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 This paper discusses topics in the symmetrized max-plus algebra. In 
this study, it will be shown the existence of eigenvalue decomposition 
of a symmetric matrix over symmetrized max-plus algebra. 
Eigenvalue decomposition is shown by using a function that 
corresponds to the symmetrized max-plus algebra with conventional 
algebra. The result obtained is the existence of eigenvalue 
decomposition of a symmetric matrix over symmetrized max-plus 
algebra and its application to determine eigenvalues and 
eigenvectors. 
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INTRODUCTION 

In linear algebra (conventional 
algebra), eigenvalues are characteristic 
values of a matrix of size 𝑛 × 𝑛, while 
eigenvectors are non-zero column vectors 
when multiplied by a matrix of size 𝑛 × 𝑛 
will produce another vector that has 
multiple values of the eigenvector itself. 
There have been many discussions about 
eigenvalues and eigenvectors in real 
matrices (Kuttler, 2012; Lay et al., 2016). 
The eigenvalue decomposition is one of 
the matrix decompositions based on the 
eigenvalue of the matrix.  

The max-plus algebra is the set of all 
reals ℝ ∪ {−∞} with maximum (written 
with “max”) as addition and common sum 
(written with “plus”) as multiplication, 
and it is denoted by ℝmax. The main 
difference between the max-plus algebra 
and conventional algebra is its additive 
inverse. There is no additive inverse for all 
elements in the max-plus algebra, except 
for zero elements (Hogben, 2014). There 
have been many discussions about 
eigenvalue and eigenvectors in the max-
plus matrix (De Schutter et al., 2020; 
James, 2016; Yonggu & Hee, 2018). 
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The symmetrization process of the 
max-plus algebra can be done to get the 
minus and balance of elements in ℝmax 
(Leake et al., 1994). The symmetrization of 
ℝmax is called the symmetrized max-plus 
algebra and denoted by 𝕊. Furthermore, 
ℝmax can be viewed as a positive or zero 
part of 𝕊. The 𝑄𝑅 and singular value 
decomposition of the symmetrized max-
plus algebraic matrix was discussed in De 
Schutter & De Moor (2002). The 𝐿𝑈-
decomposition of the symmetrized max-
plus algebraic matrix was discussed in 
Suroto et al. (2018). The function which 
corresponds to symmetrized max-plus 
algebra and conventional algebra is used 
as a link to solve symmetrized max-plus 
problems in the conventional algebra 
sense.  

The discussion of the eigenvalue of 
symmetrized max-plus algebra has been 
carried out by Ariyanti et al. (2015). The 
eigenvalue of the symmetrized max-plus 
algebraic matrix was determined using an 
extended linear complementary problem 
(ELCP). The eigenvalues obtained by ELCP 
cannot be performed in a similar way as in 
conventional algebra, and it is one of the 
disadvantages of this method. In Ariyanti 
(2021) also discusses eigenvalue 
problems in the symmetrized max-plus 
algebra. It illustrates the necessity or 
sufficient of eigenvalue in matrix over 𝕊, 
but the technique for calculating 
eigenvalue and eigenvectors is not 
illustrated. Meanwhile, in discussing the 
eigenvalue in matrix over 𝕊, the main 
difficulty is the technique of calculating 
eigenvalue and eigenvectors which are not 
illustrated in those articles.  

This paper discusses the eigenvalue 

decomposition of a matrix over the 

symmetrized max-plus algebra. It will be 
used to determine the eigenvalue and 
eigenvectors of a matrix over 𝕊. The matrix 
discussed in this paper is a symmetric 
matrix. This is due to the use of a given 
rotation which will be applied when 
zeroing entries other than the main 

diagonal when decomposites the matrix. 
This can be done when the matrix is a 
symmetric matrix. We also use a function 
in De Schutter & De Moor (2002) to 
correspond the symmetrized max-plus 
algebra with conventional algebra.  

