
 Accepted: 14-03-2022 | Received in revised: 16-04-2022 | Published: 29-04-2022

305

Accredited Ranking SINTA 2
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online on: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 6 No. 2 (2022) 305 - 314 ISSN Media Electronic: 2580-0760

Towards Generating Unit Test Codes Using

Generative Adversarial Networks

Muhammad Johan Alibasa1, Rizka Widyarini Purwanto2, Yudi Priyadi3, Rosa Reska Riskiana4
1,3,4School of Computing, Telkom University

2School of Computer Science and Engineering, The University of New South Wales
1alibasa@telkomuniversity.ac.id, 2r.purwanto@unsw.edu.au, 3whyphi@telkomuniversity.ac.id,

4rosareskaa@telkomuniversity.ac.id

Abstract

Unit testing is one of the important software development steps to ensure the software’s quality. Despite its importance, uni t
testing is often neglected since it requires a significant amount of time and effort from the software developers to write them.
Existing automated testing generating systems from past research still have shortcomings due to the Genetic Algorithm (GA)
limitations to generate the appropriate unit test codes. This study explores the feasibility of using Generative Adversarial
Networks (GAN) models to generate unit test code with the ability of GAN to cover GA’s drawbacks. We perform
experimentations using four state-of-the-art GAN models to generate basic unit test codes and compare the results by analyzing
the generated output codes using novel metrics proposed from past studies as well as performing qualitative evaluation on the

generated outputs. The results show that the generated codes have satisfactory quality scores (BLEU-2 of around 99%) from
the models and adequate diversity score (NLL-Div and NLL-Gen) in most models. Our study shows positive indications and
potential in the use of GAN for automatic unit test code generation and suggests recommendations for future studies in GAN-
based unit test code generation systems.

Keywords: unit test, code generation, generative adversarial network

1. Introduction

Unit testing is one of important processes in software

development because it is a preventive measure to find

issues early, which will be easier to resolve than when

all units have been integrated. Still, unit testing is not

always run by all software developers (programmers).

According to a survey paper [1], some companies are
still reluctant to require programmers to do unit testing

because the benefits of applying unit testing cannot be

assessed quantitatively based on the calculation of

Return on Investment (RoI). The results of the

qualitative analysis [2] also show that writing code for

unit testing requires a learning curve and experience so

that beginners are hesitant and tend to avoid unit testing.

Another study [3] also showed that novice developers

showed negative affective reactions when they are

required to always implement unit testing. Therefore,

companies and programmers still doubt whether the

effort and time allocated to write unit test code is worth

the added value generated [1].

To minimize the effort and time required for unit

testing, research has been done to build systems that

generates unit test code automatically. One example is

the EVOSUITE system [4] which was developed to

synthesize unit test code for the Java programming

language (JUnit). Before this system was developed,

previous systems only focused on one coverage target
at a time, which led to a lot of redundancy in unit test

code and low maintainability. To find the most optimal

coverage criteria, EVOSUITE system uses a search-

based approach with Genetic Algorithm (GA). The next

study [5] developed a better system by adding the

Many-Objective Sorting Algorithm (MOSA) to the GA

so that the system can search for target coverage that

has not been covered more optimally. Another system

[6] was also developed with a similar approach to

EVOSUITE but focuses on synthesizing unit test code

for the Python programming language. Similar to

EVOSUITE, this system also uses GA to get unit test
code results that produce the best test coverage or code

coverage.

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

306

The approaches used in the previous study has some

shortcomings and challenges. First, there are challenges

regarding execution time. Previous studies used GA

that requires relatively long computational time and

cannot always produce optimal solutions [7]. In

addition, a study conducted by Almasi et al. [8] shows

that the unit test code generated by EVOSUITE can

only detect problems up to 56.4% in product codes from

their case study. According to the survey results, the

EVOSUITE has not yet reached a standard sufficient for
industrial use, even though the system is heading in the

right direction. The study conducted also found that the

system still has problems for complex program code.

Generative Adversarial Networks (GAN) is one of the

machine learning algorithms that has started to become

the main focus for synthesizing new data [9]. In recent

years, GAN has often been used to generate images [10]

and synthetic videos [11], [12]. In addition, according

to a literature study [13], GAN can also be used to

produce a text. The text can be a free sentence that has

meaning or a description of an image and video. This
motivated our research to explore the feasibility of

GAN in automating unit test code generation. The use

of GAN can solve the drawbacks of GA in some cases.

For example, GAN takes a long time to “learn” the

process, but the output search process will be much

faster than a GA-based approach.

Our paper makes three contributions: (1) four state-of-

the-art GAN models that generates simple unit test

codes, (2) thorough analysis of result comparisons from

the models, and (3) recommendations for future studies.

The first contribution is a novel attempt to explore

whether GAN models are able to generate simple
assertion method codes. It is important to check the

feasibility from a simple task first then expand the scope

into harder tasks. This reason leads this study to focus

more on simple code generation tasks. For the second

contribution, this paper provides analysis on three novel

metrics from the previous studies that can be used in

text generation problems (Section 3.4.1 to 3.4.3), and

the paper also includes manual qualitative judgements

to check if the generated codes contain any error (e.g.,

syntax error). For the last contribution, the paper brings

discussions for future studies in this direction based on
the results found in this study. The recommendations

provided are well-founded as they are established from

our experiments and new results.

