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ABSTRACT

This article discusses the commutation matrix in the Kronecker quaternion group; that is, a
non-abelian group whose 32 elements are 4 × 4 matrices, with entries in the set of complex
numbers. This paper aims to describe the commutation matrices obtained concerning the
matrices in this group. The commutation matrix is a permutation matrix that associates the
relationship between the vec of matrix and vec of its transpose. Based on the classification
of matrices in the Kronecker quaternion group, there are 16 classifications of commutation
matrices for the matrices in this group.
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1. Introduction

The representation of quaternion group is a group quaternion written in another form
(see [1, 2]). A new group can be created using the Kronecker product for each of the
two elements from this group. The new group is called the Kronecker quaternion group.
Several studies can be carried out from this group, namely based on the characteristics
that appear in the group and also based on the elements of the group.

The Kronecker quaternion group was introduced by Yanita, et.al [3]. This group is a
non-abelian consisting of 32 4× 4 matrices. The study of this group was continued by
Yanita [4], which is related to writing this group in the form of a generator and relator.
Furthermore, Adrianda [5] and Zakiya [6] review this group based on directed graphs
and the second homotopy module, namely group studies presented geometrically with
graph and picture forms. These studies have not linked the Kronecker quaternion group
based on the existing matrices in the group, but rather to other forms of groups that are
presented differently.

Furthermore, inspired by Wang and Davis [7], we started the study by paying attention
to the elements in this Kronecker quaternion group, namely by compiling a new matrix,
the partition matrix, with the sub-matrices being the matrices in this group. The result
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is that the two 8× 8 partition matrices A and B, whose submatrices are matrices in the
Kronecker quaternion group, form AT A = BBT. This shape is also generated when the
locations of the varying permutation matrices are coupled to the submatrix, so that the
general result of this study is a specific form, AT A = BBT, even though the submatrix
is not a symmetric matrix.

In the previous study, the results were obtained by arranging the matrices in the
Kronecker quaternion group into a new matrix (see [8]). This paper then tries to develop
a study while still considering the matrices in the Kronecker quaternion group to
determine the commutation matrix for each matrix in the group. Since the form of the
matrix in this group can be classified based on the symmetry and skew-symmetry
properties, the result is the form of the commutation matrix generated based on this
classification. Besides that, the diagonal form of the matrix (main and secondary) also
forms the basis for the formation of this commutation matrix.

The organizing of this paper as follows: In Section 2, it is introduced a lot of basic concepts
and notations of vec matrix, permutation matrix and commutation matrix, which will be
used in Section 3. In Section 3, it is presented the commutation matrix for each matrix in
the Kronecker quaternion group by first classifying these matrices.

2. Methods

The research methods are based on the study of literature, which is related to the
transformation of the permutation matrix on the vec matrix. The first step of this
research is to determine the shape/pattern of the commutation matrix for the symmetry
and skew-symmetry. Since the symmetry matrix in the Kronecker quaternion group is
in the form of a diagonal matrix (main and secondary), the commutation matrix pattern
is classified into these two forms.

The second step of this research is to apply the pattern obtained in the first step to all the
elements (matrices) in the Kronecker quaternion group.

In this Section, we present some definitions, properties and theorems used to obtain the
result.

Definition 1. [9] Let A =
[
aij
]

be an m× n matrix, and Aj the column of A. The vec(A)
is the n column vector, i.e

vec (A) =


A1
A2
...

An


Let Sn denote the set of all permutation of the n element set [n] := {1, 2, . . . , n}. A
permutation is one-to-one function from [n] onto [n]. Permutation of finite sets are
usually given by listing of each element of the domain and its corresponding functional
value. For example, we define a permutation σ of the set [n] := {1, 2, 3, 4, 5, 6} by
specifying σ (1) = 5, σ (2) = 3, σ (3) = 1, σ (4) = 6, σ (5) = 2, σ (6) = 4. A more
convenient way to express this correspondence is towrite σ in array form as

σ =

[
1
5

2
3

3
1

4
6

5
2

6
4

]
(1)

JJoM | Jambura J. Math. 136 Volume 4 | Issue 1 | January 2022



Y. Yanita, et.al

There is another notation commonly used to specify permutation. It is called cycle
notation. Cycle notation has theoretical advantages in that certain important properties
of the permutation can be readily determined when cycle notation is used. For example,
permutation in (1) can be written as σ = (1 5 2 3)(4 6). For detail see [10].