The results obtained in this paper 
have the advantage that the completion of 
eigenvalue and eigenvectors of the 
symmetrized max-plus algebraic matrix 
can be done as in a conventional matrix. 
The results in this paper can potentially be 
developed for any matrix (not necessarily 
a symmetric matrix) over symmetrized 
max-plus algebra.  

METHOD  

This research is a literature study 
that is developing research that already 
exists, namely matrix decompositions. 
This study develops the eigenvalues 
decomposition of the symmetrized max-
plus algebraic matrix to determine 
eigenvalues and eigenvectors of a 
symmetric matrix over 𝕊 as in 
conventional algebra. This improves 
discussion in Ariyanti et al. (2015) and 
Ariyanti (2021) when determining 
eigenvalues and eigenvectors of a 
symmetric matrix.  
 A function that corresponds to the 
symmetric max-plus algebra with 
conventional algebra in De Schutter & De 
Moor (2002) is used to determine 
eigenvalues decomposition. The problems 
solving of the existence of eigenvalues 
decomposition are done in conventional 
algebra sense. The research steps are 
1. Literature review in some topics i.e., 

eigenvalues and eigenvectors in 
conventional algebra, eigenvalue 
decomposition in conventional algebra, 
max-plus algebra, and symmetrized 
max-plus algebra. 

2. Define eigenvalues and eigenvectors in 
the symmetrized max-plus algebraic 
matrix. 

3. Determine the existence of the 
eigenvalue decomposition in 
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symmetric matrix over the 
symmetrized max-plus algebra. 

4. Determine eigenvalues and 
eigenvectors of a symmetric matrix 
using eigenvalue decomposition. 

RESULTS AND DISCUSSION 

This section is the main result of this 
research which is to determine the 
eigenvalue of a symmetric matrix using 
eigenvalue decomposition. At the 
beginning of the discussion, the 
eigenvalue in the matrix over the 
symmetrized max-plus algebra is first 
defined. The following definition is done 
adopting the definition of eigenvalue in 
conventional algebra (Lay et al., 2016). 
The “balance relation” in symmetrized 
max-plus algebra (Leake et al., 1994) plays 
the role of an “equal relation” in 
conventional algebra.  
Definition 1 
An eigenvector of a matrix 𝐴 ∈ 𝕊𝑛×𝑛 is 
nonzero vector x̅ ∈ (𝕊⌵)𝑛×𝑛 such that 

𝐴 ⊗ x̅ ∇ λ ⊗ x̅  (1) 

for some scalar λ ∈ 𝕊⌵. A scalar λ is called 
an eigenvalue of 𝐴 if there is a nontrivial 
solution x̅ of (1); such an x̅ is called an 
eigenvector corresponding to λ. 

The following is an example to shows the 
eigenvalue in Definition 1 

Example 2 

Suppose 𝐴 = [
1 2•

4 1
] and a nonzero vector 

x̅ = [
0
1

]. Note that 

𝐴 ⊗ x̅ = [
1 2•

4 1
] ⊗ [

0
1

] = [
3•

4
] 

∇ [
3
4

] = 3 ⊗ [
0
1

] = 3 ⊗ x̅ . 

Since 𝐴 ⊗ x̅ ∇3 ⊗ x̅ then 3 is eigenvalue of 

𝐴 and a nonzero vector x̅ = [
0
1

] is 

eigenvector of 𝐴 corresponding to 
eigenvalue 3. ∎  

Based on the balance (1), it is obtained 

(𝐴 ⊖ λ ⊗ 𝐼) ⊗ x̅ ∇ ℰ̅ .  (2) 

According to the theorem of linear balance 
systems in Ariyanti (2021), then (2) has a 
non-trivial solution if and only if det(𝐴 ⊖
λ ⊗ 𝐼) ∇ℰ .  

 In conventional algebra, the 
discussion of the eigenvalue of a matrix is 
identical to the characteristic equation. 
Furthermore, the eigenvalue can be 
determined by calculating the roots of the 
characteristic equation. The following is a 
definition of characteristic balance on a 
symmetrized max-plus algebraic matrix. 