Related Work

Generative Adversarial Networks (GAN) is a trending

model for semi-supervised and unsupervised learning

processes [14]. In general, GAN consists of two

components that compete with each other, namely

generator and discriminator. The generator component

focuses on generating realistic data, such as an image.

Meanwhile, the discriminator component focuses on

distinguishing between the real data and the fabricated

data generated from the generator component [9]. GAN

is commonly used to generate new images or videos.

For instance, StoryGAN [10] was developed to generate

a sequence of images corresponding to the text or story

inputs. The model in this study included a deep context

encoder to the conditional architecture of GAN (Mirza

& Osindero, 2014), to help understand the input in the

form of a story text. In addition to the previous type of

encoder, Variational Autoencoder (VAE) can also be
added for the video synthesis process from text input

[12]. Another study [11] added a text-filter process to

the conditional GAN so that it could produce a better

video synthesis from text than previous studies.

According to a literature study [13], GAN has been

applied several times for the text generation process. In

general, the research that has been done uses three

approaches, namely Gumbel-Softmax differentiation,

Reinforcement Learning, and modified training

objectives. The main challenge in text synthesis is the

intrinsic features of a language, such as its grammar,
syntax, and semantic properties. One of the frameworks

[15] for text synthesis was developed by utilizing the

conditional structure of GAN. The framework accepts

an image as input to generate text that describes the

input image. Using this model, text that is more diverse

and natural can be produced so that it looks more like

human expressions.

Several other studies also attempted to make the text

produced better using GAN. DPGAN or Diversity-

Promoting Generative Adversarial Network [16] can

produce more diverse, new, and informative texts than

studies in the previous year. The dataset used comes
from comments on Yelp, Amazon, and OpenSubtitles

websites. Another study [17] utilized a generator based

on relational memory and Gumbel-Softmax relaxation.

Such studies can produce texts that are better at

following correct grammar and have clear meanings.

In addition to the general text generation, GAN has also

been used for the synthesis process of a code or source

code. Liu et al., [18] developed TreeGAN which can

produce text with sequences that follow grammatical

rules. The TreeGAN utilizes the Recurrent Neural

Network (RNN) in the generator section and tree
structured RNN in the discriminator section. The study

was able to generate random SQL queries and Python

language code with fewer syntax errors when compared

to the SeqGAN algorithm [19]. The results of the

quantitative and qualitative analysis of the study

indicate that TreeGAN has a slightly better performance

than SeqGAN.

2. Research Methods

As shown in Figure 1, our methods can be divided into

five major parts, that consist of designing model’s

architecture, generating dataset (training and testing),

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

307

pre-processing the data, training the models and

evaluating the performance of each model built.

2.1 Selected GAN Models

This study builds four GAN models, that includes

MaliGAN, SeqGAN, DPGAN, and JSDGAN. The

following subsections describe each model separately

in more detail.

Figure 1. Research Model

2.1.1 MaliGAN

Che et al. [20] modified the training objective of the

generator part of GAN to optimize using a different

objective, that is using importance sampling thus it

helps the training procedure to be closer to maximum

likelihood (MLE) training of auto-regressive models.

By using this approach, the model is more stable and

has less variance in the gradients compared to directly

optimizing the standard GAN objectives. The idea of
this importance sampling procedure was inspired from

another study by Hjelm et al. [21].

Figure 2 shows the structure of MaliGAN model. The

generator part of the model is similar to the standard

GAN model, but the discriminator has a novel gradient

estimator that is shown in the equation inside the figure.

Based on the study result [20], the model produces

positive results when it is used on sentence-level

language modelling. The model performed more stable

during training and could achieve better score in terms

of perplexity.

Figure 2. MaliGAN Architecture

2.1.2 SeqGAN

Yu et al. [19] proposed SeqGAN model specifically

designed to generate sequence such as texts of Chinese

poems and Barack Obama political speeches. In their

study, they used recurrent neural networks (RNN) as

generative model and leverage the Long Short-Term

Memory (LSTM) to implement the update function.

Meanwhile, they used CNN for the discriminator as it

has been shown that CNN has great effectiveness in text

classification tasks [22].

Figure 3. SeqGAN Architecture [19]

Figure 3 shows the illustration on how SeqGAN differs

compared to the standard GAN architecture. The

discriminative part received both real data sequences

and negative samples from the generator part during the

training process. Concurrently, the generator part is
being updated by using a policy gradient and Monte

Carlo search based on the reward value obtained from

the discriminator part.

2.1.3 DPGAN

Diversity-Promoting Generative Adversarial Network

(DPGAN) was proposed by [16] to generate “novel”

and fluent text. The model penalized repeated generated

texts by applying low reward and encouraged diverse

and informative texts by applying high reward. The

generator part of this model used a standard LSTM

decoder. In contrast, the discriminator part utilized a
unidirectional LSTM, a language-based discriminator.

During the training, the model maximizes the reward of

real-world texts and minimizes the reward of generated

texts. This approach will prevent the model to generate

novel texts with low quality.

