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Abstract. In the present paper, we consider an optimization problem related to the 

extension in 𝑘-dimensions of the well known 3 ×  3 points problem by Sam Loyd. In 

particular, thanks to a variation of the so called “clockwise-algorithm”, we show how it 

is possible to visit all the 3𝑘 points of the 𝑘-dimensional grid given by the Cartesian 

product of (0, 1, 2) using covering trails formed by ℎ(𝑘) =
3𝑘−1

2
 links who belong to 𝑘 

(Euclidean) length classes. We can do this under the additional constraint of allowing 

only turning points which belong to the set 𝐵(𝑘) ∶= {(0, 3)  ×  (0, 3)  × ⋯ ×  (0, 3)}. In 

the end, we prove that the set 𝐺3 ∶= {(0, 1, 2)  × (0, 1, 2)  ×  (0, 1, 2)} can be covered 

with an inside the box simple path consisting of 33 − 1 edges, all belonging to the length 

class √5. 

Keywords: Nine dots puzzle, Clockwise-algorithm, Thinking outside the box, Polygonal 

path, Optimization problem, Link length, Knight’s tour, TSP. 

 

I. INTRODUCTION 

The goal of the present paper is to solve in ℝ𝑘 the 3𝑘-points problem [1, 2, 3], which is the 

generalization to 𝑘 dimensions [4] of the classic nine dots puzzle (the well known thinking 

outside the box challenge) [5, 6, 7], under two additional constraints involving the 
3𝑘−3

2
 turning 

points of the minimal covering trail, 𝐶(𝑘), and considering a maximum of 𝑘 Euclidean length 

classes for all its ℎ(𝑘) =
3𝑘−1

2
 links. Since the standard 3𝑘-points problem has been already 

discussed in [8], we aim to solve it using a (slightly) different covering trail, 𝐻(𝑘), which has 

all its ℎ′(𝑘) = ℎ(𝑘) links that belong to 𝑘 length classes, and accepting only turning points set 

on the vertices of a 3 ×  3 × ⋯ ×  3 hypercube; those 𝑘-cubes of (hyper)volume 3𝑘 unitsk 

have been generically indicated in [8] as box, and the sets of all their vertices will be defined 

below as 𝐵𝑘. 

 

Definition 1 Let us define, ∀𝑘 ∈ ℕ − {0}, 𝐵𝑘 ∶= {(0, 3)  ×  (0, 3)  × ⋯ ×  (0, 3)} ⊂ ℕ0
𝑘 as 

𝑘-box. Thus, for any 𝑘 ≥ 3, the 𝑘-box corresponds to the set of all the 2𝑘 vertices of the 

𝑘-dimensional cube [0, 3]  ×  [0, 3]  × ⋯ ×  [0, 3] ⊂ ℝ𝑘 which has 3 units long edges and 

𝐶𝑘 = (
3

2
,

3

2
, . . .,

3

2
) as its center. 

 

In order to compactly state the enhanced 3𝑘-points problem, let us specify which set of 3𝑘 

points our optimal covering trail should join. 
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Definition 2 Let us define, ∀𝑘 ∈ ℕ − {0}, 𝐺𝑘 ∶= {(0, 1, 2)  × (0, 1, 2)  × ⋯ ×  (0, 1, 2)} as  

𝑘-grid, so the 𝑘-grid is a set of 3𝑘 points in the Euclidean space ℝ𝑘. 

 

The enhanced 3𝑘-points problem states: 

“Given the finite set of 3𝑘 points 𝐺𝑘 in ℝ𝑘, we need to visit all of them (at least once) with a 

polygonal chain 𝐻(𝑘) that has the minimum number of line segments (links), ℎ(𝑘) =
3𝑘−1

2
. We 

are asked to join all the points of 𝐺𝑘 with ℎ(𝑘) links belonging to at most 𝑘 different Euclidean 

length classes (we are referring to the Euclidean distance metric), and additionally we are only 

allowed to turn, once or more, at the points belonging to the set 𝐵𝑘 (see Definition 1)”. 

