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Abstract: Students’ Engagement within Islamic Religious Education through A Heutagogical Approach. The heutagogical approach to blended learning in Islamic Religious Education is an autonomous learning model that places a premium on student interaction, determines learning strategies, and develops teaching materials autonomously in response to the conditions of their respective learning environments. The aspects contributing to the completion of independent publication project-based learning are determined by classification analysis, regression testing, and prediction analysis. Three factors, including conversation, attendance, and publishing accomplishment, were examined using an educational data mining analytical model to identify 128 respondents from the Islamic Religious Education Study Program. The Naïve Bayes method produced an f measure of 85.79 percent +/- 5.83 percent (micro average: 86.27 percent) (positive class: completed) with an accuracy of 80.71 percent. Prediction analysis using the decision tree technique yielded a prediction accuracy of 72.86 percent, an f measure of 80.33 percent, and a classification error of 27.14 percent, while regression analysis using the t-test yielded a significant effect score of 0.000 0.05 and at a table of 1.97912. The research findings are as follows: 1) discussion activities are a significant predictor of project-based learning completeness in universities; 2) discussion activities have a significant impact on project-based learning completeness; and 3) prediction simulation recommends potential activities such as discussion models to maximize learning completeness in Islamic Religious Education.
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Abstrak: Keterlibatan Siswa dalam Pendidikan Agama Islam melalui Pendekatan Heutagogi. Pendekatan heutagogi dalam blended learning untuk kuliah Pendidikan Agama Islam adalah model pembelajaran mandiri yang memprioritaskan keterlibatan mahasiswa dalam interaksi, menentukan strategi belajar, serta mengembangkan bahan ajar secara otonom sesuai dengan kondisi lingkungan belajarnya masing-masing. Melalui analisis klasifikasi, uji regresi, dan analisis prediksi, diidentifikasi faktor determinan yang berperan mendorong ketuntasan pembelajaran berbasis proyek publikasi secara mandiri. Sesuai tujuan identifikasi, diteliti 3 jenis variabel yang meliputi diskusi, presensi, dan ketercapaian publikasi terhadap 128 responden dari Program Studi Pendidikan Agama Islam menggunakan model analisis educational data mining. Analisis klasifikasi dengan algoritma naïve bayes menghasilkan f measure 85.79% +/- 5.83% (micro average: 86.27%) (positive class: Tuntas) dengan akurasi senilai 80.71%, analisis prediksi dengan algoritma decision tree menghasilkan akurasi senilai 72.86% dengan f measure = 80.33% dan classification error = 27.14%, dan analisis regresi dengan uji t menghasilkan skor pengaruh signifikan 0,000 < 0,05 dan t hitung 4,713 > t tabel 1,97912. Hasil penelitian terdiri atas; 1) aktivitas diskusi sebagai faktor determinan yang mendukung ketuntasan dalam pembelajaran heutagogi di perguruan tinggi, 2) aktivitas diskusi memiliki pengaruh signifikan terhadap ketuntasan pembelajaran berbasis proyek, dan 3) simulasi prediksi merekomendasikan aktivitas potensial semacam model diskusi untuk memaksimalkan ketuntasan pembelajaran Pendidikan Agama Islam.