Theorem 1. [10] Let π and σ be a permutation in Sn, then P (π) P (σ) = P (πσ).

If σ is a permutation, we have the identity matrix as follows:

Definition 2. [11] Let σ be a permutation in Sn. Define the permutation matrix P (σ) =[
δi,σ(j)

]
, δi,σ(j) = entryi,j (P (σ)) where

δi,σ(j) =

{
1 if i = σ (j)
0 if i 6= σ (j)

Example 1. Let n := {1, 2, 3} and σ = (1 2 3).

P (123) =
[
δi,σ(j)

]
and δi,σ(j) =

{
1 if i = σ(j)
0 if i 6= σ(j)

( 1 to 2; 2 to 3; 3 to 1; σ (1) = 2, σ (2) = 3, σ (3) = 1)

ent11 (P (σ)) = δ1,σ(1) = 0(σ (1) = 2); ent12 (P (σ)) = δ1,σ(2) = 0(σ (2) = 3);

ent13 (P (σ)) = δ1,σ(3) = 1(σ (3) = 1); ent21 (P (σ)) = δ2,σ(1) = 1(σ (1) = 2);

ent22 (P (σ)) = δ2,σ(2) = 0(σ (2) = 3); ent23 (P (σ)) = δ2,σ(3) = 0(σ (3) = 1);

ent31 (P (σ)) = δ3,σ(1) = 0(σ (1) = 2); ent32 (P (σ)) = δ3,σ(2) = 0(σ (2) = 3);

ent33 (P (σ)) = δ3,σ(3) = 0(σ (3) = 1);

So we have P (123) =

 δ12 δ13 δ11
δ22 δ23 δ21
δ32 δ33 δ31

 =

 0 0 1
1 0 0
0 1 0


The commutation matrix is a kind of permutation matrix of order mn expressed as a block
matrix where each block is of the same size and has a unique 1 in it.

Definition 3. [12] A permutation matrix P is called a commutation matrix of matrix,
m× n, if it satisfies the following condition:

1. P =
[
Aij
]

is an m× n block matrix with each block Aij be a n×m matrix.

2. For each i ∈ [m], j ∈ [n], Aij =
(

as,t
(i,j)
)

is a (0, 1) matrix with a unique 1 which lies
at the position (j, i).

We denote this commutation matrix by Km,n and thus a communication matrix is of size
mn×mn.

Example 2. Matrix K3,2 is a 6× 6 permutation matrix partitioned by a 3× 2 block matrix,
i.e:

K3,2 =

 A11 A12
A21 A22
A31 A32
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where Aij =
(

as,t
(i,j)
)

is a 2 × 3 matrix whose unique non zero entry is aj,i
(i,j) = 1.

Specipically

K3,2 =



1
0
0
0
0
0

0
0
1
0
0
0

0
0
0
0
1
0

0
1
0
0
0
0

0
0
0
1
0
0

0
0
0
0
0
1


The definition of the commutation matrix is given in different way by Zhang [13], that is

Km,n =


Im ⊗ e1n

T

Im ⊗ e2n
T

...
Im ⊗ emn

T


where Im is an identity matrix and ein is an n−dimensional column vector which has 1 in
the ith position and 0

′
s elsewhere; that is

ein = [0, 0, . . . , 0, 1, 0, . . . , 0]T

and
Im ⊗ ein

T =
[

aijein
T
]

, aij ∈ Im.

Lemma 1. [14] Let Km,n be a commutation matrix. Then

1. Km,n
T = Kn,m and Km,nKn,m = Imn

2. Km,1 = K1,m = Im

The following theorem present a linear relationship between vec(A) and vec
(

AT)
through the commutation matrix Km,n.

Theorem 2. [15] Let m, n ∈ Z+ and A be a m× n matrix, then Kmn vec (A) = vec
(

AT).
The second step of this research is to apply the pattern obtained in the first step to all
the elements (matrices) in the Kronecker quaternion group. Next, the final step is to
determine the type of commutation matrix for each matrix in the Kronecker Quaternion
Group.

3. Results and Discussion

We present the Kronecker quartenion group, i.e.