 

In Section II, we revisit the clockwise-algorithm (for a more detailed explanation, see [8]), 

which works as follows: 

“Given 𝑘 = 1, we join 3 collinear points with a single line, remaining inside a unidimensional 

box which is 3 units long. For 𝑘 = 2, we are facing the classic nine dots puzzle considering a 

3 ×  3 box, and the well-known Hamiltonian path by Sam Loyd [7] proves that we can solve 

the problem, without allowing any line to exit from the box, if we start from any node of the 

grid except from the central one. Given 𝑘 = 3, as a generalization of the original Loyd’s pattern 

(see Figure 1), we solve the problem inside a 3 ×  3 ×  3 box following the optimal two-

dimensional covering trail swirling in one more dimension, according to a basic 3-steps 

scheme, and beginning from a congruent starting point. Thus, if we take one vertex of 𝐺3, while 

we rotate in the space at every turn, it is possible to repeat twice (forward and backward) the 

aforementioned two-dimensional pattern; at the end of the process, 33−2 −
1

3
 gyratories have 

been performed, so we spend the (33−1)-th line to close the subtour, joining 3 − 1 new points. 

In this way, we reach the starting vertex again, and the last 33 − 1 unvisited nodes belong only 

to 𝐺𝑘−1 = 𝐺2 (choosing the right direction). Therefore, we can finally paste Loyd’s expected 

solution for his nine dots puzzle by extending one unit backward the first line, in order to visit 

all the remaining nodes of 𝐺3. The method to solve the 4-dimensional case is basically the same 

one that we have discussed for 𝐺3: we apply the known 3-dimensional covering trail forward 

(while we spin around following the 3-steps gyratory), then backward, subsequently we return 

to the starting vertex with line 27, and lastly we join the 33 − 1 unvisited nodes with the 

aforementioned three-dimensional pattern by simply extending backward its first line. Since 

the clockwise-algorithm takes a (𝑘 − 1)-dimensional solution as input and returns a 𝑘-

dimensional solution as its output, it holds for any 𝑘 ∈ ℕ − {0}. Thus, it solves the 3𝑘-points 

problem, inside a 3 ×  3 × ⋯ ×  3 box of hyper-volume 3𝑘 unitsk, drawing optimal trails”. 

Considering the case 𝑘 = 2, the result is shown in Figure 1, while Section III presents the 

solution of a new covering path problem on the 2-grid and 3-grid [9, 10, 11, 12, 13]. 
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Figure 1. The extended clockwise-algorithm for the case 𝑘 = 2. Steiner points are in green (picture 

realized with GeoGebra [14]). 

 

II. MAIN RESULT 

The enhanced 3𝑘-points problem can be optimally solved with the extended clockwise-

algorithm (e.g., see Figures 2&3 for the case 𝑘 = 3), and this result is formally stated in 

Theorem 1. 

 

Figure 2. The extended clockwise-algorithm for the 33-points problem. Perspective 1 (picture 

realized with GeoGebra [14]). 
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Figure 3. The extended clockwise-algorithm for the 33-points problem. Perspective 2 (picture 

realized with GeoGebra [14]). 

Theorem 1 Let ℎ̃𝑛 be the Euclidean distance between the endpoints of the 𝑛-th link of the 

covering trail 𝐻(𝑘), ∀𝑛, 𝑘 ∈ ℕ − {0}. If 𝐿(𝑘) = {3 ∙ √𝑗  ∶  𝑗 = 1, 2, . . . , (𝑘 − 1), 𝑘}, then 

{ℎ̃1, ℎ̃2, . . . , ℎ̃
(

3𝑘−3

2
)
, ℎ̃

(
3𝑘−1

2
)
} ⊆ 𝐿(𝑘). 

 

Proof. Let us invoke the standard clockwise-algorithm (briefly introduced in Section I), as 

described in Reference [8], which returns the covering trail 𝐶(𝑘). Thus, without loss of 

generality, we can follow 𝐶(𝑘) starting from any of its two endpoints (the clockwise-algorithm 

can never return a circuit). Then, let us call P1 the starting node, P2 any given Steiner point such 

that P1P2
̅̅ ̅̅ ̅ ∶=

2

3
∙ ℎ̃1, and so on until P

(
3𝑘+1

2
)
 such that P

(
3𝑘−1

2
)
P

(
3𝑘+1

2
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∶=
2

3
∙ ℎ̃

(
3𝑘−1

2
)
 is reached. 

With the only exception of P1 and P
(

3𝑘+1

2
)
, every P

1<𝑖<(
3𝑘+1

2
)
 belongs to 𝐵𝑘. 