Figure 4. DPGAN Illustration [16]

DPGAN illustration (Figure 4) shows that the reward

function consists of two parts: sentence-level reward

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

308

and word-level reward. One of the major common

issues in the standard discriminator part is that the

reward for high-novelty text is easy to saturate leading

to problems detecting novel texts. The proposed

discriminator in this model showed better performance

in distinguishing novel texts without having the

saturation problem. To produce better results, the word-

level reward part generates different reward for any

different words in a particular sentence.

2.1.3 JSDGAN

Jensen-Shannon Divergence (JSD) GAN is proposed by

Li et al. [23] and has a unique trait compared to other

GAN architecture. The model excludes the explicit

neural network for the discriminator part. Instead, the

model used an alternative mini-max optimization

procedure for the distinguishable game value function

so that the maximization step includes a closed form

solution for the discriminator part. This process is equal

to directly optimizing the Jensen-Shannon divergence

(JSD) between the generator’s distribution and the real-

data distribution from the training data without the
generator sampling. This model is found to have better

performances compared to other discrete sequence

generation models.

As shown in Figure 5, the JSDGAN architecture does

not include any explicit discriminator part. The reward

was calculated using the equation shown in the figure

that compute the gradient of JSD. The equation is a

modification of the gradient the log-likelihood. The

model used stochastic gradient descent (SGD) to

optimize the JSD between the distribution of generator

output and the empirical training data.

Figure 5. JSDGAN Architecture

2.2 Dataset

This study aims to explore the feasibility of using GAN

to generate an actual unit test code. In the most basic

form, unit test code consists of assert method calls. The
assert method checks whether the output of a function

or class method produces the expected results. This

study runs experiments to observe whether the models

in the previous subsection are able to generate simple

assert method calls without any syntax error. Past study

[18] found that the method produces code with fewer

syntax errors, but the GAN model was trained with

random lines of Python code. More importantly, not all

1 link was removed due to anonymization

generated codes are free from syntax errors due to the

codes used for the training process are diverse.

As there is currently no dataset available that consists

of python assert method calls, we generated our own

dataset that consists of 20,000 lines for training set and

10,000 lines for testing dataset, and each line is a Python

assert method call (unittest module). The arguments of

each assert method were randomized with many

variations of argument types, including arbitrary value

(number, string or boolean), variable names, function
call, object property and object method call. The

variable and method names were randomized from a list

common name for variables or methods, e.g., [24].

Some examples of these python assert method calls in

the dataset are shown in Table 1. Both training and

testing dataset are available online in our organization

research Dataverse1 for future studies to use and

reproduce.

Table 1. Training Dataset Sample

Assert Method Call

assertNotIn(find_result(False, True, position8), list3)

assertIn(call0.retrieve_input(error4, 'up'), length2)

assertIsNone(x)

assertNotEqual(send_result(arr7, True, position5), 158)

assertTrue(i.is_complete(True))

assertFalse(input2)

assertEqual(size, point8)

assertTrue(test9.send_output(i))

assertNotEqual(var4, 671)

assertFalse(add_input(True, True))

2.3 Experiment

We tested four different models as specified in Section
3.1 in this paper. Before feeding the dataset into the

model, the dataset was pre-processed to add a single

white space for each word or special character related

to the Python syntax, e.g., ‘(‘, ‘)’, ‘,’, ‘.’, and others

(excluding underscores). The white space is required so

that the tokenization process will separate these

characters with the method and variable names. Each

word or special character is then converted into a token

by using tokenization method from Natural Language

Toolkit (NLTK). For each tokenization, we keep both

mapping from word to token index and vice versa.
Afterwards, they were ready to be used as input to the

GAN models.

The GAN models were built using PyTorch library and

were based on each past paper provided code. We hyper

parameterized these four models and used parameter

values that are shown in Table 2. There are two stages

of training process to build the models. The first stage

is pre-training both the generator and the discriminator

that helps GAN to train much better. During this pre-

training, the discriminator was trained to minimize its

cross-entropy while the generator was trained to

perform Maximum Likelihood Estimation (MLE). Only

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

309

JSDGAN does not include this pre-training stage. The

second training stage is the adversarial training where

the discriminator competes against the generator to

approach Nash equilibrium. The second stage is the

standard GAN process that consists of two parts: the

discriminator was trained to classify train data vs.

generated data, and the generator was trained to capture

essential patterns of the training set. From this

adversarial training, the models generated samples that

are similar to real data distributions. The whole training
process was limited to 27.5 hours since we also want to

compare the number of epochs generated during the

same amount of time from all models.

Table 2. Hyperparameter for GAN Models

Parameter Value

Generator (GEN) Init ‘normal’

GEN learning rate 0.01

GEN embed dimension 32

GEN hidden dimension 32

Discriminator (DIS) Init ‘uniform’

DIS learning rate 0.01

DIS embed dimension 64

DIS hidden dimension 63

Max sequence length 20

Batch size 8

2.4 Evaluation Metrics

We use three metrics to evaluate and analyze each

model’s results. The metrics used are BLEU, NLL-Gen

and NLL-Div. In addition to these metrics, we also

evaluate the generated samples based on qualitative

judgement, as indicated in another study [25] that text

generation problems require human perspective to

evaluate the generated output manually.

