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Abstract  

In recent year, marine ecosystems and fisheries becomes potential resources, therefore, monitoring of these objects 
will be important to ensure their existence. One of computer vision techniques, it is object detection, utilized to 

recognize and localize objects in underwater scenery. Many studies have been conducted to investigate various 

deep learning methods implemented in underwater object detection; however, only a few investigations have been 

performed to compare mainstream object detection algorithms in these circumstances. This article examines 

various state-of-the-art deep learning methods applied to underwater object detection, including Faster-RCNN, 

SSD, RetinaNet, YOLOv3, and YOLOv4. We trained five models on RUIE dataset, then the average detection time 

used to compare how fast a model can detect object within an image; and mAP also applied to measured detection 

accuracy. All trained models have costs and benefits; SSD was fast but had poor performance; RetinaNet had 

consistent performance across different thresholds but the detection speed was slow; YOLOv3 was the fastest and 

had sufficient performance comparable with RetinaNet; YOLOv4 was good at first but performance dropped as 

threshold enlargement; also, YOLOv4 needed extra time to detect objects compared to YOLOv3. There are no 
models that are fully suited for underwater object detection; nonetheless, when the mAP and average detection 

time of the five models were compared, we determined that YOLOv3 is the best acceptable model among the 

evaluated underwater object detection models. 
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1. Introduction  

During the COVID-19 pandemic, marine ecosystems 

and fisheries becomes potential resources in Indonesia. 

Based on export data released by Central Bureau of 

Statistics, the demands for fisheries products in March 

2020 increased 3.92% compared to the previous year in 

the same month before the pandemic [1]. 

Many saltwater species including urchins, sea 

cucumbers and scallops has seen a tremendous growth 
in its contribution to state revenue. The total free on 

board (FOB) value of them exported by Indonesia was 

approximately 18.9 million U.S. dollars [2]. Therefore, 

monitoring of these resources will be important to 

ensure their existence in order to retain aquaculture 

exports and at the same time maintain natural balance. 

Many researchers did manual observation to support 

these monitoring  [3]–[5] . But along with various 

inventions, machines were created to realize automatic 

surveillance i.e., Autonomous Underwater Vehicle 

(AUV). This device can follow the fish and capturing 

them using camera based on real time application. Thus, 

the fast and accurate method is needed to implement in 

this system. 

Recently, academic participants are figuring out how to 
apply advanced computer vision technology to support 

this undersea exploration, such as Bai, et al [6] using 

HOG for extracting features on zebrafish objects, then 

perform classification using SVM. However, as data 

volumes continue to grow and hardware technology 

advances rapidly, the real-time performance of these 

classic feature-based algorithms has become 

comparable to those of deep learning algorithms. There 
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is research by Villon, et al  [7], who compared HOG + 

SVM with a deep learning method, selected by CNN, to 

detect and recognize reef fish. In this research, showed 

that the efficiency of HOG + SVM is not as good as 

CNN.  

As a result of this excellent CNN performance, the 

researchers are interested in applying CNN to the 

underwater object recognition systems. Several studies 

have been published in the last five years; i.e.: Choi, et 

al [8] categorized 15 fish species using CNN; the model 
achieved recall approaching 0.9 and precision greater 

than 0,8. Rathi, et al [9] also used a CNN model in 

combination with Otsu’s thresholding to classify 12 fish 

species. In their research, the CNN model obtained an 

accuracy of 96.29 percent. Cui, et al [10] developed a 

fish detection system based on 30 CNN layers; this 

model converged in the 575th epoch with a loss of 0.18. 

Cueto, et al [11] classified koi fish and resulted 

accuracy of 84 percent using CNN. Among these 

investigations, confirms that CNN is capable of 

accurately classifying underwater objects, as indicated 

by the high accuracy value. 

Additionally, research has been conducted on the 

application of CNN not only for object recognition but 

also for identifying the location of multiple objects 

within an image; i.e.: Xu et al [12] explored R-CNN and 

feature-based classifier named Haar-cascade. They 

discovered that R-CNN model has a better performance 

in Bluefin tuna detection tasks compared with Haar-

cascade classifier. The accuracy of Haar-cascade was 

53.8% while the R-CNN reached 92.4%. Arvind, et al 

[13] proposed Mask R-CNN for fish detection, their 

model generated F1 score of 0.91 and it could detect 16 
frames per second. Furthermore, the Fast R-CNN model 

