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Abstract -  Seismometer monitoring and evaluation 

activities at the Indonesia Tsunami Early Warning System 

(InaTEWS) station can be carried out through a 

seismometer sensor calibration system with the use of the 

software of Seismic Data Quality Analysis. The software 

output is in the form of a spectrum image that represents 

the conditions of the seismometer following the spectrum 

results. The identification of the seismometer condition can 

be made by pattern recognition in the spectrum image. 

This study employed a neural network, specifically the 

Convolutional Neural Network (CNN), to analyse the 

pattern condition. The test results show that the 

performance of the system will be excellent if 1024 hidden 

layers are used. In addition, the epoch test shows that the 

system works well when given a maximum epoch value of 

50. The test of image size gives the result that the system 

performance will result in good using input with a size of 

30x20 pixels. The final results of the classification of 

spectrum images using CNN will exhibit the identification 

of seismometer. For the validation, the confusion matrix 

test shows that the corresponding findings are 80%, while 

the conflicting results are 20%.  
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I. INTRODUCTION 

Indonesia Agency for Meteorology, Climatology, and 

Geophysics (BMKG) has a seismograph network 

installed throughout Indonesia for earthquake and 

tsunami monitoring in the Indonesian Tsunami Early 

Warning System (InaTEWS) seismic network. 

Equipment configuration on a seismograph network 

consists of a broadband seismometer, an accelerometer, 

and a 24-bit digitizer and uses a satellite connection for 

data transmission. Data from seismographs must be 

accurate and obtained in real-time, therefore the 

information service can be carried out correctly. BMKG 

has a significant task to maintain the operation of the 

equipment system to ensure it continues to work 24 hours 

a day. Observation equipment operated at the BMKG 

observation station must be operation-worthy, and the 

operation's reliability is guaranteed by periodic 

calibration of the equipment. The Engineering 

Instrumentation and Geophysical Equipment Calibration 

Division has the main task to carry out an inventory, 

monitoring, and evaluation of geophysical equipment 

and its supporting devices, as well as to regularly 

calibrate geophysical equipment. 

Seismometer monitoring and evaluation activities at 

the InaTEWS are carried out through a seismometer 

sensor calibration system using the Seismic Data Quality 

Analysis software or known as SQLX [1]. SQLX 

software produces digital images in the form of power 

spectrum density, also known as Power Spectral Density 

(PSD), and probability density, also called Probability 

Density Function (PDF), derived from seismometer 

measurements [2-3]. The digital image can describe the 

condition of the seismometer that operates following the 

spectrum result. Currently, the identification process of 

the seismometer condition is performed manually by the 

calibration officer. This officer analyzes the status of the 

seismometer by reviewing the spectrum image and 

checking for the presence of gaps, the existence of 

overlaps, RMS values, amplitude balance, the location of 

the spectrum on the Peterson Model, primary peak, and 

secondary peak [4-5]. This certainty can affect the 

calibration results because the identification process is 

subjective to the evaluation of each evaluator.  

Convolutional neural network (CNN) is a 

development of the Multilayer Perceptron (MLP), which 

is designed to process two-dimensional data [6-7]. CNN 

is included in the Deep Neural Network type due to the 

high network depth and it is widely applied to image data 

[8]. In the case of image classification, MLP is unsuitable 

for use considering it does not store spatial information 

from image data and assumes each pixel is an 

independent feature resulting in unfavorable results [9]. 

CNN classifies the data labeled using the supervised 

learning method. Thus, it trained the data and from 

targeted variables. As such, the purpose of this method is 

to group data into existing data. Several studies related 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 10, No. 1, May 2022 

68  Seismic Data Quality … | Nugroho, H.A., Hasanah, S., Yusuf, M., 67 – 75 

to CNN are used implemented to introduce the 

characteristics of an object. CNN can recognize facial 

patterns [10-11], classify sounds that exist in the 

environment [12], recognize speech patterns associated 

with one's emotions [13], and be able to recognize human 

activity recognition from the accelerometer [14-15]. 