G =
{

Ak = [aij]
∣∣ i, j = 1, 2, 3, 4, k = 1, 2, . . . , 32

}
where Ak as follows:

A1 =


1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

 , A2 =


−1
0
0
0

0
−1
0
0

0
0
−1
0

0
0
0
−1

 ,
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A3 =


i
0
0
0

0
−i
0
0

0
0
i
0

0
0
0
−i

 , A4 =


−i
0
0
0

0
i
0
0

0
0
−i
0

0
0
0
i

 ,

A5 =


0
−1
0
0

1
0
0
0

0
0
0
−1

0
0
1
0

 , A6 =


0
1
0
0

−1
0
0
0

0
0
0
1

0
0
−1
0

 ,

A7 =


0
i
0
0

i
0
0
0

0
0
0
i

0
0
i
0

 , A8 =


0
−i
0
0

−i
0
0
0

0
0
0
−i

0
0
−i
0

 ,

A9 =


i
0
0
0

0
i
0
0

0
0
−i
0

0
0
0
−i

 , A10 =


−i
0
0
0

0
−i
0
0

0
0
i
0

0
0
0
i

 ,

A11 =


−1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
−1

 , A12 =


1
0
0
0

0
−1
0
0

1
0
−1
0

0
0
0
1

 ,

A13 =


0
−i
0
0

i
0
0
0

0
0
0
i

0
0
−i
0

 , A14 =


0
i
0
0

−i
0
0
0

0
0
0
−i

0
0
i
0

 ,

A15 =


0
−1
0
0

−1
0
0
0

0
0
0
1

0
0
1
0

 , A16 =


0
1
0
0

1
0
0
0

0
0
0
−1

0
0
−1
0

 ,

A17 =


0
0
−1
0

0
0
0
−1

1
0
0
0

0
1
0
0

 , A18 =


0
0
1
0

0
0
0
1

−1
0
0
0

0
−1
0
0

 ,

A19 =


0
0
−i
0

0
0
0
i

i
0
0
0

0
−i
0
0

 , A20 =


0
0
i
0

0
0
0
−i

−i
0
0
0

0
i
0
0

 ,

A21 =


0
0
0
1

0
0
−1
0

0
−1
0
0

1
0
0
0

 , A22 =


0
0
0
−1

0
0
1
0

0
1
0
0

−1
0
0
0

 ,
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A23 =


0
0
0
−i

0
0
−i
0

0
i
0
0

i
0
0
0

 , A24 =


0
0
0
i

0
0
i
0

0
−i
0
0

−i
0
0
0

 ,

A25 =


0
0
i
0

0
0
0
i

i
0
0
0

0
i
0
0

 , A26 =


0
0
−i
0

0
0
0
−i

−i
0
0
0

0
−i
0
0

 ,

A27 =


0
0
−1
0

0
0
0
1

−1
0
0
0

0
1
0
0

 , A28 =


0
0
1
0

0
0
0
−1

1
0
0
0

0
−1
0
0

 ,

A29 =


0
0
0
−i

0
0
i
0

0
−i
0
0

i
0
0
0

 , A30 =


0
0
0
i

0
0
−i
0

0
i
0
0

−i
0
0
0

 ,

A31 =


0
0
0
−1

0
0
−1
0

0
−1
0
0

−1
0
0
0

 , A32 =


0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0

 .

The classification of the elements in G are:

1. Symmetric matrix (main diagonal): A1, A2, A3, A4, A9, A10, A11, A12, A21, A22
2. Symmetric matrix (secondary diagonal): A7, A8, A15, A16, A25, A26, A27, A28, A31,

A32.
3. Skew-Symmetrix matrix (secondary diagonal): A5, A6, A13, A14, A17, A18, A19, A20,

A23, A24, A29, A30.

Based on the classification above, the elements in the Kronecker quaternion group are
also divided based on the same elements in certain entries, i.e.:

1. Symmetri matrix (main diagonal), where
• a11 = a22 = a33 = a44: A1, A2.
• a11 = a33 and a22 = a44: A3, A4.
• a11 = a22 and a33 = a44: A9, A10.
• a11 = a44 and a22 = a33: A11, A12.

2. Symmetri matrix (secondary diagonal), where
• a21 = a12 = a43 = a34 : A7, A8.
• a41 = a32 = a23 = a14 : A31, A32.
• a31 = a13 = a42 = a24 : A25, A26.
• a21 = a12 and a43 = a34 : A15, A16.
• a41 = a14 and a32 = a23 : A21, A22.
• a31 = a13 and a42 = a24 : A27, A28.

3. Skew-symmetric matrix (secondary diagonal), where
• a21 = a34 and a12 = a43 : A13, A14.
• a31 = a42 and a13 = a24 : A17, A18.
• a24 = a31 and a13 = a42 : A19, A20.
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• a41 = a32 and a23 = a14 : A23, A24.
• a41 = a23 and a32 = a14 : A29, A30.
• a21 = a43 and a12 = a34 : A5, A6.