tested on Image CLEF dataset by Shang, et al [14], it 

performed 81.4% of mAP and claimed 80 times faster 

than R-CNN. Mandal, et al  [15] proposed the Faster R-

CNN  for assessing fish abundance on the beaches 

around Queensland. In this investigation, the 

performance of the model as measured by mAP was 

82.4 percent. While Akdemir, et al [16] implemented 

SSD to classify three fishes, they discovered that Red 

Mullet fish had a detection accuracy of 99 percent, 

Haddock has 89 percent, and Bluefish has 96 percent. 
Wang, et al  [17] investigated the usage of YOLOv3 

algorithms for object detection in underwater 

environment, meanwhile Rosli [18] used YOLOv4 to 

detect underwater life, such as big fish, jellyfish, crabs, 

shrimp, small fish and starfish. The model was 

examined in this investigation and resulted in a mAP of 

97.96% and a detection speed of 46.6 frames per 

second. 

Based on these prior studies, the deep learning methods 

implemented in underwater object detection generated 

high performance and fast detection, however, there are 

few studies on comparison among them. 

Therefore, this paper investigates the state-of-the-art 

deep learning methods to recognize and localize 

underwater object tested on the same dataset in order to 

suggest the most applicable and swiftest method to be 

implemented in underwater vehicles. The performance 

measures by accuracy metrics and time-costs.  

Based on our investigation, the SSD, Faster R-CNN, 

RetinaNet, YOLOv3 and YOLOv4 algorithms are the 

most commonly used, so in this study, we are focusing 

on these five deep learning methods. 

The section of this work is divided into the following 

sections: Section 2 discusses the theory, design, and 

training information for the five deep learning 

approaches. In this section, the dataset trained on the 

models and experimental scenario also explained. Then, 

section 3 highlights the performance and detection time 

comparative results. Finally, Section 4 contains the 

conclusion. 

2. Research Methods 

2.1 Faster R-CNN 

Shaoqing Ren designed a faster R-CNN structure in 2016 
[19]. Faster R-CNN and RPN are the foundation of first-

place winning submissions in the ILSVRC and COCO 

2015 competitions in several subject. 

 

Figure 1. Faster R-CNN Architecture 

Faster R-CNN composed of two main modules, namely 

the network proposal region (RPN) and Fast R-CNN 

detector, they are combined into a single network by 

virtue of their shared convolutional features 

The Regional Proposal Network (RPN) is intended to 

predict regional proposals of varying scales and aspect 

ratios. RPN is a neural network that consists of 3 

convolutional layers. One is called the feature extractor, 

which aims to produce nice features. Our study adopts 
Inception V2 as the backbone network for feature 

extractor, as shown in Figure 1. Furthermore, the 

feature maps which is resulting from the feature 

extractor, then fed into two sibling fully connected 

layers, namely and the box-regression layer (reg) and 

the box-classification layer (cls) The regression layer in 

charge of making bounding boxes and classification 

layers helps to identify the containing objects in each 

anchor, the probability is between 0 and 1, represents 

foreground and background.  

Following that, the RPN module's output instructs the 
Fast R-CNN to classify any predicted bounding boxes 

within the image. 
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2.2 SSD 

The SSD (Single Shot Detector) algorithm is a single-

stage detection model that allows object localization 

and classification to be done in a single forward pass of 

the neural network. SSD algorithm claimed to be faster 

and easier to train than Faster R-CNN [20]. The 

fundamental improvement in speed comes from 

eliminating region proposals and feature resampling 

stage. 

 

Figure 2. SSD Architecture 

Image just fed into the network and then a single 

network utilized to predict the objects within an image. 

SSD predicts the offset for default boxes with varying 

sizes and aspect ratios in several feature layers, and then 

applies a 3x3 convolution to each feature dimension to 

provide box and class outputs. Then, all the outputs are 
combined in the end of the network to apply non 

maximum suppression.  

In this work, we compare SSD and Faster R-CNN 

performance to discover the difference of single-stage 

and two-stage detection model. The key to a fair 

comparison of deep learning algorithms is ensuring that 

each algorithm is evaluated in the same way on the same 

data. Therefore, our study utilized the same Inception 

V2 model as base network. 

2.3 RetinaNet 

The two-stage approach generates high accuracy on 
object detection, but it takes enough time to detect the 

objects. In the other hand, the one-stage detectors have 

the potential results in terms of speed, but have typically 

short for accuracy than two-stage detectors. RetinaNet 

[21] combines the benefits of single-stage and two-

stage detectors, including great accuracy, rapid run 

time, and minimum memory cost. RetinaNet solves the 

class imbalance issue found in the one-stage detector by 

using a novel loss function commonly called focal loss. 