Kata kunci: blended learning, keterlibatan mahasiswa, pendekatan heutagogi, Pendidikan Agama Islam.
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· INTRODUCTION
Recently, innovative learning practices to accommodate the competence and competitiveness of graduates of the society 5.0 era have been initiated and designed by education stakeholders, both during the pandemic and after the Covid-19 pandemic (2020). One of the initiations of learning practices considered adequate is the blended learning model, which consists of two offline and online activities in one cycle. The main emphasis in the mixed learning process is to mainstream the achievement of habit creation, control independent learning cycles, and internalize the value of students' awareness to be directly involved in every learning activity. Hotimah et al. (2020) One of the initiations of learning practices considered adequate is the blended learning model, which consists of two offline and online activities in one cycle. The main emphasis in the mixed learning process is to mainstream the achievement of habit creation; control illustrates the practice of mixed learning in which students join and participate online, then participate in community-based face-to-face learning consisting of educators, practitioners, or fellow students. Community meetings across students and classes become a forum for students to share knowledge, ask questions, and respond to problems encountered when completing learning targets. Learning cycles and internalize the value of students' awareness to be directly involved in every learning activity. The general problem faced is the reality of the consistency and awareness of students who are different in following the learning cycle as an indicator of engagement, especially during online and blended learning (2020) which have limited interface interaction space.
Given the significant need for learning that can maximize student engagement, it is not surprising that empirical studies with this have produced mixed findings. Previous research was conducted by Kahu (2013), who introduced holistic dimensions of engagement, such as socio-cultural and psychological, so that engagement is not limited by conceptual understanding. In simpler terms, Kahu (2013) makes an analogy with the question of whether the anxiety experienced by students in the first year will impact both behavioral and cognitive dimensions at the same time? The subsequent study was conducted by Gunuc & Kuzu (2015), which described the descriptive findings of the cognitive engagement scale in the campus environment but did not further analyze the activities that affect the scale level—complementing the study of Dyer et al. (2018) which examined the implementation of field trips which resulted in findings showing increased student responses to the development of ecological materials. Students should be involved in outdoor-based interaction activities, according to Dyer et al. (2018). However, not many institutions, particularly stakeholders, incorporate such activities into their curriculum at the higher education level, where the study context is mostly theoretical-normative. So the empirical study described in this article is carried out to further develop these findings in the context of a blended learning model in Islamic Religious Education, which is widely used in various Indonesian universities and is commonly implemented in various types of Indonesian universities.
The findings of Ahmed & Mohammed Salih (2020), which describe the relevance of educator tactics in seeking learning engagement through a constant cycle of activities, are linear with the findings of this paper, at least theoretically. The findings of Bond et al. (2020) about the role of digital technology involvement in community-based learning interactions align with the findings of the study described in this article. From a conceptual standpoint, the research presented in this paper contributes to these findings by providing a curative identification of student discipline conduct that is driven by the duty to attend class. Students' natural curiosity (2001) was exploited in this research study to engage them in discussion activities that resulted in the completion of literacy projects based on article publications, which was also highlighted in the findings. It is possible to fit the context of the demographic analysis of the suitability of learning needs in this study by choosing the case study site in Yogyakarta and, in particular, the Islamic Religious Education Study Program at Ahmad Dahlan University case study. In examining interpretation, the discipline of Islamic Religious Education is used as a material object. Using heutagogy projects, the primary goal of this study was to examine the impact of different forms of student involvement activities (2010) during blended learning on the completeness of Islamic religious education learning in the context of Islamic religious education. Engagement activities are found to be important determinants of learning mastery. The findings corroborate the relationship between involvement factors and predictions of possible activities in investigating these determinants. Following the pandemic, the findings can be used as a starting point for developing a model of Islamic Religious Education based on bent learning, according to the findings (2020).

· MATERIALS AND METHOD
Students' Engagement: A Discussion 
Research findings from journals and books on relevant topics, such as learning engagement, published between 2007 and 2020 were reviewed by researchers in order to identify research gaps (Figure 1). The paper identification page was used in the study conducted by researchers to identify research gaps (2021).
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Figure 1. Visual mapping of study identification in terms of learning engagement in higher education
Educational data mining (2021)
It is a series of routine operations that are used to investigate the added value of a data collection in the form of knowledge that has not been known until the results of manual analysis have been obtained. In the words of Bird et al. (2016), data mining is an automated analytical system that examines vast amounts of data or complex data in order to identify significant patterns or trends that are usually not seen by the people conducting the analysis. This article uses data mining to examine raw data in the field of education that was retrieved from the Google Drive database that contained components of student assessment scores during the Islamic Religious Education lecture process, as described in the preceding section. Naïve Bayes analysis, regression, and decision tree were used to create the data mining model used in this study. Available software for analyzing the Naïve Bayes model and the decision tree is RapidMiner (2020), whereas SPSS is used for regression analysis (2019). One hundred twenty-eight respondents provided statistical data (see Table 1), which was processed.