We have three theorems to determine the commutation matrix of matrices in the
Kronecker quaernion group.

Theorem 3. Let A be a n × n matrix. Then the product of permutation matrices
P (((j− 1) n + i) ((i− 1) n + j)) is a commutation matrix Kn,n of A.

Proof. Consider that, the ijth element of A is the ((j− 1) n + i)th element of vec(A) and
the ijth element of AT is the ((i− 1) n + j)th element of vec(A). Thus, Kn,n is the
permutation matrix that takes elements ((j− 1) n + i)th to ((i− 1) n + j)th where
i, j = 1, 2, . . . , n.

The proof divided into two, i.e for i = j and i 6= j.

• For i = j, we have the permutation matrix that takes elements ((i− 1) n + i)th to
((i− 1) n + i)th. So, the permutation matrix takes 1 to 1, n + 2 to n + 2, . . . , n2 to n2.
Then, we have the permutation matrix P (((i− 1) n + i) ((i− 1) n + i)) = In2 =
Kn,n

• For i 6= j, Let i = r, j = s;r 6= s; r, s = 1, 2, . . . , n, then we have permutation matrix
that takes elements ((s− 1) n + r)th to ((r− 1) n + s)th.
Let i = s, j = r; r 6= s; r, s = 1, 2, . . . , n, then we have permutation matrix that takes
elements ((r− 1) n + s)th to ((s− 1) n + r)th.
t Base on these, we have the permutation matrix takes elements ((s− 1) n + r)th to
((r− 1) n + s)th and ((r− 1) n + s)th to ((s− 1) n + r)th. In other words, we have
P (((s− 1) n + r) ((r− 1) n + s)), or in generally P (((j− 1) n + i) ((i− 1) n + j) )
for i > j. Thus,

Kn,n = Pi=j (((j− 1) n + i) ((i− 1) n + j)) Pi>j (((j− 1) n + i) ((i− 1) n + j) )

= Pi≥j (((j− 1) n + i) ((i− 1) n + j) )

Theorem 4. Let A be a matrix m× n such that ar is the rth entry in vec(A) and as is the sth

entry in vec(AT) where ar = as. If the commutation matrix Kmn canges the location of ar in
vec(A) to the as entry in vec(AT) then the asr entry in Kmn is 1.

Proof. The elements of the commutation matrix are 0 and 1. The aij element in A are
((j− 1)m + i)th element in in the row in vec (A) and the ((i− 1)n + j)th element in row
in vec(AT). Let r = (j− 1)m + i and s = (i − 1)n + j so that ar = as. Based on matrix
multiplication, the element asr in Kmn is 1 which acts to make the element ar in vec(A)
become the element as in vec(AT).

The illustration for Theorem 4

Let A =


1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

.
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We have vec (A) =



1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1



=



a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15
a16



and vec
(

AT) =



1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1



=



a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11
a12
a13
a14
a15
a16



.

Based on Theorem 3, we have K4,4 = P(2 5)(3 9)(4 13)(7 10)(8 14)(12 15). Thus,

It is known that K4,4 places the 2nd element in vec(A) into the 5th element in vec(AT) so
that the 5th row and the 2nd column of the K4,4 is 1. By considering the same entries in the
matrix, we can find several ways of placing the entries in vec(A) to vec(AT), so that the
commutation matrix is not unique.

Theorem 5. Let A be any matrix of size m × n with k different elements, i.e a1, a2, . . . , ak,
k ≤ mn . If |at| = st where t = 1, 2, . . . , k, then the number of possible commutation matrices of
A is s1!s2! . . . sk!.

Proof. Let aij = a1 = a2 · · · = at where t = 1, 2, . . . , k and |at| = st. Based on Theorem 3
and Theorem 4, commutation matrix Kn,n places the ((j− 1)m + i)th element in vec(A)
into the ((i− 1) n + j)th in vec

(
AT), i = 1, 2, . . . , m and j = 1, 2, . . . , n. There are s! way

to put st element from vec(A) to vec(AT), that is there are s! permutation matrices (read
commutation matrices) for placing the same element, namely at such that it transforms
vec(A) into vec

(
AT). Therefore, the different permutation matrices that transform
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vec(A) to vec(AT) are s1!s2! . . . sk!.