II. METHOD 

The initial stage of designing the system is the 

construction of a system block diagram. A block diagram 

system is a graphical representation of the system being 

built. Fig. 1 shows a block diagram for a digital image 

processing application design. 

 

As is shown in Fig. 2, the system input is made in the 

form of a spectrum image. Images show the 

seismographs recorded that have three orientations, one 

vertical direction (z component) and two horizontal 

directions (east-west component and north-

south component). In the figure (a), shows seismograph 

records for the vertical direction or Z component (b), 

seismograph records for the east-west direction or E-

W component, and (c) seismograph records for the 

north-south direction or N-S component. Spectrum 

images were obtained from the process of recorded 

seismometer data at each InaTEWS station using SQLX 

software. Input in the form of a spectrum image is then 

subjected to image processing. Thus, the initial stage of 

image processing can be cropped. 

 

Cropping is the process of cutting the image to get 

only the needed objects. The cropping process in this 

system uses the thresholding method of Hue, Saturation, 

and Value (HSV) values [16]. Spectrum images that have 

gone through the stages of cropping are then converted 

into grayscale image forms to clarify spectrum patterns. 

The grayscale image then undergoes a resizing process 

or resizeds to 30x20 pixels. The resize process is done 

because the used spectrum image data has different sizes, 

therefore there is a need for a change in size to obtain the 

same size of image data which results in streamlining the 

next process.

  

 

Fig. 1 Diagram block of the seismic quality data image recognition 

 
 (a) (b) (c) 

Fig. 2 Spectrum image as input (a) Z component (b) E-W component (c) N-S component  
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Fig. 3 Spectrum image that has been converted into a 

grayscale image and through the process of cropping 

As is shown in Fig. 3, the grayscale image has been 

resized further through the feature extraction step. The 

use of feature extraction is to obtain special features 

possessed by spectrum images. The unique feature of a 

spectrum image is the spectrum pattern in that image 

itself. This research uses CNN therefore the process of 

feature extraction and image classification is carried out 

simultaneously as opposed to separately using the CNN 

algorithm. The CNN classification process produces the 

final result in the form of a seismometer. This study 

provides five indicators for each seismometer condition: 

(i) green indicates right seismometer conditions, (ii) 

yellow indicates poor seismometer conditions, (iii) red 

indicates damaged seismometer conditions, (iv) grey 

indicates metadata errors, and (v) black indicates 

seismometer conditions are not in operation.  

A. Convolutional Neural Network 

The convolutional network consists of three layers: 

the convolutional layer, the pooling layer, and the fully 

connected layer [17]. The convolutional layer is a layer 

that has a collection of filters to study the input image. 

Features will be extracted at this layer and then proceed 

to the next layer to remove more complex features [18]. 

The pooling layer, or subsampling, is a reduction in the 

size of the matrix by using pooling operations that are 

performed after the convolutional layer [19]. This CNN 

employs two types of pooling, i.e., average pooling and 

max pooling. One of the characteristics of average 

pooling is the value taken the average value, while the 

feature of max-pooling is the value received at the 

maximum value [20]. The pooling method that widely 

used in CNN architecture is max pooling. Max pooling 

divides the convolutional output layer into several grids, 

and then each filter shift will take the most significant 

value from each grid. The image generated at the pooling 

layer is a small part of its original size, which is useful to 

reduce the dimensions of the data. As a result, it will 

reduce the number of parameters in the next step. The 

fully connected layer is a layer where all the activation 

neurons from the previous layer are all connected with 

neurons in the next layer [21]. This layer is usually used 

in MLP, which aims to transform data dimensions to 

classify the data linearly. The fully connected layer will 

take the input from the output pooling layer in the form 

of a feature map [22]. The previous feature map is still in 

the way of a multidimensional array. Thus, this layer will 

reshape the feature map and produce as many n-

dimensional vectors. 

Convolution operations are calculated based on two 

real-valued argument functions [23]. This operation 

applies the output function as a feature map of the image 

input. Furthermore, these inputs and outputs can be seen 

as two real-valued arguments. Convolution operations 

can be written with the following formula use (1). 

