Comparison of Trauma Scoring Ability to Predict Survival Rate in Countries with Low to Middle-Income

Servasius Ratu Banin¹, Yuyun Yueniwati², Yulian Wiji Utami³

¹Master Program of Nursing, Faculty of Medicine, Brawijaya University, Malang, Indonesia ²Departement of Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia ³Departement of Nursing, Faculty of Medicine, Brawijaya University, Malang, Indonesia Email: <u>servasius.rb@gmail.com</u>

Abstract

The use of trauma scoring in the hospital is very important because it has a significant impact both clinically and economically. However, not all trauma scoring that we know today is suitable for use in low to middle-income countries or applied in hospitals with limited resources. The purpose of compiling a systematic review is to identify which trauma scoring is most appropriate for use in low to middle-income countries. This systematic review was built by identifying scientific articles published between 2010-2019. Search for articles was carried out with the keywords "Trauma Scoring" and "Low And Middle-Income Country". The search was carried out with the help of databases including ProQuest, science direct, and PubMed and SpringerLink. From this search, we found 3802 articles. Furthermore, the 3802 articles were screened with the help of PRISMA flow diagrams and criticized with the JBI tool. After that, 9 articles relevant to the research question were obtained to be analyzed into a systematic review. The results showed that 4 articles were stating that the Kampala Trauma Score (KTS) had a higher AUC ROC value when compared to another trauma scoring. Also, in these four articles, KTS had the lowest AIC score. Thus, it can be concluded that VCT is trauma scoring which is most suitable to be applied in low to middle-income countries or hospitals in rural areas with limited resources.

Keywords: Trauma Scoring, Low and Middle-Income Country.

A. INTRODUCTION

Deaths due to trauma in the world are still high and even continue to increase. This is because death due to trauma in developing countries is still a neglected health problem (Gosselin, Spiegel, Coughlinc, & Zirkled, 2009; Joshi, Banstola, Bhatta, & Mytton, 2017; Sakran, Greer, Werlin, & McCunn, 2012; Simons, 2017). As a result, low-income countries are the countries that account for the most traumatic deaths in the world. The evidence is that the mortality rate from trauma in low-income countries is 103/100,000/year. Meanwhile, the mortality rate due to trauma in high-income countries was only 52/100,000/year (Joshipura, Mock, & Gosselin, 2019).

____ **♦** ____

Reducing the mortality rate due to trauma must be done by improving the quality of service. For this reason, researchers from various health institutions in the world have tried to develop various scoring systems to assess the severity of patients to predict prognosis so that appropriate actions can be taken (Domingues, Coimbra, Poggetti, Nogueira, & Sousa, 2018). Many scoring systems for assessing severity and survival rates in trauma patients have been developed in recent decades (Weeks et

al., 2014). Some of these scoring systems include; The Abbreviated Injury Scale (AIS), Injury Severity Score (ISS), New Injury Severity Score (NISS), and Trauma and Injury Severity Score (TRISS), Revised Trauma Score (RTS), Kampala Trauma Score (KTS), MGAP and GAP. The use of these tools has a significant impact both clinically and economically because they can predict patient outcomes, thus impacting service quality (Weeks et al., 2016). However, not all trauma scoring that we know today is suitable for use in low to middle-income countries. This is due to the limited resources that most hospitals in low- to medium-income countries have. Therefore, the purpose of writing this mathematics review is to identify which scoring system is most suitable to be applied in low - middle-income countries.

B. METHOD

The preparation of this review went through several stages, namely determining research questions using the PICOS method. Furthermore, articles are collected for review by going through the following process stages: identification, screening, eligibility selection, and determination of inclusion criteria. In the final stage, a review is carried out by synthesizing the literature to obtain a systematic review.

1. Research Question

The research questions in this review are, "can all trauma scoring be used in small-medium-income countries" and "which trauma scoring is most suitable for small-medium-income countries?

2. Identify the Relevant Journal from the Title/Abstract

Journal identification is done by searching for journal articles that have been published in 2010-2019 in international journals available on several databases such as ScienceDirect, ProQuest, SpringerLink, and PubMed via google search. The search was performed using the keywords, "trauma scoring", "survival rate" and "low and middle-income country. The reference selected for the synthesis must meet the inclusion criteria for examining the application of trauma scoring in low-middle income countries.

