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Abstract
Environmental Changes in a round of reservoirs have dramatic influences on the sedimentation and deterioration of water quality.
A significant land-use change in the Cibalagung sub-watershed has an impact on the water quality in the Cirata reservoir. In this
study, we used remote sensing and GIS to investigate the influence of land-use changes on water quality in the Cibalagung sub-
watershed, Cirata reservoir in 2004–2014. We use Knowledge-Based Classification (KBC) and Fuzzy Logic (FL) to determine the
land-use classification. The influence of land-use changes on Total Suspended Solids (TSS), as the main parameter of water quality,
was determined by path analysis. This study indicated that 92.50 % of land-use changes through increasing mixed plantations,
cropland, settlements, and grassland could affect the TSS content in the reservoir. Decreasing vegetated land had a simultaneous
effect to reduce the water quality.
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1. INTRODUCTION

A reservoir serves multiple functions, such as hydro-energy,
irrigation, �ood control, water resource, river ecological indi-
cator, transportation, recreation, agriculture, and aquaculture
activities (Simonovic, 1992; Raje and Mujumdar, 2010; Varol,
2020). However, a variety of problems such as sedimenta-
tion, �ooding, water pollution, water allocation, and debris in
reservoir systems (George et al., 2017) can threaten the sustain-
ability of the reservoir functions. Water resource management
and development planning, therefore, are required to estimate
the sustainability of reservoirs and ensure economic feasibility,
environmental standards, and adequate socio-economic op-
portunities for the local communities (Chen and Tsai, 2017).
Sedimentation is one of the complex problems in the context of
reservoir management. This problem is associated with water
availability as a provisioning system, sustainable development
which deals with watershed degradation, �oods system, and
dam infrastructure (Annandale, 1987; Li et al., 2008). Sedi-

mentation has been used as an indicator of water pollution in
reservoirs. A few studies on reservoir sedimentation have been
carried out in many countries. In China, it is caused by hydro-
logical morphometric and lack of environmental management
(Jiang and Fu, 1998; Li et al., 2011). Meanwhile in Europe,
especially in France, Spain, and Italy, the controlled sediment
�ushing triggers reservoir sedimentation which damages the
freshwater ecosystem from contaminants (Muñoz et al., 2006;
Espa et al., 2016; Lepage et al., 2020). Without proper envi-
ronmental management, reservoir sedimentation is a common
problem for dams in Japan, Taiwan, and the United States (Graf
et al., 2010; Chen and Tsai, 2017; Nukazawa et al., 2020).

Sedimentation is strongly in�uenced by the surrounding
environment or landscape conditions. Land-use changes in
watershed areas have a signi�cant impact on the reservoir by
reducing the water quality and dissolved oxygen; increasing
the sedimentation, and disturbing primary productivity by in-
creasing nutrients loading into the stream water �ow (Erol and
Randhir, 2013). Similarly, the environmental quality around
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the reservoir can also a�ect the water quality and dynamics of
the watershed �ow (Ho et al., 2017). Cirata reservoir was built
in Citarum River Basin in 1984, serving as a hydropower plant
for the Java–Bali region as well as for irrigation and aquacul-
ture (PJB BPWC, 2019). At present, the ecosystem around
the Cirata Reservoir is continuously degrading due to com-
plex anthropogenic activities within the reservoir and around
the river basin, which in turn leads to water quality deterio-
ration and a�ects the social and economic resilience of the
local communities (Parikesit et al., 2005; Sunardi et al., 2020).
Cibalagung is in the most critical condition due to the high
pressure of human activities, the river brings many high loads
of suspended material (216.61 kg/day) into Cirata Reservoir
after the Cisokan River (Kartamihardja and Krismono, 2016).

Numerous studies have been conducted to illustrate the
land-use and land cover dynamics in the watershed area and its
impact on the sedimentation rate in the tropical reservoir using
GIS-based analysis (Welde and Gebremariam, 2017; Abdulka-
reem et al., 2019; Razad et al., 2020). However, knowledge
on land-use changes and dynamics as the determining factors
of the water quality of tropical reservoirs, particularly at the
level of sub-watershed, is still limited. Few studies have been
conducted to investigate the impacts of land-use changes in the
Upper Citarum and Cimanuk watershed in West Java (Firdaus
et al., 2013; Siswanto and Francés, 2019) and Batang Merao
watershed inWest Sumatra (Ridwansyah et al., 2020), but none
were performed on a sub-watershed scale. An accurate analysis
of the relevant aspects needs to be carried out to provide an
advanced system of preventative and reservoir conservation
actions. For such reasons, the objectives of the study were
to investigate the land-use changes and to further determine
the direct and indirect e�ect of its changes to TSS level in the
Cirata Reservoir. TSS is the main parameter of water quality,
it is related to critical land, soil erosion, �ood, and river-coastal
sedimentation which bring many social-economic problems in
the watershed (Dede et al., 2019; Widiawaty et al., 2021).