2.4.1 BLEU

The first metric is BLEU or Bilingual Evaluation

Understudy Score [26], a metric that can be used to

evaluate the generated texts from GAN compared to a

reference sample or sentence [27]. The score ranges

between 0 to 1, where 1 indicates a perfect match

compared to human reference samples while 0 means a

perfect mismatch. BLEU is often used in GAN model

evaluation since it is fast, language independent, and

easy to understand. BLEU also often correlates highly
against human manual evaluation. This metric is widely

used and NLTK library provides an implementation of

the BLEU score making it easier to use. In this paper,

we use cumulative BLEU scores, from BLEU-2 to

BLEU-5. The cumulative score is obtained from the

calculation of individual n-gram scores from 1 to N and

weighted by calculating the weighted geometric mean.

For instance, BLEU-2 score assigns weight 50% to each

1-gram and 2-gram scores, and BLEU-5 assigns 20% to

each 1-gram, 2-gram, 3-gram, 4-gram and 5-gram

scores. To obtain the individual n-gram score, we need

to evaluate the matching gram of a particular order, for
example, 1-gram (a single word) or 2-gram (word

pairs). Equation (1) and (2) show how to compute

BLEU score,

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∙ exp (∑𝑤𝑛 log𝑝𝑛

𝑁

𝑛=1

)

𝐵𝑃 = {
1

𝑒(1−
𝑟
𝑐
)

𝑖𝑓𝑐 > 𝑟

𝑖𝑓𝑐 ≤ 𝑟

where 𝑝𝑛 is the calculated geometric average of the

modified n-gram precision (up to length N), 𝑤𝑛 is the

assigned weight as shown in the previous example, 𝑐 is

the length of the compared text or the generated sample,

and 𝑟 is the length of reference text or real-data sample.

Since the text generation in our study is unconditional,
all lines of code in the test set are used as the reference

for the BLEU calculation. One issue from using BLEU

in unconditional text generation is that the BLEU score

only considers the validity of generated texts without

measuring the proportion of the reference texts that can

be covered by the models. As GAN may generate texts

that are similar or from a limited set of texts, we need to

use other metrics to evaluate the diversity of the outputs

generated from the models.

2.4.2 NLL-Div and NLL-Gen

NLL-Oracle was introduced from the study that

proposed SeqGAN [19]. This metric evaluates and
considers a random distribution as the real distribution

(oracle) and the training set is used by sampling from

this distribution. The score was calculated using NLL

or Negative Log Likelihood from the generated samples

obtained from the trained model. However, the metric

is not considering the coverage or the diversity, thus

metrics named NLL-Div and NLL-Gen were proposed.

NLL-Div can be used to evaluate the diversity of the

generated samples [25, 28]. The metric also calculates

the negative log likelihood of the generated samples

using equation (3),

𝑁𝐿𝐿𝐷𝑖𝑣 = −𝔼𝑌𝜃~𝑃𝜃[log 𝑃𝜃(𝑦1,… , 𝑦𝑇)]

where 𝑦𝑇 is the sample from the real data distribution

and 𝑃𝜃 is the generated sample distribution. NLL-Div is

able to check whether the generated samples contain

repeated texts, thus will be able to evaluate the diversity

of the generated outputs. The low value of this metric

indicates that the generated samples were obtained from

a limited set of patterns from the real data set, or the

generator assigns all its probability mass to a small

region.

NLL-Gen [29] is also used in this study to evaluate the
diversity of the generated samples. NLL-Gen is the

reverse direction of NLL-Oracle, so it is sensitive to the

diversity and not the quality. To evaluate the quality, we

have included BLEU metric that described previously

in this section. The NLL-Gen is defined as shown in

equation (4),

(2)

(3)

(1)

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

310

𝑁𝐿𝐿𝐺𝑒𝑛 = −𝔼𝑌𝑟~𝑃𝑟[log 𝑃𝜃(𝑟1,… , 𝑟𝑇)]

where 𝑃𝜃 is the generated data distribution and 𝑟𝑇 is the

sample from the generated data. Since NLL-Gen is in

the reverse direction, the lower score from this metric

means a better performance, while the higher score

means a worse performance.

3.4.3 Qualitative Judgement

In addition to the previous metrics, we also use
qualitative judgement where we evaluate the results or

generated code qualitatively based on particular aspect.

GAN models are trained to produce realistic texts thus

the models do not optimize for traditional cross-entropy

loss. By using our judgements, we can evaluate if the

generated samples from the selected models are realistic

and error free. From this approach, we also analyze the

generated samples to examine which model that

produces more complex assert method calls. More

importantly, we also want to see if the generated code

has any syntax error or problems.

3. Results and Discussion

3.1 Quantitative Results

Table 3 shows the metric results from all four models.

The results shown were from the iteration or epoch

when the generator loss was the lowest across all

iterations. Based on the table, almost all models

produced BLEU-2 score close to 1 or near perfect score.