3. Screening and Eligibility

In the search, there were 3802 article titles and then screened based on the titles obtained through abstracts, obtained 79 articles relevant to trauma scoring in small-middle-income countries. The selection was continued by selecting journals relevant to trauma scoring in small-medium-income countries, eligible, and having a similar study design. At this final stage, only 9 trauma scoring journals were obtained in small-middle-income countries.

The selection and selection of documents are carried out using the PRISMA flowchart, which can be seen in Figure 1.

Figure 1 Selection and Selection of Documents Process

4. Appraisal (Assessment)

The eight articles obtained were analyzed using the Joanna Brigg Institution (JBI) journal critique instrument. Based on the appraisal carried out, a summary of the results of the research is listed in table 1 and synthesized into a systematic review.

Title	Authors & Year	Purpose	Method (Design)	Sample	Data Analysis	Major Findings
Choice of	2015	1. To assess the feasibility of	This is a	A total of 1117	• Trauma	ISS was the weakest predictor of
injury	• Adam D. Laytin	calculating five injury scoring	retrospective	severely injured	registry data	in-hospital mortality, while RTS,
scoring	 Vineet Kumar 	systems - ISS (injury severity	analysis of data from	patients with life-	were entered	KTS, MGAP and GAP scores all
system in	• Catherine J.	score), RTS (revised trauma	an institutional	or	into the	correlated well with in-hospital
low- and	Juillard	score), KTS (Kampala trauma	trauma registry in	limbthreatening	EpiInfo 6	mortality (area under ROC
middle-	 Bhakti Sarang 	score), MGAP (mechanism,	Mumbai, India.	injuries were	software	(receiver operating characteristic)
income	 Angela Lashoher 	GCS (Glasgow coma score),	Values for each score	treated by the	(CDC	curve 0.69 for ISS, 0.85 for RTS,
countries:	 Nobhojit Roy 	age, pressure) and GAP (GCS,	were calculated	Lokmanya Tilak	Statistical	0.86 for KTS, 0.84 for MGAP, 0.85
lessons	• Rochelle A.	age, pressure) – with data	when sufficient data	Municipal	package),	for GAP)
from	Dicker,	from a trauma registry in a	were available.	General Hospital	transferred to	
mumbai		lower middle-income country		Trauma Ward	Excel	
		2. To determine which of these		between October	(Microsoft,	
		scoring systems most		16, 2010 and	Redmond,	
		accurately predicts in-hospital		February 14, 2012	Washingto,	
		mortality in this setting			2007) for	
					editing, and	
					then imported	
					to Stata	
					13 statistical	
					software	
					(StataCorp,	
					College	
					Station, TX:	
					2013) for	
					analysis.	
					• Data analysis	
					using logistic	
					regression	
Validatio	2016	To validate commonly used	This prospective	All adult patients	• Pearson's chi-	Over a 30-day period, the scores
n of	• Nobhojit Roy, MS	trauma severity scoring	multi-centre	presenting to the	squared test	(AUC) was TRISS (0.82), RTS
internatio	MPH	systems ranging from the	observational	casualty	was used to	(0.81), KTS (0.74), NISS (0.65) and
nal	• Martin Gerdin,	purely anatomy-based Injury	cohort study was	department with	compare	ISS (0.62). RTS was the most