2. RESEARCH METHODS

2.1 Study Site
The Cibalagung sub-watershed is located in the southwest part
of the Cirata catchment (Figure 1). The sub-watershed con-
nects to the Cirata through the Cibalagung River, which is part
of the Cianjur Regency, West Java, Indonesia. The Cibalagung
sub-watershed has a total area of around 45 km2 with the range
of �ow discharge rate of about 0.80-21.14 m3/s and TDS
concentration of around 75.00-148.33 mg/L (Wahyudiana,
2019) The characteristics of the sediment are clay (3.87-28.33
%), �ne-coarse sand (70.20-71.50 %), and gravels (0.17-25.93
%) (Moelyo and Januar, 2012).

2.2 Data Analysis
Land-use changes were analyzed by classifying a series of
remote sensing imagery of Landsat-7 ETM+ (2004, 2009,
and 2014) using Knowledge-Based Classi�cation (KBC) and
Fuzzy Logic (FL) in QGIS 2.4 and GRASS GIS. KBC and

FL techniques for quanti�cation of pixel membership were
frequently used in land-use changes studies (Al Fugara et al.,
2009; Mousavi et al., 2019). Remote sensing-based analysis
was employed to estimate and interpret images from Landsat
data visually and digitally to produce a multi-temporal land-
use map, including the vegetation cover conditions (Widiawaty,
2019). In addition, remote sensing imageries were widely used
in various �elds of research, such as urban studies (Zhang et al.,
2014; Dede et al., 2021), rural and forest ecosystems (Man-
cino et al., 2020), dams, and river basins (Hassani et al., 2015;
Gounaridis et al., 2014; Zaimes et al., 2019), also coastal and
marine ecosystems (El-Askary et al., 2014; Nguyen et al., 2020;
Widiawaty and Nandi, 2020). In this study, the image was clas-
si�ed into seven land-use categories according to the Indonesia
Ministry of National Land and Land-use and SNI 7645:2010
(Indonesian National Standard) on land-use mapping, which
covers dryland forest (DF), mixed plantations (MP), cropland
(CL), grasslands (GL), settlements (SM), open �eld (OF), and
water bodies (WB).

The overall accuracy was obtained from the comparison
between the total number of pixels that are classi�ed correctly
in all land-use classes with the total number of pixels from the
sample obtained from observations. The accuracy assessment
(error matrix) contains the producer’s accuracy, user’s accuracy,
and overall accuracy, which were estimated using Equations
(1-3) below. Further evaluation of classi�cation results was
carried out by the Kappa formula (Congalton, 1991; Ben-
David, 2008; Ismail et al., 2020), and purposively tested via
�eldwork in 50 randomly selected locations for each land-use
class for supplementary data.

Producer’s accuracy =
Xkk

Xk+
x100% (1)

Ucer’s accuracy =
Xkk

X+k
x100% (2)

Overall accuracy =
ΣXkk

N
x100% (3)

where Xkk is the number of pixels classi�ed correctly in
each category, Xk+ is the number of pixels in each training set
of each category, X+k is the number of pixels classi�ed in each
category, ΣXkk is the number of pixels classi�ed correctly in all
categories, and N is a number of reference pixels.

To �nd out the importance and signi�cance impact values
of land-use changes to the changes in the value of Total Sus-
pended Solids (TSS) concentration in the respective year, we
use statistical method through the path analysis with additional
trimming (Teas et al., 1979; Cramer et al., 1999) (Figure 2).
TSS concentration data from the year 2004 to 2014 was ob-
tained from PT Java Bali Powerplant (PT PJB) report. TSS
was measured at the intake point of Cibalagung river to Cirata
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Figure 1. Cibalagung Sub-Watershed is Located in The West of Cirata Reservoir.

Figure 2. Interaction Between Land-Use and TSS.

