover, this compound could be obtained by using a 
biologically active compound containing α,β-
unsaturated ketone as starting materials. For instance, 
curcumin derivatives have been reported as anticancer, 
antiinflammation, and antioxidant, including SARS-
CoV-2 inhibitors [23]. 

Accordingly, this research conducted the synthesis 
of (E)-5-Benzyl-7-(3-Bromobenzylidene)-3-(3-
Bromophenyl)-2-Phenyl-3,3a,4,5,6,7-Hexahydro-2H-
Pyrazolo[4,3-c]Pyridine compound from the reaction of 
compounds containing unsaturated α,β-keto, a 
curcumin derivative of 4-piperidone then reacted with 
phenylhydrazine. The synthesized compound was 
studied for its bioactivity through in vitro assay on fungal 
tyrosinase enzymes using spectrophotometric methods. 

2. Methodology 

2.1. Materials 

Reagent grade materials of ≥ 95% purity were 
purchased from Sigma-Aldrich and Merck without 
further purification. The materials were N-benzyl 
piperidone (Sigma-Aldrich), 3-Bromobenzaldehyde 
(Sigma-Aldrich), phenylhydrazine (Sigma-Aldrich), 
hydrochloric acid (Merck), sodium hydroxide (Merck), 
TLC plate GF254 (Merck), universal pH indicator, silica gel 
60 (0.063–200 mm) (Merck), and organic solvents. 

2.2. Instrument 

The instrument used in this study were 
Monowave50 reactor (Anton-Paar Inc., Austria), UV 
lamp for TLC (Cole Parmer UV Lamp 254 and 366 nm), 
Fisher John’s melting point device (SMP 11-Stuart®), 
UV-Visible spectrophotometer (Genesys 10S UV-VIS 
v4.002 2L9N175013), HPLC (UFLC Prominence-
Shimadzu LC Solution, UV detector SPD 20AD), FTIR 
spectrophotometer (FTIR Shimadzu, IR Prestige-21), 
mass spectrometer (Water LCT premiere XE positive 
mode), NMR spectrometer (Agilent 500 MHz with DD2 
console system), microplate reader, as well as glassware 
commonly used in a laboratory. 

2.3. Synthesis Procedure of Curcumin Derivate (3) 

 

Figure 1. Synthesis of curcumin derivate (3) 

A mixture of 3-Bromobenzaldehyde (1) (3 mmol) 
and N-benzyl piperidone (2) (3 mmol) was dissolved in 
5 mL of alcohol absolute in a pressure tube equipped with 
a stir bar. Then 1 mL of sodium hydroxide 3 N was added 
to the mixture dropwise. The mixture was reacted in a 
sealed vessel reactor at 80℃ for 60 minutes. After the 
reaction was completed, the mixture was neutralized 
using hydrochloric acid 1 N. The mixture was then 
poured into crushed ice in a beaker glass. The resulting 
precipitate was filtered, then washed with water and 
dried. Crystallization of crude product in methanol 
resulted in desired intermediate compound (3) with 88% 
yield, m.p 212-213℃, UV (EtOH) λmax of 365 nm, FT-IR 
(KBr) ῡ (cm−1): 3024, 2969, 1675, 1608, 1351, and 697. 

2.4. Synthesis Procedure of Pyrazolo[4,3c]pyridine (5) 

 

Figure 2. Synthesis of pyrazolo[4,3c]pyridine (5) 

A mixture of curcumin derivate (3) (1 mmol) and 
phenylhydrazine (4) (2 mmol) was dissolved in 5 mL of 
absolute ethanol in a pressure tube. The experiment was 
performed in a sealed-vessel reactor in the presence of 1 
mL of 3 N sodium hydroxide solution. The mixture was 
reacted at 80℃ for 60 minutes. After the reaction was 
completed, the reaction mixture was neutralized and 
then poured into a beaker glass containing crushed ice. 
The mixture was allowed to stand in the refrigerator 
until a maximum precipitate was formed. The solid 
obtained was filtered, washed with cold water, and then 
dried at room temperature. 