trauma	MD PhD	Severity Score and New Injury	conducted under	a history of injury	mortality rates	parsimonious model with the
scoring	• Eric Schneider,	Severity Scale (NISS) score, to	the guidance of the	and who were	among	lowest AIC score. Considering
systems	PhD	more physiology-focused	collaborative	admitted to	patients who	overall mortality, both physiologic
in urban	• Deepa K.	scores, including the Kampala	research	inpatient care	did and did	scores (RTS, KTS) had better
trauma	Kizhakke Veetil,	Trauma Score (KTS) and the	consortium	were included.	not have	discrimination and goodness-of-fit
centres in	MS	Revised Trauma Score (RTS)	"Towards	The primary	sufficient	than ISS or NISS. The ability of all
India	• Monty Khajanchi,	score, as well as the combined	improving trauma	outcome was	data to	Injury scores to predict early
	DNB	score TRauma Injury Severity	care outcomes"	inhospital	calculate each	mortality (24 h) was better than
	• Vineet Kumar,	Score (TRISS), both within and	(TITCOIndia) from	mortality within	score	late mortality (30 day).
	DNB FNB	across facilities treating	1 September 2013	30-days of	recorded.	
	• Makhal Lal Saha,	substantial numbers of trauma	to 28 February 2015	admission	 Association 	
	MS	patients in India.	in four		between injury	
	• Satish Dharap,		Indian teaching		scoring	
	MS		and referral		systems and	
	• Amit Gupta, MS		hospitals, each of		in-hospital	
	• Göran Tomson,		which operate		mortality was	
	MD PhD		trauma units that		evaluated	
	• Johan von		receive citywide		using	
	Schreeb, MD PhD		referral of trauma		logistic	
			patients. The		regression.	
			megacities		• The sensitivity	
			(populations of		and specificity	
			more than 10		associated	
			million) were		with the	
			geographically		ability of each	
			representative of		score to	
			urban India,		predict	
			namely Kolkata,		inpatient	
			Mumbai (2-		mortality	
			centres) and Delhi		within 30 days	
					was assessed	
					by	
					analyzing the	

					areas under the receiver operating characteristic (ROC) curve (AUC)	
Exploring injury severity measures and in- hospital mortalit: A multi- hospital study in Kenya	2017 • Yuen W. Hunga • Huan He • Amber Mehmoo • Isaac Botcheya • Hassan Saidi • Adnan A. Hyder • Abdulgafoor M. Bachania	To identify the comparative performance of injury severity measures across different patient populations and levels of care. This would allow a better understanding of the performance and validity of various injury severity measures in low-resource settings	This study was performed using data from trauma registries implemented in four public hospitals in Kenya. Estimated ISS, MGAP, GAP, RTS, TRISS and KTS were computed according to algorithms described in the literature.	 All trauma patients who presented in these hospital for care between January 2014 to January 2016 16,548 patients were included in the study 	 Performance in discriminating in-hospital death was first assessed with the seven severity measures using complete data. Discriminating ability was estimated using area under the receiver operating characteristics (ROC) curve and model fit statistic (Akaike information criterion [AIC]) of the 	 To estimate the effect of missing data on our analyses, multiple imputations were performed as a sensitivity test to assess the robustness of our results (Table TRISS remained having the highest AUC overall (0.895, 95% CI: 0.878–0.913), and remained similar with KTS (0.871, 95% CI: 0.852–0.889). KTS still showed statistically significantly better discrimination than GCS and RTS; however, it was no longer statistically significantly different from MGAP and GAP. Estimated ISS had higher AUCs with multiple TRISS and KTS were found to have relatively consistent and high performance of across several hospitals in Kenya, providing good evidence for their applicability to risk adjustment and mortality prediction in these settings. The good discrimination character- istics of KTS is consistent with

		logistic	findings from other settings
		regression	
		with	
		in-hospital	
		deaths with all	
		four hospitals	
		and by each	
		hospital.	
		 Bias-corrected 	
		95%	
		confidence	
		intervals were	
		estimated	
		using	
		bootstrap	
		statistics with	
		1000	
		resamples	
		 Calibration 	
		curves	
		for each	
		measure were	
		constructed	
		using	
		complete data	
		on all	
		seven	
		measures.	
		 Sensitivity 	
		analysis was	
		conducted by	
		applying	
		multivariate	