Reservoir (estuary). Based on a dynamic model, TSS was in-
creased to 21.62 % from 2004-2014, this level will increase
to 82.76 % in 2045 (Widiyati, 2011). All of these land-use
classes were analyzed through correlation and linear regression
analysis with the coe�cient of linear structural equations rep-
resenting the causal relationship directly or indirectly to the
changes in TSS concentration (Chen et al., 2015; Wang et al.,
2015). Path analysis was designed to estimate the direct rela-
tionships among the stimuli (land-use category changes) and
the response (TSS changes), while also estimating the indirect
e�ect of stimulus interactions onto the response (Imen et al.,
2015). We arranged conceivable paths that linked each land-
use category to the response, as well as among the stimulus to
illustrate its direct and indirect impact. The direct impact value
of each land cover change towards TSS dynamics was retrieved
from the V coe�cient values. Meanwhile, the indirect impacts
of a certain land cover changes correlated to changes in other

land cover types were calculated via the following Equation (4).

IEXi →Y (ViaXj) = (( dXiY)x(rXiXj)x( dXjY)) (4)

where IEXi is the indirect e�ect of land-use class i via land-
use class j, Y changes in TSS, dXi-Y is a direct e�ect of land-use
class i-j to the TSS changes, and rXiXj is a correlation between
land-use classes.

3. RESULTS AND DISCUSSION

3.1 Land-Use Changes
The land-use classi�cation result was validated using a matrix
accuracy test and we obtained a high degree of mapping ac-
curacy (Table 1). The result showed that the overall accuracy
of all land-use classes was 91.14 % with a Kappa index value
of 0.89. This kappa index indicates the possibility of avoiding
errors in maps production of around 89.50 %. This level of
accuracy is well above the classi�cation accuracy standard in
land-use mapping derived from remote sensing data, which
should be as minimum as 80 % (Widiawaty et al., 2020a). In
this study, the highest producer’s accuracy was obtained for
dryland forest (96.34 %) and the lowest was for water bodies
(83.82 %). Meanwhile, the highest user accuracy was obtained
for mixed plantations (97.75 %), and the lowest was for the
open �eld class (72.10 %). The highest accuracy obtained en-
sures that the most appeared land-use class on the map have
been well characterized (Giri, 2012), while the accuracy value
obtained below the standard limit shows the inaccuracy of land-
use classi�cation due to the error in translating the land-use
classes with similar spectral signatures.

Furthermore, the reliability of the land-use classi�cation
was assessed by comparing the kappa index value and the over-
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Table 1. Confusion Matrix of Accuracy Classi�cation in 2014

Reference Clasi�cation of class*
Row total

Producer’s

class DF MP CL PR DF MP CL accuracy (%)

Dryland forest (DF) 158 1 0 5 0 0 0 164 96.3
Mixed plantations (MP) 6 87 8 0 0 0 0 101 86.1

Cropland (CL) 5 0 137 0 0 0 5 147 93.1
Grassland (GL) 0 1 0 92 0 0 3 96 95.8
Settlements (SM) 0 0 7 0 86 15 0 102 84.3
Open �eld (OF) 0 0 0 0 7 83 0 90 92.2

Dryland forest (DF) 0 0 0 0 0 4 57 68 83.8

Total of column 171 89 155 103 93 115 65
Overall accuracy

91.14
User’s accuracy (%) 92.4 97.8 88.4 89.3 92.5 72.2 87.7 Kappa 0.895

all accuracy (Congalton and Green, 2019). Since the kappa
index value was lower than the overall accuracy obtained, the
land-use classi�cation based on Landsat-7 ETM+ in 2014 im-
agery had good accuracy and was deemed acceptable for further
analysis. Land-use classes during the 2004–2014 period were
dominated by dryland forest (Table 2), which covered more
than 30 % of the Cibalagung sub-watershed. This study also
shows that, while the dryland forest decreased due to the land-
use conversion, all the other types of land use found in the
Cibalagung sub-watershed increased in size during the period.
Overall, for one decade, the dryland forest decreased by about
1077.78 ha (-19.65 %). However, the grassland area increased
up to 57.96 ha (+3.45 %). Along with the grassland, the other
types of land use, such as mixed plantations, cropland, and
settlements also increased in size by about 3.99 %, 23.32 %,
and 49.86 %, respectively. An extreme change of dryland forest
area to grassland was occurred due to logging activities, which
were then followed by the growth of grasses and reeds until
they formed grassland.

The majority of land-use changes were occurred by con-
verting the dry forest area into grassland and mixed plantations
(Figure 3). This condition was exacerbated by the develop-
ment of massive settlements and the road network along the
northwest, east, and northeast parts where the dry forest was
located previously. Furthermore, the existence of cropland
which dominated the center area in the southern part of the
sub-watershed continued by the mixed plantations expanding
from the southern part to the northeast part. Most of them
were located along with the river network which probably leads
to the increase of sedimentation rate in the river (Siswanto and
Francés, 2019).