Furthermore, crude product was purified by column 
chromatography in n-hexane:ethylacetate (7:3) to obtain 
pyrazolo[4,3c]pyridine compounds with 11% yield, m.p 
106-107℃. UV (EtOH) λmax of 257 and 365 nm. FT-IR 
(KBr) ῡ (cm−1): 3083, 2948, 1597, 1566, 1499, 1425, 1278, 
and 690. 1H NMR (500 MHz, CDCl3) δ 7.55 (s, 1H), 7.45 
(d, J = 7.9 Hz, 1H), 7.37 (s, 2H), 7.31 (t, J = 6.9 Hz, 2H), 
7.26 – 7.15 (m, 9H), 7.13 (d, J = 7.7 Hz, 1H), 7.02 (d, J = 
8.1 Hz, 2H), 6.87 (t, J = 7.3 Hz, 1H), 4.58 (d, J = 12.2 Hz, 
1H), 3.97 (d, J = 14.1 Hz, 1H), 3.67 (s, 2H), 3.37–3.23 (m, 
2H), 3.13 (d, J = 13.5 Hz, 1H), 2.51 (t, J = 10.3 Hz, 1H). 13C 
NMR (126 MHz, CDCl3) δ 151.02, 146.33, 144.05, 138.05, 
137.21, 132.12, 131.05, 130.88, 130.36, 129.77, 129.19, 
129.12, 128.92, 128.85, 128.42, 127.97, 127.45, 124.82, 
123.36, 122.37, 120.72, 115.05, 71.19, 61.90, 55.58, 55.27, 
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54.00. HR-MS (ESI): m/z 612.0653, [M+H]+ (cal. for 
C32H28N3Br2: 612.0650). 

2.5. Tyrosinase Inhibitory Activity Assay 

The inhibitory activity assay was conducted using a 
method that has been reported without modification 
[24]. The enzyme used in this research was tyrosinase 
from Agaricus bisporus, while the substrate was L-
tyrosine. A blank solution was made of 30 µL enzyme 
tyrosinase 333 U/mL mixed with 70 µL phosphate buffer 
pH 6.5, then incubated at 37℃ for 5 minutes. 
Subsequently, 110 µL L-tyrosine 2 mM was added and 
incubated at 37℃ for 30 minutes. Inhibitory activity of 
the synthesized compound was determined by mixing 30 
µL of the enzyme tyrosinase 333 U/mL and 70 µL of the 
sample (in phosphate buffer), then incubated at 37℃ for 
5 minutes. Followed by the addition of 110 µL L-tyrosine 
2 mM and incubated at 37℃ for 30 minutes. The 
absorbance of each solution was observed at 492 mm 
using a microplate reader. The inhibition for each 
enzyme assay was calculated as follows: 

 % Inhibition =
ABScontrol−ABSsample

ABScontrol
 x 100  

Each experiment was carried out in triplicate (n=3). 
The IC50 value was calculated from linear regression of ln 
concentration vs % inhibition graph. 

3. Results and Discussion 

A pyrazolo[4,3c]pyridine compound was 
successfully synthesized through a two-step reaction 
using a sealed-vessel reactor (Figures 1 and 2). Firstly, 
curcumin derivate was synthesized through a Claisen-
Schmidt condensation reaction of N-benzyl piperidone 
(2) with 3-Bromobenzaldehyde (1) in ethanol in the 
presence of strong base sodium hydroxide [25]. The 
reaction, namely an aldol condensation initiated by 
deprotonation of the symmetrical α carbon atom of the 
4-piperidone ring to form enolate ions. The enolate ion, 
which acts as a nucleophile, attacked the carbonyl carbon 
atom of the aldehyde to create β-hydroxy curcumin 
derivate. Subsequently, condensation of intermediate 
formed curcumin derivate (3). The proposed reaction 
mechanism is shown in Figure 3. 

 

Figure 3. Proposed reaction mechanism of curcumin 
derivate formation 

Secondly, curcumin derivate (3) was further reacted 
with phenylhydrazine (4) under similar conditions [18]. 
The deprotonation of a terminal amine of the hydrazine 
group increases the nucleophilicity of nitrogen. Hence, 

attacks on the carbonyl group of curcumin derivate (3) 
are possible. Afterward, the attacks of secondary amine 
to the alkene group form a cyclic, namely pyrazolo[4,3c] 
pyridine. The proposed reaction mechanism is shown in 
Figure 4. 