					normal	
					imputation	
					• Skewness of	
					the data were	
					handled by	
					applying	
					analysis on the	
					log-	
					transformed	
					components	
					Twenty	
					imputations	
					were	
					performed	
					following	
					Graham et al.	
					's	
					recommendati	
					on	
					• All statistical	
					analyses were	
					performed	
					using Stata 14	
The	 BryceHaac 	To evaluate the ability of the	This is a prospective	All trauma	Logistic	For KTS and RTS, the odds of
Utility of	 Carlos Varela 	Kampala trauma score (KTS) to	cohort study of	patient presenting	regression and	admission with each
the	 Andrew Geyer 	assess injury severity and its	trauma patients	to Kamuzu	ROC curve	increment increase in score was
Kampala	 Bruce Cairns 	potential as an	presenting to	Central Hospital	analyses were	0.44 and 0.3, respectively.
Trauma	Anthony Charles	outcome predictive tool in	Kamuzu Central	in 2012	used to compare	Similarly, odds of mortality is 0.48
Score as a		Malawi	Hospital in 2012. We		the KTS to the	and 0.36. Neither KTS
Triage			recorded admission		widely	(p = 0.96, ROC area 0.5) nor RTS (p
Tool			KTS and Revised		accepted RTS.	= 0.25, ROC area 0.5) correlated
in a Sub-			trauma score (RTS),			significantly with hospital LOS.
Saharan			emergency			KTS and

African		department			RTS performed equally well as
Trauma		disposition, and			predictors of mortality, but KTS
Cohort		hospital length of			was a better predictor of need for
		stay (LOS) and			admission (KTS
		survival.			ROC area 0.62, RTS ROC area 0.55,
					p\0.001).
Is the	• Sharon R. Weeks	This study analyzed	2,855 trauma	predictors of	1. Logistic regression models were
Kampala	• Catherine J.	prospective data	patients were	mortality using	used to construct ROC curves for
Trauma	Juillard	collected in the	enrolled in the	logistic	sensitivity and specificity. The
Score an	Martin E. Monono	Emergency	study	regression	greatest AUC was calculated for
Effective	• Georges A.	Department (ED) of		models and	the ROC curve of KTS, with an
Predictor	Etoundi	the Central Hospital		analysis of areas	AUC of 0.7748 (95 % CI 0.6285-
of	• Marquise K.	of		under the	0.9212) (Fig. 1). When compared
Mortality	Ngamby	Yaounde kameron		receiver	to the RTS, ISS, TRISS, and GCS
in Low-	• Adnan A. Hyder			operating	in a pairwise fashion (Fig. 2),
Resource	Kent A. Stevens	a 500-bed teaching		characteristic	KTS not only had a greater AUC
Settings?		and referral hospital		(ROC) curve	but had greater sensitivity for a
А		that		(AUC). Scores	given specificity at all points
Comparis		handles the largest		were also	except one point in the
on of		trauma volume in		assessed with	comparison with TRISS. No pair-
Multiple		the capital city of		Akaike	wise difference between the area
Trauma		Cameroon		information	under the ROC curve of KTS
Severity				criteria as well	compared to the other scores was
Scores				as Pearson's v2	statistically significant (p[0.05 for
				goodness-	all)
				of-fit test.	2. ROC analysis was also
					performed on the subset of 244
					patients with severe injuries,
					defined as having an ISS C16. As
					with the more inclusive analysis
					above, when compared to RTS,
					ISS, TRISS, and GCS in a
1					pairwise fashion, KTS not only

		had a greater AUC but had
		greater sensitivity for a given
		specificity at all points (Fig. 3).
		The greatest AUC was calculated
		for the ROC curve of KTS, with
		an AUC of 0.9820 (95 % CI
		0.9585–1.000). Again, no pairwise
		differences between ROC areas
		of KTS and other scores were
		statistically significant

C. RESULT AND DISCUSSION

Based on the analysis of the article, it is known that there are still many differences of opinion between one study and another regarding which trauma scoring is most suitable to be applied in Low and Middle-income Countries.

The research that conducted by Laytin et al., 2015 at General Hospital of Lukmaya Tilak Mumbai India, Among 1117 severe trauma patients, the following results were obtained; ISS is the weakest mortality predictor, while the strongest mortality predictor is KTS, then it is followed by RTS, MGAP, and GAP. ISS is said to be the weakest mortality predictor because AIS is one of the compositions that make up ISS. As a result, the evaluation process is often incomplete and subsequently results in a weak assessment of patients with severe head injuries (Gerdin et al., 2014). In this study, it also appears that KTS is the strongest predictor of mortality. This is indicated by the AUC ROC values as follows: 0.69 for ISS, 0.85 for RTS, 0.86 for KTS, 0.84 for MGAP, 0.85 for GAP.