Definition 3 

The characteristic balance of 𝐴 is  

det(𝐴 ⊖ λ ⊗ 𝐼)∇ ℰ.  (3) 

Furthermore, the scalars λ that satisfies (3) 
are called eigenvalue of 𝐴.  

 The following is an example to 
illustrate the characteristic balance of a 
symmetrized max-plus algebraic matrix. 

Example 4 

Suppose 𝐴 = [
1 2•

4 1
]. The characteristic 

balance of 𝐴 is 

det(𝐴 ⊖ λ ⊗ 𝐼)∇ ℰ 

and it is obtained 

λ2 ⊖ 1 ⊗ λ ⊖ 6•∇ ℰ ∎ 

It should be noted that det(𝐴 ⊖ λ ⊗ 𝐼) is a 
polynomial over symmetrized max-plus 
algebra. In the discussion of symmetrized 
max-plus algebra, there has never been a 
special discussion that illustrates the roots 
of a polynomial. Thus, this paper will not 
use the characteristic balance to 
determine the eigenvalue of a matrix. In 
this paper, the eigenvalue decomposition 
is used to determine the eigenvalue of the 
symmetric matrix over 𝕊. 
 The existence of eigenvalue 
decomposition in symmetrized max-plus 
algebra is done by adopting eigenvalue 
decomposition in conventional algebra in 
Anton & Rorres (2010).   
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The following theorem illustrates the 
existence of eigenvalue decomposition in 
the symmetric matrix over symmetrized 
max-plus algebra. 

Theorem 5 

If 𝐴 ∈ 𝕊𝑛×𝑛 is symmetric then there are 𝑈 ∈
(𝕊⌵)𝑛×𝑛 and 𝐷 ∈ (𝕊⌵)𝑛×𝑛 with 𝐷 is a 
diagonal matrix such that  

𝐴 ∇ 𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 

where 𝑈𝑇 ⊗ 𝑈 ∇ 𝐼𝑛  
Proof.  

Let 𝐴 ∈ 𝕊𝑛×𝑛 has non signed entries, then 
it is defined �̂� ∈ (𝕊⌵)𝑛×𝑛 such that  

�̂�𝑖𝑗 = {
𝑎𝑖𝑗, if 𝑎𝑖𝑗 signed 

     |𝑎𝑖𝑗|
⊕

 , if 𝑎𝑖𝑗 non signed 
 

for all 𝑖, 𝑗. So, in this paper, it is only proven 
for all signed matrix. Assume that 𝐴 is a 
signed matrix. If 𝐴 = ℰ𝑛×𝑛 then there are 
𝑈 = 𝐼𝑛 and 𝐷 = ℰ𝑛×𝑛 such that  

𝐼𝑛 ⊗ ℰ𝑛×𝑛 ⊗ (𝐼𝑛)𝑇 = 𝐴 ∇ 𝐴 

and 

(𝐼𝑛)𝑇 ⊗ 𝐼𝑛 = 𝐼𝑛 ∇ 𝐼𝑛. 

Next, the proof  is carried out for the 
symmetric matrix 𝐴 ≠ ℰ𝑛×𝑛 ∈ 𝕊𝑛×𝑛. By 
using function ℱ, let �̃� = ℱ(𝐴, 𝑀,∙) with 
𝑀 ∈ ℝ0

𝑛×𝑛, 𝑚𝑖𝑗 ∈ {−1,1} for all 𝑖, 𝑗. 

Therefore, entries of �̃� i.e �̃�𝑖𝑗(𝑠) =

𝑚𝑖𝑗𝑒
|𝑎𝑖𝑗|

⊕
𝑠
 are element in 𝑆𝑒. The function 

ℱ and definition of 𝑆𝑒 refer to De Schutter 
& De Moor (2002). 

The Jacobian method in 
conventional algebra (Golub & Loan, 
2013) is used to make zero the off-
diagonal entries in matrix over 𝑆𝑒. Let 

[
�̃�(𝑠) �̃�(𝑠)

�̃�(𝑠) �̃�(𝑠)
] 

is a symmetric matrix in 𝑆𝑒, then the off-
diagonal entries �̃�(𝑠) would be zero by 
Jacobian method. 