 

Figure 4. Proposed reaction mechanism of 
pyrazolo[4,3c]pyridine formation 

The molecular structure of the synthesized 
compound was identified using Fourier Transform 
Infrared (FTIR), Nuclear Magnetic Resonance (NMR), 
and High-Resolution Mass Spectroscopy (HRMS) 
analysis. Many absorption bands were detected in the 
FTIR spectra, indicating that the pyrazolo[4,3]pyridine 
compounds had a characteristic bond vibration (Figure 
5). Absorption bands ῡ (cm−1) at 3083 shows the vibration 
of the aromatics C-H bond. The presence of acyclic C-H 
vibrations is shown at 2948 (cm-1). Absorption bands ῡ 
(cm−1) at 1597 (cm-1) indicate the presence of a C=C bond 
vibration. The absorption bands ῡ (cm−1) at 1425 (cm-1) 
indicate the presence of C-N vibrations of 
pyrazolo[4,3c]pyridine ring. Furthermore, the absences 
of C=O absorption (approx. 1650 cm-1) showed a 
pyrazolo[4,3c]pyridine ring formation. 

 

Figure 5. FTIR spectrum of compound (5) 

The characteristics of the pyrazolopyridine 
compound are evident in the HNMR spectra of compound 
5, where six proton peaks were found from the sp3 carbon 
on the pyrazolopyridine ring, four protons each from the 
two methylene carbons of the pyridine ring, and two 
protons on the pyrazole ring (Figure 6). Proton H3a, 
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which has a characteristically multiplet-oriented peak 
due to vicinal coupling to protons H3, protons H4a and 
H4b, was found at δH 3.37–3.23 ppm. Meanwhile, the H4a 
peak was found in the δH 2.51 ppm with a triplet peak 
orientation due to the geminal coupling of the H4b 
proton (JH4a-H4b=10.3 Hz) and the vicinal coupling with 
the H3a proton (JH4a-H3a=10.3 Hz). Furthermore, proton 
H3 was found at δH 4.58 ppm with a doublet peak 
orientation due to the vicinal coupling to proton H3a 
with the coupling constant of JH3-H3a=12.2 Hz. The 
protons H6a and H6b were found at δH 3.13 ppm and δH 
3.97 ppm, respectively. Like the proton at position 4, 
position 6 also has a different environment, separating 
the peaks. Each proton peak H6a and H6b is doublet 
oriented, resulting in a geminal coupling between the 
protons with a coupling constant, namely JH6a-H6b= 14 Hz. 
Additionally, benzyl substituent’s proton of methylene 
carbon is found at δH 3.67 ppm as a singlet. 

 

Figure 6. H-NMR upfield region of compound (5) 

In this regard, to confirm the formation of 
compound (5), CNMR spectroscopic analysis was carried 
out. The CNMR spectrum shows a total of 27 peaks. The 
two phenyl rings are symmetrical, so the total peak 
corresponds to the target compound. In addition, the 
presence of the pyrazolopyridine ring was confirmed by 
the presence of a peak at δC 151 ppm indicating the C7a 
(C=N) carbon of the pyrazolopyridine. The methylene 
and methine carbons from pyrazolopyridine were also 
detected at chemical shifts of δC 61.9 ppm, δC 55.6 ppm, 
δC 55.3 ppm, and δC 54.0 ppm, which respectively showed 
carbons of C3, C3a, C6 and C4 consecutively. 

Furthermore, the presence of benzyl substituent 
was indicated by a peak at δC 71.2 ppm, indicating the 
benzyl C5a methylene carbon. Meanwhile, the presence 
of a Bromo-substituted ring was confirmed by the 
appearance of peaks at δC 122.4 ppm and δC 123.4 ppm, 
indicating C-Br at positions C3” and C3’”, respectively. 
The interpretation of the NMR spectrum is shown in 
Table 1. 

 

 

 

 

Table 1. Interpretation of compound (5) NMR spectra 

 

 

 

Position 
1HNMR 13CNMR 

δH (ppm) (Multiplisity, J) δC (ppm) 

