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Abstract. Neonatalis is birth before 28 days of a baby. Factors that 

are considered to affect neonatal mortality include the number of 
visits in the 1st and 3 rd trimester, the number of pregnant women 

receiving Tetanus Diptheria Immunization, the estimated number of 

neonatal infants with complications, the number of infants receiving 
Hepatitis B Immunization for less than 24 hours, the number of 

infants receiving BCG Immunization and number of 1 and 3 

neonatal visits. Neonatal mortality is still very rare so that the right 

analysis is used, namely Negative Binomial Regression. This 
research aim to investigate negative binomial regression in 

underdipersion on neonatal mortality at Jambi City. These two 

regression methods are specifically used for Poisson distributed data 
because they are rare. The stages of the research that will be carried 

out are the Poisson distribution test and the equidispersion 

assumption, parameter estimation, model feasibility test, and 

selection of the best model. The results obtained that the best model 
without the variable number of 3rd-trimester visits or without the 

variable number of infants who received BCG immunization with 

AIC was 36.3. 
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1. Introduction 
The National Population and Family Planning Agency (BKKBN) noted that the neonatal mortality 

rate based on the results of the Indonesian Demographic and Health Survey (SKDI) decreased, from 

32 per 1,000 live births in 2012 to 15 per 1,000 live births in 2017[1,2,3,4,5]. The endogenous infant 
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mortality rate or Neonatal mortality is the number of deaths occurring in the first month expressed 

in per thousand live births after the baby is born [6,7,8,9,10,11,12]. One of the causes of neonatal 

death is the factor brought by the child from birth obtained from the parents when fertilization 

occurs or during pregnancy[13,14].The existence of endogenous factors associated with pregnancy, 

causing neonatal death [15,16,17,18,19,20].   

To assess the extent of the factors that cause neonatal death, an analysis is needed using 

negative binomial regression [21,21,23,24,25,26,27]. Often the data obtained has a variance from the 

response variable that is greater than mean (overdispersion) so that the assumption of equidispersion 

(mean and variance of the response variable is the same) in Poisson regression is not fulfilled. This 

shows that to overcome the problem of Overdispersion, the Negative Binomial Regression method is 

used. 

 

2. Review Literature 

2.1 Negative Binomial Regression 

The Negative Binomial has the following probability density form [28,29,30,31] 
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In the Negative Binomial Distribution, the connecting function commonly used is the log link of 

the form  (  )     (  )    
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After obtaining the likelihood function, the the logarithm of the function will be searched as below: 
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The estimation of the parameters   dan   will be quite complicated so that other solutions 

withiterative numerical methods will be needed to solve these non linear equations. 
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3. Results and Discussion 

3.1. Poisson Distribution Testing 

Before starting the model formation, it will first be tested whether the response variable in this case is 

the number of neonatal mortality not following the Poisson distribution or not. The hypothesis used 

is the number of neonatal mortality not following the Poisson distribution. Obtained         

means data follows the Poisson distribution. 

 

3.2 Assumption of Equidispersion 

Binomial Negative Regression analysis has different assumptions from the Poisson Regression which must 

meet the equidispersion assumption that is the mean is equal to the variance. The analysis requires 

that the response variable does not have the same mean value as the variance value. Obtained 

          and               , this means that the equidispersion assumption is not met. As a 

result, the Binomial Negative Regression analysis can be continued. 

  

3.3 Binomial Negative Regression Analysis 

Based on the estimation results, the estimated regression equation for the number of neonatal 

mortality is as follows: 

 ̂     (                                                               
                                 ) 

The result of the likelihood ratio (G) of 18,33262 can be concluded that the Negative Binomial 

Regression model can be used. 

 

Next, the Remove method will be used in the regression analysis to find a better model in the 

Binomial Negative Regression analysis. First, the variable that gives the largest   value to the model will 

be removed. The selection of the best model will be seen from the smallest AIC value which is 

summarized in the Table 1. 

 

Table 1. The selection of the best model will be seen from the smallest AIC value which is 

summarized 

Model AIC 

All Variables 38,3 

Without Variable    36,3 

Without Variable    36,3 

 

The final result of the predictive regression equation for the number of neonatal mortality: 

 ̂  

   (                                                      

                                        )          (1) 
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or the following equation: 

 ̂     (                                                           

                  )                                   (2) 

 

 

The interpretation of the model in equation (1),    is           which means that the 

probability of neonatal mortality in jambi city is 0,0228. Parameter    of          means the 

number of infants who received BCG immunization as much as one person will reduce the chance 

of        neonatal mortality in Jambi City if other variables are considered constant. The 

interpretation of the model in equation (2),    of          means that the probability of neonatal 

mortality per public health center in Jambi City of 0,022.  

 

4. Conclusion 
The regression model for the number of neonatal mortality per public health center is as follows 

 ̂     (                                                                
                   ) 
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