[
�̂� 0
0 �̂�

] = [
𝑐 𝑡

−𝑡 𝑐
]

𝑇

[
�̃�(𝑠) �̃�(𝑠)

�̃�(𝑠) �̃�(𝑠)
] [

𝑐 𝑡
−𝑡 𝑐

] 

where  

𝛼 =
�̃�(𝑠)−�̃�(𝑠)

2�̃�(𝑠)
 , 

𝜏 =
𝑠𝑖𝑔𝑛(𝛼)

|𝛼| + √1 + 𝛼2
 

and  

𝑐 =
1

√1+𝜏2
 , 𝑡 = 𝜏𝑐. 

This step is done repeatedly in the off-
diagonal entry to get the diagonal form for 
�̃�. 

 Since the Jacobi method is applied to 
symmetric matrix �̃�, then it will transform 
�̃� to diagonal form �̃� and yields Jacobian 
transformation series  

�̃�(𝑘+1) = 𝐽𝑇�̃�(𝑘)𝐽 

where �̃�(0) = �̃� and lim
𝑘→∞

�̃�(𝑘) = �̃� is 

diagonal form. For every Jacobian 
transformation, we selected such that 

make zero the off-diagonal entries �̃�𝑖𝑗
(𝑘)

=

�̃�𝑗𝑖
(𝑘)

 that have maximal absolute value. By 

using the Frobenius norm, the Jacobian 
method is quadratic convergent. It will 
make zero the off-diagonal by increasing 
the norm of diagonal entries and 
decreasing the norm of off-diagonal 
entries. Therefore, the Jacobian 
transformation will transform �̃� to 
diagonal form �̃�.    

 Let �̃��̃��̃�𝑇 approximates path 
eigenvalue decomposition of �̃� in [𝐿, ∞) by 
Jacobian transformation. Since all of 
entries in �̃�, �̃� and �̃�𝑇 are element in 𝑆𝑒 
then  

ℱ(𝐴, 𝑁, 𝑠) ~ �̃�(𝑠)�̃�(𝑠)�̃�𝑇(𝑠) 

 𝑠 → ∞ for some 𝑁 ∈ ℝ0
𝑚×𝑛. Furthermore, 

�̃�𝑇(𝑠)�̃�(𝑠)~𝐼𝑛 , for 𝑠 ≥ 𝐿. The diagonal 
entries of �̃� and all of entries of �̃� are 
element in 𝑆𝑒, and will asymtotically 
equivalent with an exponential in the 
neighborhood of ∞. 

 Let �̃�𝑖 = �̃�𝑖𝑖  for 𝑖 = 1,2, … , 𝑛. By 
applying the reverse function ℛ and link 
between symmetrized max-plus algebra 
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and conventional matrix in De Schutter & 
De Moor (2002), it is obtained 𝐷 = ℛ(�̃�), 

𝑈 = ℛ(�̃�) and 𝜎𝑖 = (𝐷)𝑖𝑖 = ℛ(�̃�𝑖) for all 𝑖. 

Matrix 𝐷 is a diagonal matrix with signed 
entries and 𝑈 also has signed entries. 
Therefore, it is obtained that  

𝐴 ∇ 𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 

with 𝑈𝑇 ⊗ 𝑈 ∇𝐼𝑛. ∎ 

The following is an example to 
illustrate the existence of eigenvalue 
decomposition in Theorem 5. 

Example 6 
Suppose a symmetric matrix 𝐴 =

[
8 ⊖ 9

⊖ 9 10• ]. Then, we will determine the 

eigenvalue decomposition of 𝐴. In the 
beginning, it is defined �̃� = ℱ(𝐴, 𝑀,∙) 
where 𝑀 ∈ ℝ0

2×2 and 𝑚𝑖𝑗 ∈ {−1,1} for all 

𝑖, 𝑗 it is obtained 

�̃�(𝑠) = [ 𝑒8𝑠 −𝑒9𝑠

−𝑒9𝑠 𝑒10𝑠 ]  

for all 𝑠 ∈ ℝ0
+.  