Base on Theorem 3, Theorem 4 and Theorem 5, we have the commutation matrix for
elements of Kronecker quaternion group, as follows:

Symmetry matrix (main diagonal)

1. A1, A2: I16, P(1 6 11 16), P(1 6 16 11), P(1 11 6 16), P(1 11 16 6), P(1 16 6 11),
P(1 16 11 6), P(1 11 6), P(1 16 6), P(1 16 11), P(1 6 16), P(1 16 11),
P(1 11 16), P(6 16 11), P(6 11 16), P(1 6), P(11 16), P(1 11), P(1 16), P(6 11),
P(6 16), P(1 6)(11 16), P(1 11)(6 16), P(1 16)(6 11)

2. A3, A4 : I16, P(1 11) , P(6 16) , P(1 11)(6 16)
3. A9, A10 : I16, P(1 6) , P(11 16) , P(1 6)(11 16).
4. A11, A12 : I16 , P(1 16) , P(6 11) , P(1 16)(6 11)

Symmetry matrix (secondary diagonal)

1. A7, A8 : I16, P(2 5 12 15), P(2 5 15 12), P(2 12 5 15), P(2 12 15 5), P(2 15 5 12),
P(2 15 12 5), P(2 12 5), P(2 15 5), P(2 15 12), P(2 5 15), P(2 15 12), P(2 12 15),
P(5 15 12), P(5 12 15), P(2 5), P(12 15), P(2 12), P(2 15), P(5 12), P(5 15),
P(2 5)(12 15), P(2 12)(5 15), P(2 15)(5 12).

2. A31, A32 : I16, P(4 7 10 13), P(4 7 13 10), , P(4 10 7 13), P(4 10 13 7), P(4 13 7 10),
P(4 13 10 7, P(4 10 7), P(4 13 7), P(4 13 10), P(4 7 13), P(4 13 10), P(4 10 13),
P(7 13 10), P(7 10 13), P(4 7), P(10 13), P(4 10), P(4 13), P(7 10), P(7 13),
P(4 7)(10 13), P(4 10)(7 13), P(4 13)(7 10).

3. A25, A26 : I16, P(3 8 9 14), P(3 8 14 9), P(3 9 8 14), P(3 9 14 8), P(3 14 8 9),
P(3 14 9 8), P(3 9 8), P(3 14 8), P(3 14 9), P(3 8 14), P(3 14 9), P(3 9 14), P(8 14 9),
P(8 9 14), P(3 8), P(9 14), P(3 9), P(3 14), P(8 9), P(8 14), P(3 8)(9 14), P(3 9)(8 14),
P(3 14)(8 9).

4. A15, A16 : I16, P(3 8 9 14), P(3 8 14 9), P(3 9 8 14), P(3 9 14 8), P(3 14 8 9),
P(3 14 9 8), P(3 9 8), P(3 14 8), P(3 14 9), P(3 8 14), P(3 14 9), P(3 9 14), P(8 14 9),
P(8 9 14), P(3 8), P(9 14), P(3 9), P(3 14), P(8 9), P(8 14), P(3 8)(9 14), P(3 9)(8 14),
P(3 14)(8 9).

5. A21, A22: I16 , P(4 13), P(7 10), P(4 13)(7 10).
6. A27, A28: I16, P(3 9), P(8 14), P(3 9)(8 14).

Skew-symmetric matrix (secondary diagonal)

1. A13, A14 : P (2 5) (12 15), P (2 15) (5 12), P (2 5 12 15), P(2 15 12 5).
2. A17, A18 : P(3 9)(8 14), P(3 14)(8 9), P(3 9 8 14), P(3 14 8 9).
3. A19, A20 : P (3 8) (9 14), P (3 9) (8 14), P (3 8 14 9), P(3 9 14 8).
4. A23, A24 : P (4 10) (7 13), P (4 13) (7 10), P (4 10 7 13), P(4 13 7 10).
5. A29, A30 : P (4 7) (10 13), P (4 13) (7 10), P (4 7 10 13), P(4 13 10 7)
6. A5, A6 : P (2 5) (12 15), P (2 15) (5 12), P (2 5 12 15), P(2 15 12 5).

4. Conclusion

It is found that there are 16 classifications of matrices in the Kronecker quaternion group.
These classifications are divided into three types of matrices, namely

• A matrix having the same four entries has 24 commutation matrices.
• A matrix having the same two entries has four commutation matrices.
• symmetric skew matrix only has four commutation matrices
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Based on these results, a new study can be made by considering the elements in any
matrix that have the same entries in certain desired positions.
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