 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡)   (1) 

The s (t) function gives a single output in the form 

map, and the first argument is the input, which is x, and 

the second argument was the kernel or filter. Input is a 

two-dimensional image as such t can be expressed as 

pixels and replaced with i and j. Operations for 

convolution to inputs with more than one dimension can 

be written as (2) and (3). 

 
𝑆 (𝑖, 𝑗) = (𝐾 ∗ 𝐼) (𝑖, 𝑗) = ∑ 𝐼 𝐼 (𝐼 + 𝑚, 𝑗 + 𝑛) 𝐾 (𝑚.𝑛)  (2) 

𝑆 (𝑖, 𝑗) = (𝐾 ∗ 𝐼) (𝑖, 𝑗) = ∑ 𝐼 𝐼 (𝑖 − 𝑚, 𝑗 − 𝑛) 𝐾 (𝑚.𝑛)  (3) 

Equations (2) and (3) are the basic calculations in 

convolution operations where i and j are the pixels of the 

image. The calculation is commutative and appears when 

K is the kernel, I is the input, and the kernel is reversible 

relative to the input. Convolution operations can be seen 

as a matrix multiplication between the input image and 

the kernel, whereas the output can be calculated by dot 

product [24]. 

The input image on the CNN model uses a 30x20x1 

image. The size of 30x20x1 indicates that the entered 

image has a size of 30x20 pixels, and the number one 

indicates that the entered image has one gray-scale color 

channel (greyscale image). The input image will then be 

processed first through the convolution process and 

pooling process at the feature learning stage. The number 

of convolution processes in this design has three 

convolution layers. Each convolution has a different 

number of filters but uses the same kernel size. The next 

process is the flatten process, or the process of changing 

the feature map of the pooling layer results in vector 

shapes. This process is usually called the fully connected 

layer stage. Fig. 4 shows the design of the CNN 

architecture in this study.
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Fig. 4 Convolutional neural network architecture 

 

The size of the image used in this study are 30x20, 

50x50, 64x64, and 100x100, besides the number of 

hidden layers used are 32, 64, 256, 512, and 1024 to 

determine performance the best classification system. 

Fig. 4 shows the CNN model design using a 30x20 image 

size and 512 hidden layers. The first convolution used 32 

filters and a kernel with a 5x5 matrix, and then the 

pooling process was done by using a 5x5 pooling size. 

The next stage was the second convolution phase using 

50 filters and a kernel with a 5x5 matrix. The third 

convolution stage was carried out after the second 

convolution phase is completed by using 80 filters and a 

kernel with a 5x5 matrix. Subsequently, it was then 

proceed with the flatten process that changes the output 

of the convolution process in the form of a matrix into a 

vector. The vector will be continued in the classification 

process using MLP with the number of neurons in the 

hidden layer that has been determined, which is 512 

layers. The class of images was then classified based on 

the value of neurons in the hidden layer employing the 

softmax activation function. 

B. Feature Extraction 

The system will train the input as image files. The 

training image will be cropped to get the object needed, 

then the image that has been cut will be converted to a 

grayscale image and resized to 30x20 pixels. For the next 

process, the system will provide labeling to the image 

following the file name of each inserted image. The 

labeling process uses five categories with the following 

provisions: (i) files with the name yellow_fail will be 

labeled as a fail spectrum pattern, (ii) files with the name 

green_good will be labeled as a good spectrum pattern, 

(iii) files with the name red_poor will be labeled as a 

poor spectrum pattern, (iv) files with the name 

gray_false_metadata will be labeled as an false metadata 

spectrum pattern, and (v) files with the name 

black_no_operation will be labeled as no operation 

spectrum pattern. The results of the training can be used 

if the training process produces greater accuracy equal to 

90%. If the training accuracy is less than 90%, then the 

system will not be processed to the next step. 