This result is reasonable since the word pairs generated

from all models were very similar to the reference code

from the test set. The performances for BLEU-3 across

all models were still positive as they are higher than

95% and the differences were less than 3%. However,
the results dropped by observing BLEU-4 and BLEU-5

scores from three models where they declined about

10% and 20% from the previous cumulative score,

respectively. The JSDGAN model was able to keep

performance above 90% until 4-gram before dropping

about 20% in 5-gram BLEU score. The tables also

shows that the JSDGAN model performed better

compared to other models considering the cumulative

score 3-gram to 5-gram. This indicates that the codes

produced from this model were in higher quality or

more similar to the testing dataset.

Table 3. The Performance Comparison Across All Models

Metric MaliGAN SeqGAN DPGAN JSDGAN

BLEU-2 0.997 0.993 0.993 0.995

BLEU-3 0.956 0.956 0.957 0.976

BLEU-4 0.850 0.864 0.850 0.932

BLEU-5 0.646 0.680 0.684 0.716

NLL-Div 0.711 0.655 0.760 0.333

NLL-Gen 0.773 0.794 0.759 3.633

While the results from the JSDGAN model were great

in terms of quality, the results from the diversity aspect

were poor from this model. The model had an NLL-Div

score of 0.333 that is about half of the results from other

models. This score indicates that the codes generated

from JSDGAN are not diverse and they are from a

limited set of patterns. This issue is also observed when

we qualitatively analyze the generated code from this

model in the next subsection. The diversity issue is also

found from the NLL-Gen score (3.633) as higher value

indicating worse performance in the diversity aspect.

The other three models had similar performance in

terms of NLL-Div score, but DPGAN had the best score

with 0.760 (the highest). Similarly, the DPGAN model
showed the best NLL-Gen score showing the lowest

score of 0.759. However, the difference is less than 0.05

so the three models (MaliGAN, SeqGAN and DPGAN)

have similar performance regarding the generated code

diversity.

By analyzing the BLEU results of MaliGAN model as

shown in Figure 6, the scores were quite stable without

any significant drop across all iterations or epochs.

There are two noticeable fluctuations from BLEU-4 and

BLEU-4. The BLEU-4, in particular, had oscillation

with a range of 8% (between 63% to 71%), but it is fair
to conclude that the quality did not decrease much

across all iterations.

Figure 6. MaliGAN BLEU Scores

Similarly, the BLEU scores from SeqGAN model were

also quite stable (Figure 7). The BLEU score variations

are also relatively identical compared to MaliGAN

model. The main difference between these models is

that SeqGAN model had a rising trends if we observe

the moving average of BLEU-4 and BLEU-5 scores.

Figure 7. SeqGAN BLEU Scores

As shown in Figure 8, DPGAN model also displayed a

positive trend for both BLEU-4 and BLEU-5 scores.

Particularly BLEU-5, the score varies from lower than

(4)

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

311

70% in the early iterations to higher than 75% in the

latter iterations. The results indicate that the results of

DPGAN might increase if the number of iterations is

higher. The results from JSDGAN (Figure 9), however,

were more interesting. By observing the BLEU-5 score,

it showed a declining trend as the number of iterations

increased. The negative trend is more obvious when we

analyze the moving average. This finding leads us to

observe the codes generated in the latter iterations. The

discussion regarding this observation is included in the

next subsection.

Figure 8. DPGAN BLEU Scores

Figure 9. JSDGAN BLEU Scores

In this quantitative analysis, we also analyze the NLL-

Div scores over the iterations. We found that both

DPGAN and SeqGAN had a declining trend for this
score as shown in Figure 10 and 11. As the iteration

increases, the NLL-Div score drops while occasionally

the score moves up slightly. The results indicate that the

diversity of the generated code declines as the iteration

goes. It is also an indicator that the generator of these

two models actually assign their probability mass to a

smaller region for every iteration or epoch.

NLL-Div scores from JSDGAN model are shown in

Figure 12. The scores were fluctuating for every

iteration, but they varied between 0.32 to 0.36. Only on

one time the NLL-Div score reached higher than 0.40
and then the score fell off again to the average score.

Overall, the NLL-Div scores from this model are

significantly lower than the other models thus we can

conclude that this model performs worst in terms of

generated code diversity.

The results from MaliGAN are also interesting as the

NLL-Div scores fell off at the beginning until reaching

about 0.7 and then rose up to higher than 0.734 (Figure

13). The margin between the highest and the lowest was

less than 0.05. Therefore, it is reasonable to conclude

that MaliGAN model performs the best with regard to

diversity score even though the highest NLL-Div score

was obtained from DPGAN. As a note, the conclusion

may change if more iterations or epochs were used.

Figure 10. DPGAN NLL-Div Scores

Figure 11. SeqGAN NLL-Div Scores

Figure 12. JSDGAN NLL-Div Scores

Figure 13. MaliGAN NLL-Div Scores

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

312

3.2 Qualitative Results

In this part, the main priority is to observe qualitatively

the generated codes so that we could find any syntax

errors or interesting findings. First, we are interested to

find any assertion method calls that have more or less

arguments than they should have. Next, we also check

whether there are any syntax error related to missing or

extra special character, for example missing or double

parentheses “()”, double dot “.” or double comma “,”.

Another syntax error that we are interested to check is
any misplaced special character. In this paper, we do not

check whether the argument types in the method call are

correct, for instance, assertIn() and assertIsInstance().