Almost the same thing also happens in the following studies which show that VCT is the best scoring trauma in predicting the survival rate of head trauma patients in low and middle-income countries or hospitals with limited resources. These studies include; the research conducted byHaac et al., 2015to all trauma patients who visited Kamuzu Central Hospital. In Malawi-Africa. In this study, it was found that KTS and RTS had the same ability to predict mortality of trauma patients, however, KTS had a better performance in predicting admission of head trauma patients. This can be seen from the AUC KTS value which is higher than the AUC RTS value, namely 0.62 for KTS 0.55 for RTS; In research conducted by Weeks et al., 2014of 2855 trauma patients at Younde Kameron Central Hospital. In this study, it appears that KTS has the largest AUC value and also has higher specificity and sensitivity values when compared to RTS, ISS, TRISS, and GCS.

In the three studies above, it appears that KTS is the strongest predictor of mortality. This is because KTS has many advantages, among others; Valid and Reliable for use on children and adults(Demyttenaere *et al.*, 2009), easy, simple, and usable for quick assessment (Romanelli & Farrell, 2019).

Different things appear in the research conducted byRoy et al., 2016in 4 teaching hospitals in India between 1 September 2013 to 28 February 2015. In this study, it was found that TRISS was the best trauma scoring used to predict survival rates in trauma patients. This is indicated by the results of the research as follows: TRISS has the highest AUC value, which is 0.82, followed by RTS 0.81, KTS 0.74, NISS 0.65, and the lowest is ISS with an AUC value of 0.62.

In line with the research conducted by Roy, et., Al 2016, research conducted byHung et al., 2017also shows that TRISS is in line with research conducted by Roy, et., al 2016, research conducted by Hung et al., 2017also shows that TRISS. Apart from TRISS, in this study, the results also show that KTS also has a higher and more consistent performance when compared to other trauma scoring systems.

TRISS has the highest Auc score because TRISS is the most sensitive and specific scoring tool in predicting the survival level of a trauma patient in intra

hospital (Bouzat et al., 2016). TRISS is also known as the most complete and complex trauma scoring because it combines the trauma mechanism, age, injury severity score (ISS) and the Revised Trauma Score (RTS) (Lam, Lingsma, Beeck, & Leenen, 2015) and is also a combination of the calculation system with anatomic elements and physiological elements (Barwell, Bishop, & Midwinter, 2018). However, TRISS has several drawbacks, among others, TRISS cannot be used to predict mortality in patients with chest trauma. Also, TRISS cannot be calculated quickly so it is difficult to use it in making decisions in emergencies (Moon et al., 2017).

D. CONCLUSION

There are still many differences of opinion between one study and another regarding which trauma scoring is most suitable to be applied in Low and Middleincome Countries. However, based on the results of the above research, it can be concluded that KTS and TRISS are trauma scoring which is the best trauma scoring if used in countries with small-medium income or hospitals with limited resources. Even so, KTS has many advantages, among others; Valid and Reliable for use on children and adults, easy, simple and can be used for rapid assessment. While TRISS has several drawbacks, among others, TRISS cannot be used to predict mortality in patients with chest trauma. Also, TRISS cannot be calculated quickly so it is difficult to use it in making decisions in emergencies.