3.2 In�uence of Land-Use Changes on TSS
The Path analysis with the Trimming method showed that
there were two exogenous variables with U > 0.05, i.e., the dry-
land forest and open �eld (see Table 3) that have no signi�cant
e�ect on the changes in TSS value. Thereby, both of those
variables were excluded from the subsequent Path analysis, the

remaining mixed plantations (MP), cropland (CL), grassland
(GL), and settlements (SM) classes were then included for the
second path analysis calculation (see Figure 4). In the Partial
correlation analysis (Figure 4), each of the land-use class’ in-
terrelation was assessed and shows both positive and negative
relations to each other. Mixed plantations (MP) or cropland
(CL) with settlement (SM) and cropland (CL) with settlement
(SM) had a strong positive relationship to the changes in TSS
values, with coe�cient values of 0.78, 0.71, and 0.99, respec-
tively. While, the relation between grassland (GL) with both
mixed plantations (MP) and cropland (CL) were negative, with
coe�cient values of -0.72 and -0.12, respectively. There was
no signi�cant correlation between grassland (GL) with settle-
ments (SM). While the simultaneous correlation coe�cient
for overall groups was 0.64 showing a fair interaction among
land-use classes (Figure 4) (Setiawan et al., 2019). The direct
e�ects of each land-use class were shown via direct arrow path
from the land-use class to the TSS showing that the highest di-
rect e�ect to the TSS was from mixed plantations (0.45) while
grassland had the lowest direct e�ect (0.05).

Analysis of correlation between land-use changes and the
TSS dynamic changes at the reservoir was obtained through
correlation and linear regression analysis, with the coe�cient
of linear structural equations, representing the causal relation-
ship directly or indirectly to the changes in TSS concentration
(Table 4). TSS concentration or water turbidity level is one of
the main parameters for measuring water quality which has an
important role in the formation of the physical landscape and
ecological regulatory systems (Widiawaty et al., 2020b). The
types and spatial patterns of land-use/land cover in the water-
shed have di�erent e�ects on the TSS content in the river (Shi
et al., 2017). We found that land-use classes that contributed
to signi�cant changes in TSS were mixed plantations, cropland,
grassland, and settlements, representing a total e�ect of 92.50
%.

Between 2004 and 2014, the increase of mixed plantations,
settlements, and cropland was driven by logging and land clear-
ing activities in the dryland forest which had a fairly strong
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Table 2. Land-Use Area in The Three Periods

Land-use
2004 2009 2014

ha % ha % ha %

Dryland forest (DF) 5,483.33 41.79 3,980.97 30.34 4,406.10 33.58
Mixed plantations (MP) 3,077.73 23.46 2,999.43 22.86 3,200.76 24.39

Cropland (CL) 2,238.03 17.06 2,408.24 18.36 2,759.95 21.05
Grassland (GL) 1,679.58 12.8 2,872.52 21.89 1,737.54 13.24
Settlements (SM) 633.33 4.83 767.34 5.85 949.14 7.23
Open �eld (OF) 0 0 92.5 0.7 67.4 0.51

Figure 3. Land-Use Changes in Cibalagung Sub-Watershed.

Table 3. Signi�cance of Test Results of Exogenous Variables

Land-use V -coe�cient Signi�cance value

Dryland forest (DF) 0.0006 0.93
Mixed plantations (MP) 0.2859 0

Cropland (CL) 0.0788 0
Grassland (GL) -0.0326 0
Settlements (SM) 0.1209 0
Open �eld (OF) -0.0022 0.98

positive e�ect on TSS content. The presence of vegetation
along the riparian zone particularly in the lower catchment
zone will eventually protect discharges of the pollutants to the
river stream (Zaimes et al., 2011). We also found that TSS
content was largely a�ected by the land-use change from the
mixed plantations by 49.50 %, i.e. 40.40 % directly and 9.10
% indirectly. The indirect e�ect explains that about 9.10 %
of changes in TSS value were due to the changes in mixed
plantations correlated with changes in other land-use classes.
The vegetation coverage in the mixed plantations can reduce

erosion rate, as one of the ecosystem services provided by vege-
tated land. TSS content was also slightly a�ected by the change
of settlements (about 23.7%), i.e. 15.4% directly and 5.9% in-
directly. Settlements area increases the water discharge due
to lower absorption ability of land surface caused by asphalt
or cement (Widiawaty and Dede, 2018), then eventually in-
crease the sediment runo� when �owing across the bare land
(Arsyad, 2009). Therefore, 49.86% increase in the settlement
area, in the period of 2004-2014, had a positive e�ect on the
�uctuation of TSS content by 23.70 %.