In this study, the codes in the training and testing dataset

are just one line of assert method call. Thus, the variable

type is unknown as there is no information about the

value assigned to the variables. To simplify, we decided

to omit the errors caused by incorrect type inputs.

Table 4 shows the codes generated by MaliGAN model

from the iteration where the generator loss was the

minimum. As shown in the table, there are 8 lines of
code since the batch size is 8, and the number of

samples is the same for other models in this study. By

checking the errors described previously, the codes

generated from this model did not contain any issues.

Howver, except the code #5, the generated codes are

fairly simple. The arguments are two simple values,

either strings, numbers, booleans or variable names.

Also, there are only four different assert methods. The

code in number 5 is quite long where it calls another

method with two parameters from an object or variable.

Excluding assert methods, the generated codes only

have two method calls (number 4 and 5).

Table 4. Codes Generated from MaliGAN

Generated Texts

1

2

3

4

5

6

7

8

assertis (status3 , true)

assertis (position2 . input2 , 499)

assertisinstance (point2 , 844)

asserttrue (retrieve_input ())

assertisnot (index . calculate_result (output9 , ' not ') , 398)

asserttrue (count . test4)

assertis (text2 . current , false)

assertisnot (pass7 , i)

The codes generated from SeqGAN are more complex

as shown in Table 5. The codes have a total of seven
method calls outside the assert methods. This number is

relatively high compared to the previous model. There

is also more complexity in the method arguments.

Despite that, we found that the first argument values

across generated code samples are relatively similar.

For example, the argument is often in the form of

variable or object that calls another method. Only #3

and #4 where the arguments are just a simple variable

and a simple method call, respectively. Further, we also

found that code #1 in the table has an error. The assert

method receives three arguments despite only accepting

two parameters. This is a problem from the model as the

training dataset does not have any assertNotIn() method

with more than two arguments.

Similar issue is also found as shown in the code #2 from

the generated codes of DPGAN model (Table 6). The

assert method asssertIs() should accept two arguments,

but the generated code only provides one argument.

Even though there is an issue from the model, the

variation is better compared to the previous models. The

number of unique assert methods is 6, while the number

of unique assert method from MaliGAN and SeqGAN
are 4 and 5, respectively. Further, the codes also have

more argument type variations. For example, there are

simple arguments, such as booleans, numbers or

variables, and there are more complex arguments, such

as in code #1, #2, #3 and #5.

Table 5. Codes Generated from SeqGAN

Generated Texts

1

2

3

4

5

6

7

8

assertnotin (arr4 . search_result (' no time ') , ' after have for

' , false)

assertin (data2 . check_output (' people ' , 143) , false)

assertfalse (k)

asserttrue (get_param ())

assertisnotnone (count . add_input (' our '))

assertisinstance (error8 . is_complete (' some ' , 31) , index)

assertisnotnone (user9 . search_result ())

assertisnotnone (username . get_output ())

Table 6. Codes Generated from DPGAN

Generated Texts

1

2

3

4

5

6

7

8

assertis (result9 . check_result () , true)

assertis (result4 . position2)

assertnotin (x . check_input () , 592)

assertfalse (find_output ())

assertis (calculate_result (' from ') , 112)

assertnotisinstance (file5 , 617)

assertisinstance (str1 , false)

assertnotin (check5 , 415)

Lastly, we also analyze the generated code from the last

model, JSDGAN, shown in Table 7. There is no error in

the generated code, but they are in much simpler form

compared to other models’ generated codes. There are
arguments that have similar values, for example “false”

in #2, #3, #4, #5 and #8 indicating that more than half

codes use the same argument values. Moreover, the

arguments are just variable names and booleans, with

only one exception in #6 where it contains a method

without any parameter as the argument.

Table 7. Codes Generated from JSDGAN

Generated Texts

1

2

3

4

5

6

7

8

assertisnotnone (y . state7)

assertnotisinstance (size , false)

assertnotisinstance (data4 , false)

assertnotin (x , false)

assertisnot (state0 , false)

asserttrue (add_input ())

asserttrue (str9)

assertnotin (x , false)

When we analyzed the higher iterations generated code

from all models, we found that DPGAN and JSDGAN

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

313

produced codes containing errors. The JSDGAN codes,

specifically, have significantly many codes with errors,

such as double bracket or comma that is not followed

by argument(s). In the latter iterations, the DPGAN

model produced more similar codes and this justifies

the NLL-Div score that were shown in the previous

subsection (Figure 9).

3.3 Discussion

Based on the results from quantitative and qualitative

analyses, we found that the metrics results correlate
positively with the results from manual observations.

Future studies may consider using the same metrics to

analyze the generated codes from other GAN models.

Nevertheless, manual judgments from human are still

important since we can find interesting patterns that

cannot be found from the metrics, such as the syntax

errors. Instead of checking them manually, we could

consider creating a script to automatically count the

number of generated codes that cannot be compiled or

run. To check the syntax error, future research should

include contexts of each variable used.

To understand the contexts, we need to include the line

of code that assigns value to the variable. Any multiline

codes can be translated with “end of line” symbol or

character. This means that the multiline codes will be

treated as one sample instead of different samples that

the past study did. Ideally, future studies should also use

a dataset that contains real unit test codes. If the dataset

is still not available, source codes from Github can be

considered and compiled into one big dataset. The issue

of this approach is that it requires a lot of efforts and

time to manually find the codes in public repositories in

Github or other sites.