Table 1. Set examples of the distribution of respondents' statistical data on online learning of Islamic Religious Education with RapidMiner.
	[bookmark: _Hlk97407912]Discussion Engagement
	Project Achievement
	Presence Attribution

	43,0
	Not achieved
	100,0

	81,0
	Achieved
	100,0

	66,0
	Achieved
	100,0

	72,0
	Achieved
	90,0

	69,0
	Achieved
	100,0

	
Variable
	
Type
	
Missing
	
Statistics

	Discussion Engagement
	Real
	0
	min = 19, max = 96, average = 61,316, deviation = 16,292

	Project Achievement
	Real
	0
	min = 16, max = 100, average = 83,987, deviation = 20,735

	Presence Attribution
	Nominal
	0
	min = 26, max = 50, average = 61.316, absolute count = 50/26, fraction = 0,658/0,342

	
	
	
	


[bookmark: _Hlk97382460]Procedure  
Following the process architecture (Figure 2) below, the research method employed consists of the following: (1) data collection; (2) initial data processing; (3) model application; testing; and (5) model interpretation.
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Figure 2. Data mining analysis procedures using the rapidminer algorithm
Data analysis  
Analysis of classification using a naïve bayes model
In probability classification, Naïve Bayes is a simple model that derives a set of probabilities by adding training data to generate the estimated parameters required for the classification process during analysis. According to Buntoro (2016), Naïve Bayes operates deeper than scenarios encountered in the real world, resulting in far more detailed results. The following formula was used to examine the Naïve Bayes model analysis scheme (Figure 2):

P(H|X)		=  P(X|H).P(H)
   	          P(H)
X		=  data with an unknown class
H		=  hypothesized data using a specific class
P(H|X)		=  probability of hypothesis H based on X condition
                            (posterior     probability)
P(H)		=  hypothesis probability H (prior probability)
P(X|H)		=  probability X based on the conditions on the hypothesis H
P(X)		=  probability H

Regression analysis utilizing the ANOVA model
Multiple linear regression was used in this study to examine the relationship between the dependent variable (literacy) and more than one independent variable. Multiple linear regression is a statistical method for constructing a relationship model between the dependent variable (literacy) and more than one independent variable (independent). For this study, regression analysis was carried out through the use of a t-test with criteria, rejecting if the value > or sig value > was found and accepted if the value > or sig value > was found, as well as an f test using the following formula (2017):

R2	: coefficient of determination
k	: the number of independent variables
n	: the number of data members or cases
t	: significant values (t count) will be compared with the t table
r	: correlation coefficient
n	: number of samples
βn	: the regression coefficient of each variable
Sβn	: each variable's standard error is

Prediction analysis using a decision tree model
Building a decision tree with decision nodes connected by branches that go from the root node to the leaf node, as depicted in Figure 1, is a classification strategy that involves categorizing data. (end). According to Larose (2005), decision nodes based on each attribute will be analyzed, and each outcome will result in constructing a new branch in the process. Each branch will be directed either to another node or the end node to allow the user to make a selection (Figure 3). In terms of problem-solving, this decision will be helpful to you. A decision tree is used in this work to anticipate possible engagement activities. The decision tree is used in the following stages: generating training data, establishing the tree's root, and determining the Gain value. As a result of using the formula (2000), the attribute with the highest Gain value from among the current attributes will be chosen as the root, and the decision tree participation procedure will be stopped after all branches in node N have earned the same class.
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Deskripsi dibuat secara otomatis]
n	=  number of features
i	=  feature
P	=  probability of i

· RESULT AND DISCUSSION
[bookmark: _Hlk97383959]Factors determine the completeness of learning 
Initially, the dataset file in excel format from 128 students of the Islamic Religious Education study program is read to serve as a source of material for grouping training data and testing data in the form of ExampleSet data during the modeling process (Figure 3). In the initial processing step, the dataset categories are changed from nominal to numerical, then from nominal to text, and finally from nominal to binominal in the initial processing step.