In the case of object detection, class imbalance problem 

can be represented as follows: while the object of 

interest containing only few pixels inside an image and 
most pixels are background, the detector sometimes 

fails to predict the object. Thus, we need to giving the 

model a bit toleration to take some risk when making 

predictions, so even a small piece of the object can be 

covered. Focal loss works by adding a modulation 

factor (1 - pt) γ to the conventional cross entropy loss in 

order to reduce the weighting of well-classified cases 

and rapidly focus the model on challenging examples. 

 

Figure 3. RetinaNet Architecture 

As seen in Figure 3, RetinaNet begins with Resnet-101 

with FPN as its backbone network, followed by two 
task-specific subnetworks: the classification subnet and 

the box regression subnet. 

The classification subnet is a fully convolutional 

network (FCN) that is connected to each FPN level and 

is responsible for predicting the probability of an object 

being present at each spatial position. 

Moreover, each pyramid level also has a box regression 

subnet, which is also a tiny FCN. This subnet is 

responsible for regressing the offset from each anchor 

box. 

2.4 YOLOv3 

YOLOv3 is basically a one-stage detector and is the 

third version of the YOLO detector. Here follows are 

the modifications made by YOLOv3: Firstly, The 

Bounding Box Predictions: Using logistic regression, 

YOLOv3 predicts the objectness score and the 

bounding box by assigning a single bounding box prior 

to each ground truth object. 

 

Figure 4. YOLOv3 Architecture 

Secondly, The Class Prediction: YOLOv3 employs 

distinct logistic classifiers for each class, rather than a 

single softmax layer, and performs training using binary 

cross-entropy loss. This formulation is thought to be 

capable of generating multiple label classifications.  

Following that, The Predictions Across Scales: 

YOLOv3 predicts boxes at three different scales. 

YOLOv3 extracts features from those scales in a similar 

way to FPN, which implies that feature maps in the 

earlier network will be concatenated to generate 

upsampled features. This strategy enables YOLOv3 to 
acquire more relevant semantic information, which 

enables it to generate more accurate predictions at 

various sizes.  

Lastly, Finally, The Feature Extractor: YOLOv3 makes 

use of a new feature extractor officially called Darknet-

53, which is named after the network's 53 nodes. It 

outperforms Darknet-19 but remains more efficient 

than ResNet-101 or ResNet-152. 
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YOLOv3 has a short running time, is reported to be 

three times quicker, and has an accuracy comparable to 

SSD [22]. 

2.5 YOLOv4 

Alexey Bochkovsky et al [23] created YOLOv4 as an 

enhancement to YOLOv3. They summarize that object 

detection consists of the following components: 

a. Input:  refers to the data that is initially delivered 

into the system for further processing by 

succeeding layers of artificial neurons; input may 
take the form of an Image, Patches, or Image 

Pyramid; 

b. Backbone: refers to the feature extractor, which 

creates a representation of the input as a feature 

map; 

b. Neck: Neck layers compile feature maps from 

many stages and are made of numerous bottom-

up and top-down paths; 

c. Head: refers to object detector, it essentially 

determines the area in which the item may be 

found. 

On the basic principle of this composition, the YOLOv4 

is created by combining CSPDarknet53 as the 

"Backbone," then the SPP (Spatial Pyramid Pooling) 

and PAN (Path Aggregation Network) as the "Neck," 

furthermore the YOLOv3 applies as the "Head."  

 

Figure 5. YOLOv4 Architecture 

On the MS COCO dataset, YOLOv4 increased the mAP 

(mean Average Precision) by 10% and the number of 

FPS (Frames per Second) by 12% over YOLOv3. 

Additionally, training this neural network on a single 

GPU has becoming simpler. 

2.6 Software and Hardware Environment 

Python is the major language utilized in the 

development of the five models. The models were 

trained and tested using a PC equipped with an Intel i7-

10510U quad-core CPU, 16 GB of RAM, and an 

NVIDIA GeForce MX230 graphics card. 

2.7 Dataset 

Due to the limited amount of data from Indonesia's 

waters, we relied on the dataset supplied by Liu [24]. 

The data set, popularly called Real-World Underwater 

Image Enhancement (RUIE), is comprised of 250 hours 
of video footage and results in an image with a range of 

differences in illumination, depth, blur level, color.  