Even with positive results from the quantitative metrics,

the quality and the diversity score might be not that

crucial. As long as the generated codes can check the

method or class that will be tested, the diversity of the

code is not that important at the end. However, in this

study, the diversity and quality metrics are important to

see whether GAN models can find patterns to generate

valid codes with correct syntax and many variations.

4. Conclusion

This study is our first attempt to see the feasibility of

using GAN to automatically generate unit test codes.
Based on the results of this study, we found that GAN

models can generate codes with high quality (relatively

high BLEU scores, especially BLEU-2). Even though

JSDGAN was not able to generate codes with sufficient

variation or diversity, the other three models selected in

this study were able to produce adequate diversity score

as shown from NLL-Div and NLL-Gen scores. The

NLL-Div scores from these three models are ranging

between 0.6 to 0.75 which are twice amount of NLL-

Div score from JSDGAN model.

Automatically generate unit test code using GAN is a

shooting for the moon project. Our results show shows

positive signs and potentials in the use of GAN for

automatic unit test code generation. Yet, there are still

many experiments and studies required to finally be

able to generate unit test codes given other codes that

will be tested. Future studies should explore conditional

GAN models so that the generated outputs are not

random. The next attempt is that the models receive a

simple line of code, for example, method definitions
that include the method’s name and their arguments.

From the provided input, the models need to generate

appropriate assert method call using the details.

Acknowledgment

This work was supported by Telkom University

research funds. Its contents are solely the responsibility

of the authors and do not necessarily represent the

official views of Telkom University.

Reference

[1] P. Runeson, "A survey of unit testing practices," in IEEE

Software, vol. 23, no. 4, pp. 22-29, July-Aug. 2006.

https://doi.org/10.1109/MS.2006.91

[2] M. F. Aniche, T. M. Ferreira, en M. A. Gerosa, “What concerns

beginner test-driven development practitioners: a qualitative

analysis of opinions in an agile conference”, in 2nd Brazilian

Workshop on Agile Methods, 2011, vol 19, bl 22.

https://www.ime.usp.br/~aniche/files/wbma2011.pdf

[3] S. Romano, D. Fucci, M. T. Baldassarre, D. Caivano, and G.

Scanniello, “An empirical assessment on affective reactions of

novice developers when applying test-driven development,”

Product-Focused Software Process Improvement, pp. 3–19,

2019.

https://doi.org/10.1007/978-3-030-35333-9_1

[4] G. Fraser and A. Arcuri, "Whole Test Suite Generation," in

IEEE Transactions on Software Engineering, vol. 39, no. 2, pp.

276-291, Feb. 2013.

https://doi.org/10.1109/TSE.2012.14

[5] A. Panichella, F. M. Kifetew and P. Tonella, "Automated Test

Case Generation as a Many-Objective Optimisation Problem

with Dynamic Selection of the Targets," in IEEE Transactions

on Software Engineering, vol. 44, no. 2, pp. 122-158, 1 Feb.

2018.

https://doi.org/10.1109/TSE.2017.2663435

[6] S. Lukasczyk, F. Kroiß, en G. Fraser, “Automated Unit Test

Generation for Python”, in Search-Based Software

Engineering, 2020, bll 9–24.

https://doi.org/10.1007/978-3-030-59762-7_2

[7] S. Katoch, S. S. Chauhan, en V. Kumar, “A review on genetic

algorithm: past, present, and future”, Multimedia Tools and

Applications, vol 80, no 5, bll 8091–8126, Feb 2021.

https://doi.org/10.1007/s11042-020-10139-6

[8] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri and J.

Benefelds, "An Industrial Evaluation of Unit Test Generation:

Finding Real Faults in a Financial Application," 2017

IEEE/ACM 39th International Conference on Software

Engineering: Software Engineering in Practice Track (ICSE-

SEIP), 2017, pp. 263-272.

https://doi.org/10.1109/ICSE-SEIP.2017.27

[9] I. J. Goodfellow et al., “Generative Adversarial Nets”, in

Proceedings of the 27th International Conference on Neural

Information Processing Systems - Volume 2, Montreal,

Canada, 2014, bll 2672–2680.

http://dx.doi.org/10.1145/3422622

 Muhamamd Johan Alibasa, Rizka Widyarini Purwanto, Yudi Priyadi, Rosa Reska Riskiana

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 6 No. 2 (2022)

DOI: https://doi.org/10.29207/resti.v6i2.3940

Creative Commons Attribution 4.0 International License (CC BY 4.0)

314

[10] Y. Li et al., "StoryGAN: A Sequential Conditional GAN for

Story Visualization," 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2019, pp.