3 4.58 (d, J = 12.2 Hz, 1H) 61.9 

3a 3.37–3.23 (m, 1H) 55.6 

4 
H4a: 2.51 (t, J = 10.3 Hz, 1H) 

H4b: 3.37–3.23 (m, 1H) 
54 

5 - - 

5a 3.67 (s, 2H) 71.2 

6 
H6a: 3.13 (d, J = 13.5 Hz, 1H) 

H6b: 3.97 (d, J = 14.1 Hz, 1H) 
55.3 

7 - 129.2 

7a - 151.0 

7b 7.55 (s, 1H) 130.4 

1' - 146.3 

2' 7.26–7.15 (m, 1H) 115.1 

3' 7.31 (t, J = 6.9 Hz, 2H) 128.9 

4' 6.87 (t, J = 7.3 Hz, 1H) 120.7 

5' 7.31 (t, J = 6.9 Hz, 2H) 128.9 

6' 7.26–7.15 (m, 1H) 115.1 

1'ʹ - 137.2 

2'ʹ 7.37 (s, 2H) 132.1 

3'ʹ - 122.4 

4'ʹ 7.45 (d, J = 7.9 Hz, 1H) 129.8 

5'ʹ 7.26–7.15 (m, 1H) 128.9 

6'ʹ 7.26–7.15 (m, 1H) 128.0 

1'ʹʹ - 138.0 

2'ʹʹ 7.37 (s, 2H) 130.9 

3'ʹʹ - 123.4 

4'ʹʹ 7.13 (d, J = 7.7 Hz, 1H) 131.1 

5'ʹʹ 7.26–7.15 (m, 1H) 129.1 

6'ʹʹ 7.26–7.15 (m, 1H) 124.8 

1''ʹʹ - 144.1 

2''ʹʹ 7.02 (d, J = 8.1 Hz, 2H) 128.4 

3''ʹʹ 7.26–7.15 (m, 1H) 128.9 

4''ʹʹ 7.26–7.15 (m, 1H) 127.4 

5''ʹʹ 7.26–7.15 (m, 1H) 128.9 

6''ʹʹ 7.02 (d, J = 8.1 Hz, 2H) 128.4 

The HRMS spectrum of the synthesized compound 
(5) showed the confirmed molecular particle peak as 
[M+H]+ of m/z = 612.0653 with 100% abundance 
(Figure 7). There is only a slight difference with the 
calculated mass of C32H28N3Br2, which is 612.0650. 
Furthermore, the appearance of m/z 616.0692 indicated 
compound (5) with 81Br isotope. In addition, 
fragmentation of molecule peak that lost both of its Br 
atoms was identified by the appearance of m/z 448.1496. 
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Figure 7. HRMS spectrum of compound (5) 

According to the methodology reported in a previous 
publication [24], compound (5) was subjected to a 
tyrosinase inhibition assay with L-tyrosine as a 
substrate. Kojic acid (5-hydroxy-2-(hydroxymethyl)-
4H-pyran-4-one) was used as a positive control. The 
assay was carried out using various triplicate 
concentrations with two-fold dilutions starting from 
500 ppm to 7.8125 ppm. The IC50 of tested compounds is 
summarized in Table 2. 

Table 2. Inhibitory activity of the synthesized 
compound and kojic acid 

No Compound IC50 (µM) 

1 Pyrazolo[4,3c]pyridine (5) > 500 

2 Kojic acid 88.52 

The results showed that compound (5) showed weak 
inhibitory activity on fungal tyrosinase with an IC50 value 
greater than 500 µM. This value was significantly higher 
than the reference kojic acid, with an IC50 value was 
88.52 µM. The results revealed that, as compared to 
reported chalcones, pyrazolines showed inferior 
inhibitory activities [26, 27]. The low solubility of this 
compound is assumed to be the cause of its weak activity. 
In addition, it is caused by the lack of polar groups of this 
compound, so its ability to form hydrogen bonds with 
the target is reduced. This is also supported by the 
structure of kojic acid, which contains two hydroxyl 
groups (-OH), whereas compound 5 does not have these 
groups. 

4. Conclusion 

In this study, a pyrazolopyridine compound, (E)-5-
Benzyl-7-(3-Bromobenzylidene)-3-(3-Bromophenyl)-
2-Phenyl-3,3a,4,5,6,7-Hexahydro-2H-Pyrazolo[4,3-c] 
pyridine, has been successfully synthesized with low 
yields of 11%. The chemical structure of the compound 
was successfully confirmed by analysis of FTIR, NMR, 
and HRMS spectroscopic data. An in vitro inhibitory 
activity assay on fungal tyrosinase enzymes showed that 
compound 5 had significantly low inhibitory activity 
than positive controls with IC50 values of 500 µM and 

88.52 µM, respectively. Hence it is considered inactive 
against the target. The addition of a polar group 
presumably could increase the solubility and the activity 
of the compound to the target. 
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