  The given rotations formula, i.e 

[
�̂� 0
0 �̂�

] = [
𝑐 𝑠

−𝑠 𝑐
]

𝑇

[
𝑥 𝑤
𝑤 𝑦 ] [

𝑐 𝑠
−𝑠 𝑐

]. 

can be used to determine the eigenvalue 
decomposition of �̃�.  

�̃�(𝑠)~�̃�(𝑠)�̃�(𝑠)�̃�(𝑠)𝑇 

where  

�̃�(𝑠) = [
1 −𝑒−𝑠

𝑒−𝑠 1
] 

�̃�(𝑠) = [
0 0
0 𝑒10𝑠] 

�̃�(𝑠) = [ 𝑒8𝑠 −𝑒9𝑠

−𝑒9𝑠 𝑒10𝑠 ]. 

By using reverse map ℛ and link between 
symmetrized max-plus algebra and 
conventional algebra, then it is obtained 

𝑈 = ℛ(�̃�) = [
0 ⊖ −1

−1 0
] 

𝐴 = ℛ(�̃�) = [
8 ⊖ 9

⊖ 9 10
] 

𝐷 = ℛ(�̃�) = [
ℰ ℰ
ℰ 10

]. 

Note that 

𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 = [
8 ⊖ 9

⊖ 9 10
] ∇𝐴 

𝑈𝑇 ⊗ 𝑈 = [
0 (−1)⦁

(−1)⦁ 0
] ∇𝐼2 

𝑈 ⊗ 𝑈𝑇 = [
0 (−1)⦁

(−1)⦁ 0
] ∇𝐼2. 

For 𝐴 = [
8 ⊖ 9

⊖ 9 10• ] ∈ 𝕊𝑛×𝑛, there are a 

diagonal matrix 𝐷 = [
ℰ ℰ
ℰ 10

] and matrix  

𝑈 = [
0 ⊖ −1

−1 0
] such that  

𝐴 ∇ 𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 

where 𝑈 ⊗ 𝑈𝑇∇ 𝐼2 dan 𝑈𝑇 ⊗ 𝑈 ∇ 𝐼2 ∎ 

Note that in Theorem 5, the eigenvalue 
decomposition of 𝐴 is 

𝐴 ∇ 𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 

where 𝑈𝑇 ⊗ 𝑈 ∇ 𝐼𝑛. There are many 
possibilities entries in 𝑈𝑇 ⊗ 𝑈: 

1. Each entry of 𝑈𝑇 ⊗ 𝑈 are a balanced 
element. 

𝑈𝑇 ⊗ 𝑈 = [

( )• ( )•

( )• ( )•

… ( )•

… ( )•

⋮ ⋮
( )• ( )•

⋱ ⋮
… ( )•

] 

2. Each of non-diagonal entries in 𝑈𝑇 ⊗ 𝑈 
is a balanced element and diagonal 
entries are 0 or balanced elements. 

𝑈𝑇 ⊗ 𝑈 = [

0 ( )•

( )• 0

… ( )•

… ( )•

⋮ ⋮
( )• ( )•

⋱ ⋮
… ( )•

] 

3. Each of non-diagonal entries in 𝑈𝑇 ⊗ 𝑈 
is a balanced element and diagonal 
entries are 0. 

𝑈𝑇 ⊗ 𝑈 = [

0 ( )•

( )• 0

… ( )•

… ( )•

⋮ ⋮
( )• ( )•

⋱ ⋮
… 0

]. 
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Next, consider the balance 

𝐴 ⊗ 𝑈 ∇ 𝑈 ⊗ 𝐷.  (4) 