The entire video was shot in two-time slots, from 8 a.m. 

to 11 a.m., and 1 p.m. to 4 p.m. in the afternoon, every 

day between September 21 and 22, 2017. The water 

depth varies from 5 to 9 meters. They selected over 

4,000 images, which 1,800 of them were labeled. The 

annotations contain marine life objects, including sea 

urchins, sea cucumbers, and scallops. 

Table 1. Number of Objects in Dataset 

Labeling Name Train Set Test Set 

Urchin 7,462 2,520 

Sea Cucumber 5,776 1,972 

Scallop 5,479 1,884 

In this study, we splitted randomly these1,800 labeled 

images into three portions, they are 1,200 used as train 

data, 300 images as validation data, and the rest 300 

data used in testing process, which have many numbers 

of objects as we can see in Table 1. All these images 

just fed into models without any further enhancement 

step. 

2.8 Evaluation Metrics 

We employed prominent measures such as precision, 

recall, average precision (AP), and mean average 

precision to assess the detection accuracy of five models 

(mAP). 

 

Figure 6. Precision-Recall Curve (PR Curve) 

Precision quantifies the model's predictive accuracy, 

i.e., the percentage of correct positive predictions. 

However, recall refers to the percentage of true 

positives that can be accurately detected. As seen in 

Figure 6, the commonly used definition of Average 

Precision (AP) is the area under the curve obtained from 

numerical integration.  

Mean Average Precision (mAP) is a statistic that is 
often employed in issues involving object detection 

[14], [15], [19], [20], [23]. It is the average precision 

across all recall values at all IoUs for prediction and 

ground truth, limited by predefined thresholds [25]. 

The IOU is defined as the area of overlap between the 

prediction (Bpred) and the ground truth (Btruth) divided by 

the area of union, while the threshold is a predetermined 

parameter used to identify true positive (TP) and false 

positive (FP). When the bounding box is bigger than the 
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threshold, it is referred to as TP, and when it is less than 

the threshold, it is referred to as FP. 

3.  Results and Discussions  

We compared and assessed the performance of five 

deep learning models for underwater object detection. 

Then, we examined each algorithm's performance on a 

few test examples. Among these, we chose sample 

image to illustrate the algorithm's impact graphically. 

These are presented in Figure 7. From top to bottom, 

Faster R-CNN, SSD, RetinaNet, YOLOv3 and 
YOLOv4 are used to identify underwater objects. Here 

are the outcomes: 

Table 2. Performance of five models 

Method 
Mean Average Precision (%) 

Average 
Detection 
Time (s) 

mAP10 mAP20 mAP30 mAP50 mAP60 mAP75 

Faster R-
CNN 

58.88 58.26 57.22 51.05 44.04 22.27 1.42 

SSD 36.97 36.80 36.55 33.64 28.21 11.10 0.81 
RetinaNet 81.72 81.57 81.35 80.12 76.93 56.39 2.23 
YOLOv3 83.07 82.96 82.86 77.87 62.72 12.73 0.50 
YOLOv4 83.70 83.59 83.36 75.08 53.15 9.36 0.65 

The PR curves of the objects are shown in Figure 8 at 

an IoU threshold of 0.5, where the average detection 

accuracy and detection time are used as metrics to 

evaluate the performances of five object detection 

models used to underwater object detection, as listed in 

Table 2. 

Firstly, we compared the performance of one-stage and 

two-stage detectors in order to determine whether 

strategy is more appropriate for the RUIE dataset. SSD 

was used to represent the one-stage detector in this 

experiment, while Faster-RCNN was used to represent 

the two-stage detector. The critical factor in conducting 
a fair comparison is ensuring that each method is 

assessed on the same way. As a consequence, we used 

the same Inception V2 model as the base network, batch 

size equal to 1, and initial learning rate is 0.0001. The 

models trained on 10,000 epochs and here our 

investigation:  According to figure 7, 7(b) shows the 

Faster R-CNN result, whereas 7(c) represents the SSD 

result. The Faster R-CNN can recognize more objects 

than the SSD, and the confidence score provided by the 

Faster R-CNN is also greater, even close to 1. As a 

result, Faster R-CNN outperforms SSD in terms of 

performance. 

Furthermore, according to figure 8, the area under the 

precision-recall curve for the "green" line is greater than 

that for the "red" line, which occurs for all objects, 

which explains why the mAP of Faster R-CNN is 

greater than that of SSD, implying that Faster R-CNN 

had a relative advantage in detection accuracy. 