TSS content was also a�ected by the increase of cropland
by 15.10 %, i.e. 10.20 % directly and 4.80 % indirectly. Crop-
land is believed to have a small erosion rate due to the existence
of terraces and rice �elds that holds water and soils, soil loss in
cropland can increase erosion mainly due to poor land manage-
ment. Particles from the cropland dilute in the water that �ows
during soil puddling and weeding, and further, they pollute the
surrounding environment. The increase in TSS content in the
reservoir was attributed also to the change of grassland by 6.50
%, i.e. 5.0 % directly and 1.50 % indirectly. The increased area
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Table 4. Total E�ect Value to The TSS Content

Land-use Direct e�ect (DE)
Indirect e�ect (IE)

Total (IE)

Total e�ect
(DE + IE)

MP CL GL SM Total %

MP 0.4 0 0.03 0.01 0.04 0.09 0.49 49.58
CL 0.1 0.03 0 0 0.01 0.05 0.15 15.1
GL 0.05 0.01 0 0 0 0.01 0.06 6.5
SM 0.15 0.04 0.015 0 0 0.06 0.24 23.7

Total e�ect 0.71 0.21 0.92 92.5
71.20% 21.30%

Figure 4. Path Analysis Structural Model of Land-Use on TSS in Cibalagung Sub-Watershed.

of grassland was allegedly due to the clearing activity of the dry-
land forest that changed to grassland. However then, there was
a decrease in grassland which was due to land changes activities
for mixed plantations, cropland, and settlements. Grassland
area is an area that is dominated by various types of under-
growth, grass, thicket, and reeds that can withstand the surface
water �ow and soil particles to be discharged to the river. This
result was somehow similar to the pattern found in other stud-
ies located in the tropical catchment, where the conversion of
grass and shrubland for agricultural purposes has increased the
volume of sediment yields (Welde and Gebremariam, 2017).
The grassland is observed to have a regulatory e�ect on the
erosion rate (Abdulkareem et al., 2019).

Overall, the dynamics of land-use changes that occurred
in the Cibalagung sub-watershed had a fairly strong e�ect on
the dynamics of TSS, by 92.50 %, i.e. 71.20 % directly and
21.30 % indirectly. Nevertheless, the path coe�cient outside
the model had an error coe�cient (Y value) of 0.075 or 7.50
%, indicating that the unidenti�ed variables may remarkably
contribute to the dynamics of TSS content. The dryland forest

and open �eld were expected to have a signi�cant in�uence on
the dynamics of TSS in river waters, even though they were
excluded from the analysis. Dryland forest as an area with plant
cover from various strata can provide great rainwater retain.
The vegetation roots are useful as water storage pockets that
can reduce the rate of erosion and hold o� the surface water
�ow that brings soil sediment. Meanwhile, open �eld is the
biggest contributor to river water sediments as it makes surface
water easily dissolve the sediment, and �ow the soil particles
into rivers. Such conditions are happening in all parts of river
catchment as a result of land conversion activities, especially
in mixed plantations (Sutono et al., 2002). However, due to
the small size of open land, during the period of study, such an
e�ect is minuscule to be detected.

4. CONCLUSIONS

The model presented in this study illustrates the interrelation-
ships of land-use changes in Cibalagung sub-watershed dynam-
ics a�ecting water quality in the reservoir. Land-use changes
in the Cibalagung sub-watershed in the period of 2004-2014
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showed a decrease in dryland forest by 1077.78 ha, and an in-
crease in mixed plantations by 123.03 ha; cropland, by 521.92
ha; grassland, by 57.96 ha; settlements, by 315.81 ha; and
open �eld, by 67.4 ha. Directly and indirectly, an increase of
mixed plantations, cropland, settlements, and grassland con-
tributed to the rise of TSS content in the estuary by 49.50 %,
15.10 %, 23.70 %, and 6.50 %, respectively. Overall, the four
land-uses contributed to the TSS content in the Cibalagung
River waters by 92.50 %, and the other 7.50 % comes from
factors outside of the model. This study states that conserva-
tion e�orts through vegetative methods are more e�ective in
controlling the rate of soil release and increasing TSS in the
Cirata Reservoir. The government and stakeholders need to
reforest critical lands accompanied by technical e�orts such as
terracing, installing groins/gabions, and regular monitoring of
water quality.
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