Since the Euclidean distance between any pair of opposite vertices of a 𝑘-cube with edge 

𝑙 = 3 units is given by 𝑙 ∙ √𝑘, it follows that the Euclidean distance between any pair of distinct 

elements of 𝐵𝑘 is 3 ∙ √𝑗, for some integer 𝑗 ∈ [1, 𝑘]. Consequently, P𝑖P(𝑖+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅ belongs to 𝐿(𝑘) for 

any 1 < 𝑖 < (
3𝑘+1

2
), and so does ℎ̃𝑗  if 1 < 𝑗 < (

3𝑘−1

2
). 

The only two remaining cases concern P1P2
̅̅ ̅̅ ̅ and P

(
3𝑘−1

2
)
P

(
3𝑘+1

2
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, but the extended clockwise-

algorithm differs from the standard version for the prolongation (add 
1

3
∙ ℎ̃1) of the first link 

backward until we reach one point in 𝐵𝑘, and so also if we extend forward (add 
1

3
∙ ℎ̃

(
3𝑘−1

2
)
) the 

64 p-ISSN: 2621-6019 e-ISSN: 2621-6035

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 4 NO. 1 (JUN 2021) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v4i1.10106



 

 

 

 

 

 

 

 

last link. Furthermore, assuming {P̃1P̃2
̅̅ ̅̅ ̅, P̃

(
3𝑘−1

2
)
P̃

(
3𝑘+1

2
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅} ⊆ 𝐿(𝑘), if we set the 𝑘-box such that 

P̃1 ≡ O𝑘 = (0, 0, . . . , 0), then P̃
(

3𝑘+1

2
)

≡ (3, 3, . . . , 3) by construction. 

Since P𝑖 ∈ 𝐵𝑘 ∀𝑖 ∈ {1, 2, . . . , (
3𝑘−1

2
) , (

3𝑘+1

2
)}, we have shown that, ∀𝑗 ∈

{1, 2, . . . , (
3𝑘−3

2
) , (

3𝑘−1

2
)}, ℎ̃𝑗 belongs to 𝐿(𝑘), and this concludes the proof of Theorem 1.        

 

III. INSIDE THE BOX COVERING PATHS WITH √𝟓 UNITS LONG EDGES 

This section is devoted to prove that, ∀𝑘 ∈ {2, 3}, 𝐺𝑘 can be covered inside the minimal 𝑘-

dimensional box, �̂�(𝑘), by a simple path 𝑀(𝑘) ⊂ �̂�(𝑘) of link length 𝑚(𝑘) < 3𝑘, whose all 

𝑚(𝑘) links belong to the unique length class √5. 

 

Definition 3 Let us define, ∀𝑘 ∈ ℕ − {0}, �̂�(𝑘) ∶= {(𝑥1, 𝑥2, . . . , 𝑥𝑘) ∶  𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ [0, 2]} 

⊂ ℝ𝑘 as minimal-𝑘-box. 

 

Definition 4 Let 𝑀(𝑘) ⊂ �̂�(𝑘) be a possibly self-intersecting simple path going through every 

element of the finite set 𝐺𝑘 (i.e., a covering path that visits the nodes of 𝐺𝑘 exactly once). 

 

Theorem 2 If 𝑘 ∈ {2, 3}, then ∃𝑀(𝑘) ⊂ �̂�(𝑘) such that the Euclidean distance between the 

endpoints of all the 𝑚(𝑘) < 3𝑘 edges of 𝑀(𝑘) is √5. 

 

Proof. We constructively prove Theorem 2 showing the existence of the two covering paths 

𝑀(2) ⊂ �̂�(2) and 𝑀(3) ⊂ �̂�(3), whose 𝑚(𝑘) = 3𝑘 − 1 edges belong, to the length class √5. 