[image: ]
Figure 3. The results of the preprocessing of the Islamic Religious Education student involvement dataset
Seventy-six samples have one unique characteristic, and two common attributes are distributed to form two classification classes: the incomplete class (value = 0.345) with two distributions and the entire class (value = 0.655) with two distributions in the original ExampleSet categorization. Following that, missing value processing is applied to ExampleSet to generate two modeling attributes used to generate the discussion and attendance variables (Figure 4).

[image: ]
Figure 4. Modeling attributes for the Islamic Religious Education student engagement dataset
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Figure 5. The results of the completion of accurate publications with Naïve Bayes
In the following stage, the Naïve Bayes algorithm is used to analyze the classification of learning completeness, which results in the following real findings (Figure 6); the highest learning completeness (attendance = 100, discussion = 80), and the highest learning incompleteness (attendance = 100, discussion = 40). The classification analysis produced a classification error count of 19.29 percent +/- 8.51 percent (micro average: 18.92 percent) for f measure: 85.79 percent +/- 5.83 percent (micro average: 86.27 percent) (positive class: completed) with an accuracy of 80.71 percent and a classification error count of 19.29 percent +/- 8.51 percent (micro average: 18.92 percent) for f measure: 85.79 percent +/- 5.83 percent (micro average: 86 (Figure 6).
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Figure 6. Accuracy of prescriptive analysis of learning engagement using Naive Bayes
How involvement affects how well you learn 
Multiple regression tests revealed that discussion activity had a statistically significant effect on publication-based learning completeness with a p-value of 0.000 0.05, a count of 4.713 > t table of 1.97912, and a count of 4.713 > t table of 1.97912. As evidenced by the significance of 0.784 > 0.05 and t count of 0.274 t table 1.97912, the presence variable does not affect the completeness of the publication; however, the length of the publication is affected by the presence variable's presence. The influence of each activity variable on learning completeness has a simultaneity of 0.000 0.05, an F count of 14,683 > F table 3.07, and an R Square of 0.19, with an F count of 14,683 > F table 3.07, and an R Square of 0.19. (Figure 7).

[image: ]
Figure 7. The influence of variables x1 and x2 on y using the t-test

Variables that could potentially influence the learning process 
When a decision tree was used to predict discussion scores, the results revealed that discussion scores greater than 52,500 were complete (incomplete = 9, complete = 40), and discussion ratings less than 52,500 were incomplete (incomplete = 14, complete = 5). According to the computation, the accuracy of the prediction calculation is 72.86 percent, with an f measure of 80.33 percent and a classification error of 27.14 percent (Figure 8).
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Figure 8. Prediction simulation of the learning completeness of Islamic Religious Education
· DISCUSSION
This study's findings in the form of determinant factors of discussion variables for encouraging learning completeness are supported by the classification analysis of the Naïve Bayes model, which shows a value of 0.655 > 0.345 for the complete class cluster and a value of 0.345 for the incomplete class cluster. The ANOVA model's regression analysis revealed a statistically significant effect of discussion activity on learning completeness, as demonstrated by the significance of discussions and publications (0.784 > 0.05) and the value of 0.784 > 0.05 on the significance of discussions and publications. By predicting an 80:60 completeness in discussions compared to attendance for the achievement of scientific article publications in the category of unrecognized journals, decision tree analysis was successful in predicting discussion activity as the most potential variable to complete project-based learning.

· CONCLUSION
Three types of support analysis were discovered using educational data mining analysis, which resulted in conclusions regarding the importance of student involvement through a variety of activities in the blended learning model in Islamic Religious Education. Students' involvement in more than one aspect of activity will provide an impetus to attaining project-based autonomous learning aims, according to the findings of an investigation into three models of data mining algorithms (see Resources). The importance of dialogic activities that result in direct engagement, such as those seen in discussion forums, is higher at the higher education level, and they are more effective in supporting comprehensive learning there. However, most students are more engaged in being involved administratively during learning, for as meeting attendance requirements, prevents them from achieving their full potential in independent learning.
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