Although the recall values of SSD and Faster R-CNN 

are lower than those of other detectors, this indicates a 

high rate of miss detection. Otherwise, as consequence 

of going twice, as shown in Table 2, the detection speed 

of the Faster R-CNN detector is higher compared to the 

SSD detector, it indicates that Faster R-CNN is slower 

than SSD. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7. Detection results of the models: (a) Ground Truth, (b) 

Faster R-CNN, (c) SSD, (d) RetinaNet, (e) YOLOv3, (f) YOLOv4 

   

So, due to the results of first experiment, then we 

attempted further trial to find models which is having 

detection speed approximating SSD speed, and has an 

accuracy close to Faster R-CNN. Several state-of-the-

art of one-stage detector, namely RetinaNet, and YOLO 

were trained. Since Liu [24] using YOLOv3 as detector 

in their experiment, so this method reconstructed in this 

research, however the later version of YOLO, it is 

YOLOv4, also included. 

Based on the PR curve and supported with mAP@ 
[0.1:0.2:0.3:0.5:0.6:0.75] showed on Table 2, we can 

see that the performance of RetinaNet outperformed 

both SSD and Faster R-CNN in all class labels. 

Furthermore, RetinaNet provided highest score on 

mAP75 of all models, it indicates that RetinaNet is stable 

and consistent across difference confidence thresholds, 

it generated high quality of detection. But RetinaNet 

had highest average detection time compared to all 

models as shown in Table 2. 

Whereas YOLOv3 is relatively faster than SSD, also the 

detection accuracy close to Faster R-CNN and 

RetinaNet, while IoU threshold under 0.5 (t = 
0.1:0.2:0.3). But as threshold increased, the 

performance of YOLOv3 actually decreased. When a 

higher IOU threshold t was considered (t = 0.5), the 

mAP reduced about 5%, even the mAP dropped 

significantly while threshold escalated, especially in 

mAP75. Compared to RetinaNet, a YOLOv3 model 

unsuccessful in maintaining performance consistency. 

However, while looking at average precision (AP) of 
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three classes, as seen in Figure 8, with higher recall and 

precision value means that YOLOv3 has great detection 

rate for the targets of all objects. 

 

 

 

Figure 8. From top to bottom; the PR Curve of Sea Cucumber, 

Urchin, and Scallop 

Moreover, as seen at Table 2, it was found that 

YOLOv4 defeated YOLOv3 in terms of accuracy; on 

the contrary, the detection speed was slower. The 

YOLOv4 had higher mAP10 compared to YOLOv3, 

visualizing them showed that the few predictions from 
YOLOv4 unsuccessful while predicted using YOLOv3, 

but the YOLOv4 predictions had low confidence score, 

as a result of the percentage of false positive increased 

significantly while IoU threshold raised. Moreover, the 

PR Curve of YOLOv4 showed higher recall but lower 

precision value, this means YOLOv4 have a large false 

detection rate. 

4.  Conclusion 

Five deep learning models are examined in this article 

for underwater object detection. Each model was 

developed using data from Liu's study. Popular 

measures for evaluating model performance include 

accuracy, recall, average precision (AP), and mean 

average precision (mAP), as well as average detection 

time  

The two-stage detector was shown to be more accurate 

than the one-stage detector, this is seen by the fact that 
mAP50 of two-stage detector was 51.05%, whereas the 

one-stage detector was 33.64%. Meanwhile the one-

stage detector had a quicker detection time, with an 

average difference in detection time of around 0.61 

seconds. 

The one-stage detectors, namely SSD, RetinaNet, 

YOLOv3, and YOLOv4 have costs and benefits; SSD 

was fast but lack of performance, it has the smallest 

mAP among all models; since RetinaNet was stable and 

had consistent performance across high thresholds, it 

generated mAP@0.75 of 56.39% while the others only 
ranged from 9-22%, however the detection speed of 

RetinaNet was slow, it needed about 2.23 seconds to 

detect objects within an image; YOLOv3 was the 

fastest, it only need 0.5 second in detection and had 

performance close to RetinaNet at mAP50 equals to 

77.87%; while YOLOv4 was good in the beginning but 

the performance dropped along with threshold 

enlargement, also YOLOv4 needed extra time to detect 

objects compared to YOLOv3. 

There are no models that is perfectly matched 

implement on AUV device for underwater object 

detection, however between the five models compared 
both mAP and average detection time, we concluded 

that YOLOv3 is the most suitable model among the 

tested object detection models because YOLOv3 had 

good performance and fastest detection speed. 

We recommend that our findings might serve as 

consideration for underwater object detection 

implementation utilize in an AUV for underwater 

surveying in the future. 
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