III. RESULTS AND DISCUSSION 

Spectrum image data for the training process 

amounted to 700 spectrum images, consisting of 140 

good category spectrum images, 140 damaged category 

spectrum images, 140 poor category spectrum images, 

140 wrong category metadata spectrum images, and 140 

dead category spectrum images. Furthermore, spectrum 

image data for the testing process amounted to 225 

spectrum images which consists of 45 categories of good 

spectrum images, 45 categories of fail spectrum images, 

45 types of poor spectrum images, 45 categories of false 

metadata spectrum, and 45 categories of not operation 

spectrum images. The training data testing was 

undertaken by testing the image size, hidden layer testing, 

and epoch testing employing the confusion matrix. 

Image size testing was performed to determine the 

performance of the system at 512 hidden layers and a 

maximum epoch of 50, however different sized images 

were used, such as 30x20 pixels, 50x50 pixels, 64x64 

pixels, and 100x100 pixels. The test results are shown in 

Table I. 

Table I indicates that the image size, is proportional 

to the time needed to carry out the training process as 

such the training process is inefficient. An actual image 

used for the training process in this study is an image 

with a size of 30x20 pixels because the training process 

that uses an image size of 30x20 can produce training 

data with an accuracy of 1 in 34.52 seconds. Hidden layer 

testing was performed to determine the training 

performance using the same image size at 30x20 pixels. 

Subsequently, different epochs at 25, 50, and 100 and 

several different hidden layers at 32, 64, 256, 512, and 

1024 were used to complete the system training. The test 

results are shown in Table II - V.
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TABLE I 

 THE PERFORMANCE OF IMAGE SIZE TESTING RESULTS 

No. Size (pixel) Number of Hidden Layer Number of Epoch Accuracy Time (second) 

1. 30x20 512 50 1 34,52 

2. 50x50 512 50 1 60,37 

3. 64x64 512 50 1 120,42 

4. 100x100 512 50 1 360,02 

 
TABLE II 

THE PERFORMANCE OF HIDDEN LAYER TEST RESULTS WITH A MAXIMUM EPOCH OF 25 

No. Number of Hidden Layer Accuracy Time (second) 

1. 32 0,7200 20,00 

2. 64 0,9551 20,64 

3. 256 0,9943 20,97 

4. 512 0,9886 20,26 

5. 1024 0,7653 19,84 

 
TABLE III 

THE PERFORMANCE OF HIDDEN LAYER TEST RESULTS WITH A MAXIMUM EPOCH OF 50 

No. Number of Hidden Layer Accuracy Time (second) 

1. 32 0,9971 38,60 

2. 64 0,9985 38,77 

3. 256 1 38,41 

4. 512 1 38,70 

5. 1024 1 29,75 

 

TABLE IV 

THE PERFORMANCE OF HIDDEN LAYER TEST RESULTS WITH A MAXIMUM EPOCH OF 100 

No. Number of Hidden Layer Accuracy Time (second) 

1. 32 1 59,00 

2. 64 1 55,83 

3. 256 1 52,53 

4. 512 1 53,90 

5. 1024 1 60,02 

TABLE V 

THE PERFORMANCE OF EPOCH TESTING RESULTS 

No. Size (pixel) Number of Hidden Layer Number of Epoch Accuracy Time (second) 

1. 30x20 25 1024 0,7653 19,84 

2. 30x20 50 1024 1 29,75 

3. 30x20 100 1024 1 60,02 

 

Table V shows that the number of epochs affects the 

training process based on the magnitude of the accuracy 

value obtained from the training process. The higher the 

epoch value used, the greater the accuracy value received, 

however the system efficiency cannot be seen based on 

its accuracy value alone. It needs to consider the time 

spent during the training process. A number of good 

epochs used in this study were an epoch of 50 because it 

produced training data with an accuracy of 1 in 19.84 

seconds. Image training will provide both loss and 

accuracy values in a range of values from 0 to 1.  
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Fig. 5 shows a graph for the comparison of loss values 

with epoch values when the training process was run 

using 700 training data, the epoch number of 50, and the 

learning rate value of 0.001. The small loss value is 

proportional to the number of epochs when the number 

of iterations has done. 

As shown in Fig. 6, the accuracy value will increase 

in proportion to the number of epochs when the number 

of iterations was undertaken. Image training in this study 

is concluded to be successful when the accuracy value is 

more significant than 0.9. In contrast, when the accuracy 

value shows the number of 0.9, it can not be used at the 

next step for the spectrum image testing process. 