From the right-hand side of balance (4), it 
is obtained 𝑈 ⊗ 𝐷 

 = [

𝑢11 𝑢12

𝑢21 𝑢22

… 𝑢1𝑛

… 𝑢2𝑛

⋮ ⋮
𝑢𝑛1 𝑢𝑛2

⋱ ⋮
… 𝑢𝑛𝑛

] ⊗

[

𝑑11 ℰ
ℰ 𝑑22

… ℰ
… ℰ

⋮ ⋮
ℰ ℰ

⋱ ⋮
… 𝑑𝑛𝑛

] 

= 𝑑11 ⊗ [

𝑢11

𝑢21

⋮
𝑢𝑛1

] ⊕ … ⊕ 𝑑𝑛𝑛 ⊗ [

𝑢1𝑛

𝑢2𝑛

⋮
𝑢𝑛𝑛

]    (5) 

From (4) and (5), it is obtained  

𝐴 ⊗ [

𝑢11

𝑢21

⋮
𝑢𝑛1

] ∇ 𝑑11 ⊗ [

𝑢11

𝑢21

⋮
𝑢𝑛1

]  

⋮   (6) 

𝐴 ⊗ [

𝑢1𝑛

𝑢2𝑛

⋮
𝑢𝑛𝑛

] ∇ 𝑑𝑛𝑛 ⊗ [

𝑢1𝑛

𝑢2𝑛

⋮
𝑢𝑛𝑛

]. 

All the balances in (6) shows that 𝑑11, 𝑑22, 
..., 𝑑𝑛𝑛 are eigenvalues of 𝐴 and 
eigenvectors corresponding to 𝑑11, 𝑑22, ..., 
𝑑𝑛𝑛 are  

[

𝑢11

𝑢21

⋮
𝑢𝑛1

], [

𝑢12

𝑢22

⋮
𝑢𝑛2

], … , [

𝑢1𝑛

𝑢2𝑛

⋮
𝑢𝑛𝑛

], 

respectively. 

  In Definition 1, a nonzero vector x̅ ∈
(𝕊⌵)𝑛×𝑛 is called eigenvectors of 𝐴 if 

𝐴 ⊗ x̅ ∇ λ ⊗ x̅ .  (7) 

for a scalar λ ∈ 𝕊⌵.  The balance (7) can be 
expressed as 

𝐴 ⊗ x̅ ∇ λ ⊗ x̅  ⊕ ℰ̅ .  (8) 

Since each of the balanced vectors 𝑡 •̅ ∈
(𝕊•)𝑛 satisfy ℰ̅∇𝑡 •̅ where ℰ̅ is a signed 

vector, then vector ℰ̅ in (8) can be 
substituted by 𝑡 •̅, such that 

𝐴 ⊗ x̅ ∇ λ ⊗ x̅  ⊕ 𝑡 •̅ .  (9) 

Henceforth, the eigenvalue and 
eigenvectors in the matrix over 𝕊• can be 
modified by the balance (9), which is 
presented in the following lemma. 

Lemma 7 
If λ is eigenvalue of 𝐴 and a nonzero vector 
x̅ is eigenvector corresponding to  λ then 

𝐴 ⊗ x̅ ∇ λ ⊗ x̅  ⊕ 𝑡 •̅ 

for 𝑡 •̅is a balanced vector. 

Proof. 

Suppose λ is the eigenvalue of 𝐴 and a 
nonzero vector x̅ is eigenvector 
corresponding to λ. By Definition 1, it is 
obtained that  

𝐴 ⊗ x̅ ∇ λ ⊗ x̅ . 

Since 𝐴 ⊗ x̅ ∇ λ ⊗ x̅ can be expressed as 

𝐴 ⊗ x̅ ∇ λ ⊗ x̅  ⊕  ℰ̅ 

where ℰ̅ is a signed vector, then ℰ̅ can be 
substituted by any balanced vectors 𝑡 •̅. So, 
it is obtained  

𝐴 ⊗ x̅ ∇ λ ⊗ x̅  ⊕  𝑡 •̅ 

where 𝑡 •̅ is balanced vectors. ∎ 

The following is an example to 
illustrate Lemma 7. 