REFERENCES

- Demyttenaere, S. V., Nansamba, C., Nganwa, A., Mutto, M., Lett, R., & Razek, T. (2009). Injury in Kampala, Uganda: 6 years later. *Canadian Journal of Surgery*, 52(5), E146.
- de Alencar Domingues, C., Coimbra, R., Poggetti, R. S., de Souza Nogueira, L., & de Sousa, R. M. C. (2018). New Trauma and Injury Severity Score (TRISS) adjustments for survival prediction. *World journal of emergency surgery*, 13(1), 12. https://doi.org/10.1186/s13017-018-0171-8.
- 3. Gerdin, M., Roy, N., Dharap, S., Kumar, V., Khajanchi, M., Tomson, G., ... & von Schreeb, J. (2014). Early hospital mortality among adult trauma patients significantly declined between 1998-2011: three single-centre cohorts from Mumbai, India. *PloS one*, *9*(3), e90064.
- 4. Gosselin, R. A, Spiegel, D. A., Coughlinc, R., & Zirkled, L. G. (2009). Injuries: the neglected burden in developing countries *Bulletin World Health Organ 87*(4). https://doi.org/10.2471/BLT.08.052290.
- 5. Joshi, S. K., Pant, P., Banstola, A., Bhatta, S., & Mytton, J. (2017). Injuries in Nepal-A neglected public health burden and ways forward. *Kathmandu University Medical Journal*, 15(4).
- Joshipura, M., Mock, C., & Gosselin, R. A. (2019). Global burden of musculoskeletal conditions. In R. A. Gosselin, D. A. Spiegel & M. Foltz (Eds.), *Global Orthopedics*. Switzerland: Springer Nature Switzerland AG.

- Haac, B., Varela, C., Geyer, A., Cairns, B., & Charles, A. (2015). *The Utility of the Kampala Trauma Score as a Triage Tool in a Sub-Saharan African Trauma Cohort*. 356–362. https://doi.org/10.1007/s00268-014-2830-6.
- Hung, Y. W., He, H., Mehmood, A., Botchey, I., Saidi, H., Hyder, A. A., & Bachani, A. M. (2017). Exploring injury severity measures and in-hospital mortality: A multi-hospital study in Kenya. *Injury*, 48(10), 2112–2118. https://doi.org/10.1016/j.injury.2017.07.001.
- Lam, S. W., Lingsma, H. F., Van Beeck, E. F., & Leenen, L. P. H. (2016). Validation of a base deficit-based trauma prediction model and comparison with TRISS and ASCOT. *European journal of trauma and emergency surgery*, 42(5), 627-633. https://doi.org/10.1007/s00068-015-0592-y.
- Laytin, A. D., Kumar, V., Juillard, C. J., Sarang, B., Lashoher, A., Roy, N., & Dicker, R. A. (2015). Choice of injury scoring system in low- and middle-income countries: Lessons from Mumbai. *Injury*, 46(12), 2491–2497. https://doi.org/10.1016/j.injury.2015.06.029.
- Moon, S. H., Kim, J. W., Byun, J. H., Kim, S. H., Choi, J. Y., Jang, I. S., ... & Park, H. O. (2017). The thorax trauma severity score and the trauma and injury severity score: Do they predict in-hospital mortality in patients with severe thoracic trauma?: A retrospective cohort study. *Medicine*, 96(42).
- 12. Penn-Barwell, J. G., Bishop, J. R., & Midwinter, M. J. (2018). Refining the trauma and injury severity score (TRISS) to measure the performance of the UK combat casualty care system. *Military Medicine*. https://doi.org/10.1093/milmed/usx039.
- 13. Romanelli, D., & Farrell, M. W. (2019). *AVPU (Alert, Voice, Pain, Unresponsive)*. Treasure Island: StatPearl Publisher.
- 14. Sakran, J. V., Greer, S. E., Werlin, E., & McCunn, M. (2012). Care of the injured worldwide: trauma still the neglected disease of modern society. *Scandinavian Journal of Trauma, Resuscitation, and Emergency Medicine,* 20(64).
- 15. Simons, R. (2017). Rural accidental injury and death: the neglected disease of modern trauma systems. *Journal of Trauma and Acute Care Surgery*. https://doi.org/10.1097/TA.00000000001884.
- Weeks, S. R., Juillard, C. J., & Monono, M. E. (2014). Is the Kampala Trauma Score an Effective Predictor of Mortality in Low-Resource Settings? A Comparison of Multiple Trauma Severity Scores. 1905–1911. https://doi.org/10.1007/s00268-014-2496-0.
- Weeks, S. R., Stevens, K. A., Haider, A. H., Efron, D. T., Haut, E. R., MacKenzie, E. J., & Schneider, E. B. (2016). A modified kampala trauma score (KTS) effectively predicts mortality in trauma patients *International Journal of Care of Injured*, 47(1), 125-129. https://doi.org/10.1016/j.injury.2015.07.004.