 

Furthermore, the test data was validated using 

spectrum image data from 75 InaTEWS stations. They 

have spectrum images representing BHE, BHN, and 

BHZ components. In addition, reference data derived 

from seismometer condition analysis reports on 

DokuWiki with the address https://geof.bmkg.go.id 

/dokuwiki/ were used to validate data as shown in Table 

6. The value of the test data following the reference data 

is 80%, while the value that does not follow the reference 

data is 20%. This value was obtained using the following 

calculation (4) and (5) [25]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑇𝑟𝑢𝑒 =
TP+TN

TP+FP+FN+TN
𝑥100%  (4) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐹𝑎𝑙𝑠𝑒 =
TP+TN

TP+FP+FN+TN
𝑥100%               (5) 

 

True Positive (TP) : category images that were 
correctly classified as category images 

True Negative (TN) : non-category images that were 
correctly classified as non-category images 

False Positive (FP) : non-category images that were 
incorrectly labeled as category images 

False Negative (FN) : category images that were 
incorrectly marked as non-category images 

 

 

Fig. 5 Comparison of loss with epoch 

 

 

Fig. 6 Comparison of accuracy with epoch 
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The calculation results show that the work of the 

system in classifying the conditions of a seismometer 

gives a good performance up to80%. This value indicates 

that the system can distinguish the types of spectrum 

patterns in each category, while the value of 20% 

suggests the failure of the system in classifying spectrum 

patterns in the test data used. 

Table VI shows that there are data that do not follow 

the reference data during the testing stage. For instance, 

the data that were entered in either category is classified 

by the system as incorrect metadata categories. The 

results of the classification are not appropriate in regards 

to the different size of the spectrum image used in this 

study. Different sizes of images used in the training and 

testing process can affect cropping results affecting 

classification results that can possibly diverge. 

Data with functional categories can be classified into 

the wrong metadata category because it has the same side 

size. Data with functional groups have different sizes 

therefore images that have the same side size will be 

classified into incorrect metadata data when tested for 

good categories, as shown in Fig. 7. In the figure (a), 

shows seismograph records for the east-west component 

or E-W component (b), seismograph records for the 

north-south component or N-S component, and (c) 

seismograph records for the vertical component or 

Z component. 

The shortcome of this system that is it is only able to 

classify the condition of the seismometer based on 

spectrum patterns in the trained image and unable to 

integrate with gap data, overlap data, RMS value data, or 

amplitude data, as such the accuracy of the classification 

results was only 80%. The system will work better if the 

seismometer condition classification process is not only 

based on the recognition of spectrum image patterns but 

also integrated with gap data, overlap data, RMS value 

data, and amplitude data.

TABLE VI 

THE PERFORMANCE OF CONFUSION MATRIX 

 Prediction  
Good Fail False metadata Not operation Poor 

Actual 

 

Good 10 0 2 0 3 

Fail 0 12 2 1 0 

False metadata 0 0 15 0 0 

Not operation 0 1 0 14 0 

Poor 1 4 1 0 9 

 

 

 
(a)                                                           (b)                                                       (c) 

Fig. 7 The system reported the results of the fail category (above) classification with the not operating (bottom) category 

test data. (a) E-W component (b) N-S component (c) Z component 
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IV. CONCLUSION 

The large image size causes the amount of time 

needed to carry out the training process resulting in the 

training process to be inefficient. The accuracy value is 

not only influenced by the number of hidden layers but 

also by the maximum amount of the epoch. A 

considerable epoch value will produce a substantial 

accuracy value, however time needed for the learning 

process will increase rapidly. The results will give better 

performance when the results of the recognition of 

spectrum pattern data are integrated with the gap data, 

overlap data, RMS value data, and amplitude data. These 

integrations will increase the accuracy value of the 

seismometer condition classification. The next system 

development is expected to be able to identify 

seismometer damage accompanied by an analysis of the 

causes of the failed seismometer. 
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