Example 8 

Suppose 𝐴 = [
1 2•

4 1
] and a nonzero vector 

x̅ = [
0
1

], then 𝐴 ⊗ x̅ = [
3•

4
] ∇ [

3
4

] ⊕ [
𝑡1

•

𝑡2
•] =

3 ⊗ [
0
1

] ⊕  [
𝑡1

•

𝑡2
•] = 3 ⊗ x̅ ⊕ [

𝑡1
•

𝑡2
•].∎ 

Lemma 28 can also be applied in a 
symmetric matrix. From the existence of 
eigenvalue decomposition of a symmetric 
matrix in Theorem 26. 

𝐴 ∇ 𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 

then one gets 

𝐴 ⊗ 𝑈 ∇ 𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 ⊗ 𝑈. (10) 



Desimal, 4 (3), 2021 - 355 

Suroto 

Copyright © 2021, Desimal, Print ISSN: 2613-9073, Online ISSN: 2613-9081 

The multiplication in both side of balance 
in (10) results 

𝐴 ⊗ [𝑈]1∇ 𝑑11 ⊗ [𝑈]1 ⊕ 𝑡1
•̅ 

𝐴 ⊗ [𝑈]2∇ 𝑑22 ⊗ [𝑈]2 ⊕ 𝑡2
•̅ 

⋮ 

𝐴 ⊗ [𝑈]𝑛∇ 𝑑𝑛𝑛 ⊗ [𝑈]𝑛 ⊕ 𝑡𝑛
•̅     (11) 

where [𝑈]1, [𝑈]2, … , [𝑈]𝑛 are the first, 
second, ..., 𝑛-th columns of  𝑈, respectively, 
𝑑11, 𝑑22, … , 𝑑𝑛𝑛 are diagonal entries of 𝐷, 
respectively, and 𝑡1

•̅, 𝑡2
•̅ , … , 𝑡𝑛

•̅  are the 𝑛-
balanced vectors. From (11), one can use 
eigenvalue decomposition of the 
symmetric matrix in the symmetrized 
max-plus algebra to determine eigenvalue 
of the symmetric matrix. 

The following is an example to 
illustrate that the existence of eigenvalue 
decomposition in Theorem 3 can be used 
to determine the eigenvalue of a matrix. 

Example 9 

Suppose a symmetric matrix 𝐴 =

[
8 ⊖ 9

⊖ 9 10• ]. Eigenvalue decomposition of 

𝐴 is  
𝐴 ∇ 𝑈 ⊗ 𝐷 ⊗ 𝑈𝑇 

for 𝑈 = [
0 ⊖ −1

−1 0
] and 𝐷 = [

ℰ ℰ
ℰ 10

]. 

Let  𝑑11 = ℰ, 𝑑22 = 10, [𝑈]1 = [
0

−1
] and 

[𝑈]2 = [
⊖ −1

0
]. Note that  

𝐴 ⊗ [𝑈]1 = [
8•

9•] ∇ [
ℰ
ℰ

] = 𝑑11 ⊗ [𝑈]1 

𝐴 ⊗ [𝑈]2 = [
⊖ 9
10• ] ∇ [

⊖ 9
10

] = 𝑑22 ⊗ [𝑈]2. 

So, eigenvalues of 𝐴 are 𝑑11 = ℰ and 𝑑22 =

10 . Then, nonzero vectors [𝑈]1 = [
0

−1
] 

and [𝑈]2 = [
⊖ −1

0
] are eigenvectors 

corresponding to 𝑑11 and 𝑑22, 
respectively. ∎  
 

CONCLUSIONS AND SUGGESTIONS 

The existence of eigenvalue 
decomposition of the symmetric matrix 

over symmetrized max-plus algebra can 
be investigated using a link among the 
symmetrized max-plus algebra and 
conventional algebra. The determination 
of eigenvalue decomposition can be done 
similarly to conventional algebra. 
Furthermore, this decomposition can be 
used to determine the eigenvalues and 
eigenvectors of a symmetric matrix over 
symmetrized max-plus algebra.  

Future research can be potentially 
done in diagonalization problems of 
symmetrized max-plus algebraic matrix. 
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