If 𝑘 = 2, then 𝑀(2) = (1, 2)-(2, 0)-(0, 1)-(2, 2)-(1, 0)-(0, 2)-(2, 1)-(0, 0)-(√
5

2
, √

5

2
) is a 

self-intersecting inside the box covering path with √5 units long edges that joins the 9 nodes 

of 𝐺2. If 𝑘 = 3, then 𝑀(3) = (2, 0, 0)-(0, 1, 0)-(2, 2, 0)-(1, 0, 0)-(0, 2, 0)-(1, 2, 2)-(0, 0, 2)- 

   -(2, 1, 2)-(0, 2, 2)-(1, 0, 2)-(2, 2, 2)-(0, 1, 2)-(2, 0, 2)-(2, 2, 1)-(0, 1, 1)-(2, 0, 1)-(1, 2, 1)- 

     -(0, 0, 1)-(2, 1, 1)-(0, 2, 1)-(1, 0, 1)-(1, 2, 0)-(1, 1, 2)-(2, 1, 0)-(0, 0, 0)-(√
5

2
, √

5

2
, 0)- 

-(
√10

12
∙ (6 − √24 − 3 ∙ √10) ,

√10

12
∙ (6 − √24 − 3 ∙ √10) ,

1

2
∙ √

5

3
∙ (4 + √10)) is a self-

intersecting covering path, with √5 units long edges, that visits the 27 = 𝑚(3) + 1 nodes of 

𝐺3, without going outside the minimal-3-box (as shown in Figures 4&5).       
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Figure 4. The covering path 𝑀(3) consists of 26 edges, all belonging to the length class √5; the two 

Steiner points (in green) are S1 ≡ (√
5

2
, √

5

2
, 0) ≅ (1.58113883, 1.58113883, 0)  and 

S2 ≡ (
√10

12
∙ (6 − √24 − 3 ∙ √10) ,

√10

12
∙ (6 − √24 − 3 ∙ √10) ,

1

2
∙ √

5

3
∙ (4 + √10)) ≅

(0.57721711, 0.57721711, 1.72750756). Perspective 1 (picture realized with GeoGebra [14]). 

 

Figure 5. All the edges of 𝑀(3) are entirely contained in the minimal-3-box �̂�(3). Perspective 2 

(picture realized with GeoGebra [14]). 

 

Corollary 1 An incomplete knight’s tour of length 25 is possible on the 3 ×  3 ×  3 board. 

 

Proof. Referring to the well-known knight’s tour problem [9, 10], it is trivial to point out how 

edges 1-24 of the covering path 𝑀(3) (see proof of Theorem 2) provide also an incomplete 

open knight’s tour of length 25 on the 3 ×  3 ×  3 chess board. 
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Since in 2007 Demaio [11] proved that it is impossible for the knight of the problem to visit 

every square of the 3 ×  3 ×  3 board, 𝑀(3) implies that the longest achievable sequence of 

edges having both their endpoints belonging to 𝐺3 has a length of 25 or 26 [12, 13].     

 

IV. CONCLUSION 

The 3𝑘-points problem can be optimally solved (i.e., using the minimum number of links) 

with the covering trail 𝐻(𝑘) of link length 
3𝑘−1

2
, and this result can be achieved through the 

standard clockwise-algorithm introduced in Reference [8] or using the extended clockwise-

algorithm described in the present paper. 

Considering the Euclidean distance between any two endpoints of the 
3𝑘−1

2
 links generated 

by the extended version of the aforementioned algorithm, Theorem 1 shows that it produces no 

more than 𝑘 distinct length classes. Moreover, the extended clockwise-algorithm solves the 

enhanced 3𝑘-points problem starting, ending, and turning only on the vertices of the 𝑘-box. 

Therefore, every turning point is also a Steiner point that does not belong to 𝐺𝑘, with the 

only exception of the origin: the point O𝑘 = (0, 0, . . . , 0), which can be (equivalently) taken as 

the starting/ending point of 𝐻(𝑘). 

When we move the constraints on the number of the allowed length classes and on the 

volume of the 𝑘-box to the top of the list (rather than focusing ourselves on the link length of 

the covering trails as above), we face the NP-complete problem of finding Hamiltonian paths 

on 𝑘-dimensional grid graphs. For 𝑘 = 2 and 𝑘 = 3, Theorem 2 shows the existence of the 

covering paths 𝑀√5(𝑘) ⊂ �̂�(𝑘) whose 𝑚(𝑘) = 3𝑘 − 1 edges all belong to the length class √5, 

but different solutions are also possible (e.g., it is sufficient to take into account the set of 

uncrossing covering paths 𝑀2(𝑘) ⊂ �̂�(𝑘) for 𝐺𝑘, whose 3𝑘 − 2 edges all belong to the length 

class 2, which we are going to describe in another paper introducing the so-called “ΜΛΙ-
algorithm”). 
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