6322-6331.

https://doi.org/10.1109/CVPR.2019.00649

[11] Y. Balaji, M. R. Min, B. Bai, R. Chellappa, en H. P. Graf,

“Conditional GAN with Discriminative Filter Generation for

Text-to-Video Synthesis”, in Proceedings of the Twenty-

Eighth International Joint Conference on Artificial

Intelligence, IJCAI-19, 7 2019, bll 1995–2001.

https://doi.org/10.24963/ijcai.2019/276

[12] Y. Li, M. Min, D. Shen, D. Carlson, en L. Carin, “Video

generation from text”, in Proceedings of the AAAI Conference

on Artificial Intelligence, 2018, vol 32.

https://ojs.aaai.org/index.php/AAAI/article/view/12233

[13] G. H. de Rosa en J. P. Papa, “A survey on text generation using

generative adversarial networks”, Pattern Recognition, vol

119, bl 108098, 2021.

https://doi.org/10.1016/j.patcog.2021.108098

[14] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B.

Sengupta and A. A. Bharath, "Generative Adversarial

Networks: An Overview," in IEEE Signal Processing

Magazine, vol. 35, no. 1, pp. 53-65, Jan. 2018.

https://doi.org/10.1109/MSP.2017.2765202

[15] B. Dai, S. Fidler, R. Urtasun and D. Lin, "Towards Diverse and

Natural Image Descriptions via a Conditional GAN," 2017

IEEE International Conference on Computer Vision (ICCV),

2017, pp. 2989-2998.

https://doi.org/10.1109/ICCV.2017.323

[16] J. Xu, X. Ren, J. Lin, en X. Sun, “Diversity-Promoting GAN:

A Cross-Entropy Based Generative Adversarial Network for

Diversified Text Generation”, in Proceedings of the 2018

Conference on Empirical Methods in Natural Language

Processing, 2018, bll 3940–3949.

http://dx.doi.org/10.18653/v1/D18-1428

[17] W. Nie, N. Narodytska, en A. Patel, “RelGAN: Relational

Generative Adversarial Networks for Text Generation”, in

International Conference on Learning Representations, 2019.

https://openreview.net/forum?id=rJedV3R5tm

[18] X. Liu, X. Kong, L. Liu and K. Chiang, "TreeGAN: Syntax-

Aware Sequence Generation with Generative Adversarial

Networks," 2018 IEEE International Conference on Data

Mining (ICDM), 2018, pp. 1140-1145.

https://doi.org/10.1109/ICDM.2018.00149

[19] L. Yu, W. Zhang, J. Wang, en Y. Yu, “SeqGAN: Sequence

Generative Adversarial Nets with Policy Gradient”, in

Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence, 2017, bll 2852–2858.

https://doi.org/10.48550/arXiv.1609.05473

[20] T. Che et al., “Maximum-likelihood augmented discrete

generative adversarial networks”, arXiv preprint arXiv:1702.

07983, 2017.

https://doi.org/10.48550/arXiv.1702.07983

[21] R. D. Hjelm, A. P. Jacob, A. Trischler, G. Che, K. Cho, en Y.

Bengio, “Boundary Seeking GANs”, in International

Conference on Learning Representations, 2018.

https://openreview.net/forum?id=rkTS8lZAb

[22] X. Zhang, J. Zhao, en Y. LeCun, “Character-level

Convolutional Networks for Text Classification”, in Advances

in Neural Information Processing Systems, 2015, vol 28.

https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c77

3f3f8dc8b4be867a9a02-Abstract.html

[23] Z. Li, T. Xia, X. Lou, K. Xu, S. Wang, en J. Xiao, “Adversarial

Discrete Sequence Generation without Explicit

NeuralNetworks as Discriminators”, in Proceedings of the

Twenty-Second International Conference on Artificial

Intelligence and Statistics, 16--18 Apr 2019, vol 89, bll 3089–

3098.

https://proceedings.mlr.press/v89/li19g.html

[24] K. O. Burtch, “The Most Common Variable Names,” The Lone

Coder - Pegasoft Canada, 18-Jul-2014. [Online]. Available:

https://www.pegasoft.ca/coder/coder_july_2014.html.

[25] P. Kawthekar, R. Rewari, en S. Bhooshan, “Evaluating

generative models for text generation”. Stanford University,

2017.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/

reports/2737434.pdf

[26] K. Papineni, S. Roukos, T. Ward, en W.-J. Zhu, “Bleu: a

method for automatic evaluation of machine translation”, in

Proceedings of the 40th annual meeting of the Association for

Computational Linguistics, 2002, bll 311–318.

http://dx.doi.org/10.3115/1073083.1073135

[27] Z. Liu, J. Wang, en Z. Liang, “CatGAN: Category-Aware

Generative Adversarial Networks with Hierarchical

Evolutionary Learning for Category Text Generation”,

Proceedings of the AAAI Conference on Artificial

Intelligence, vol 34, bll 8425–8432, 04 2020.

http://dx.doi.org/10.1609/aaai.v34i05.6361

[28] H. Yao, D.-L. Zhu, B. Jiang, en P. Yu, “Negative log likelihood

ratio loss for deep neural network classification”, in

Proceedings of the Future Technologies Conference, 2019, bll

276–282.

https://doi.org/10.1007/978-3-030-32520-6_22

[29] Y. Zhu et al., “Texygen: A Benchmarking Platform for Text

Generation Models”, in the 41st International ACM SIGIR

Conference on Research & Development in Information

Retrieval, Ann Arbor, MI, USA, 2018, bll 1097–1100.

https://doi.org/10.1145/3209978.3210080

