

TINJAUAN STRUKTUR GEDUNG RUMAH SAKIT UMUM DAERAH ULIN DI JALAN JENDERAL AHMAD YANI NO.43 BANJARMASIN

¹ Tanjung Rahayu, ² Nurul Najma

Program Studi Teknik Sipil Fakultas Teknik Universitas Suryakancana nunajma28@gmail.com, tanjungrahayu@yahoo.com²

Abstrak

Rumah Sakit Umum Daerah Ulin adalah rumah sakit kelas A Pendidikan yang berada di Kota Banjarmasin Kalimantan Selatan dan merupakan rumah sakit rujukan di Kalimantan Selatan. Berdasarkan kriteria kesalamatan dan layanan maka perhitungan pembebanan sesuai dengan SNI-1727-2013 serta perencanaan struktur gedung ini mengacu dengan SNI-2847-2013 beton bertulang, yang merupakan peraturan terbaru yang disesuaikan dengan perkembangan teknologi material terkini dengan mengacu pada AISC, selain itu dalam perhitungan rekayasa gempa juga mengacu pada SNI-1726-2012 dan SNI-1726-2002. Analisis struktur menggunakan software ETABS v16. Material beton digunakan untuk balok, kolom, serta plat. Terdapat tiga tipe balok, yaitu B3 dimensi 400 x 700 mm, B2 dimensi 300 x 550 mm, dan B1 dimensi 200 x 400 mm. Untuk kolom terdapat dua tipe yaitu dimensi 500 x 800 mm, dan dimensi 500 x 500 mm. Plat lantai dan plat atap setebal 120 mm. Berdasarkan perhitungan, untuk kolom, balok, dan plat menggunakan tulangan yang bervariasi, tetapi antara bangunan A, B, dan C perbedaan penulangannya tidak begitu jauh. Namun untuk plat lantai dan plat atap bangunan C memerlukan tambahan balok di bagian tengah bentangnya untuk menghindari lendutan berlebih. Untuk dilatasi yaitu 130 mm dan sudah memenuhi syarat keamanan.

Kata kunci: Analisis sruktur, rekayasa gempa, beton, balok, kolom, plat, dan dilatasi

1. PENDAHULUAN

Rumah sakit merupakan bagian integral dari suatu organisasi sosial dan kesehatan dengan fungsi menyediakan pelayanan, penyembuhan penyakit dan pencegahan penyakit kepada masyarakat. Rumah sakit juga merupakan pusat pelatihan bagi tenaga kesehatan dan pusat penelitian medis. Rumah sakit harus dibangun, dilengkapi dan dipelihara dengan baik untuk menjamin kesehatan dan keselamatan pasiennya serta harus menyediakan fasilitas yang lapang dan terjamin bagi kesembuhan pasien.

Meningkatnya kebutuhan masyarakat akan pelayanan kesehatan, baik bagi masyarakat Banjarmasin maupun masyarakat sekitar Banjarmasin menyebabkan terjadi peningkatan permintaan terhadap fasilitas pelayanan kesehatan. Untuk memenuhi kebutuhan tersebut, maka Rumah Sakit Umum Daerah Ulin membangun gedung tambahan demi terpenuhinya kebutuhan dan meningkatkan pelayanan untuk masyarakat.

Dalam laporan tugas akhir ini dilakukan tinjauan struktur RSUD Ulin di jalan Jenderal Ahmad Yani No.43 Banjarmasin untuk mengetahui apakah struktur gedung tersebut aman, kuat, efisien, dan sesuai dengan SNI (Strandar Nasional Indonesia)

sebagai acuan. Suatu konstruksi gedung harus mampu menahan beban dan gaya-gaya yang bekerja pada konstruksi itu sendiri, sehingga bangunan atau konstruksi gedung aman.

A. Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan di atas, dapat dirumuskan permasalahan yang akan diteliti, antara lain:

- Bagaimana ketidakberaturan struktur horizontal dan vertikal yang terjadi pada RSUD Ulin di jalan Jenderal Ahmad Yani No.43 Banjarmasin?
- 2. Bagaimana keamanan jarak dilatasi pada struktur bangunan RSUD Ulin di jalan Jenderal Ahmad Yani No.43 Banjarmasin?
- 3. Bagaimana kekuatan dan keamanan struktur kolom, balok, dan pelat pada gedung RSUD Ulin di jalan Jenderal Ahmad Yani No.43 Banjarmasin, dalam memikul beban yang ditinjau?

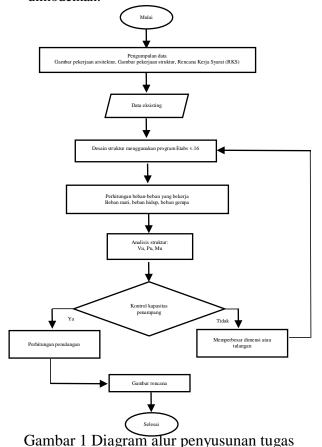
B. Tujuan Penelitian

Adapun tujuan dari Penelitian yang dilaksanakan adalah:

1. Meninjau bangunan RSUD Ulin di jalan Jenderal Ahmad Yani No.43 Banjarmasin terhadap ketidakberaturan struktur.

- 2. Meninjau keamanan jarak dilatasi RSUD Ulin di jalan Jenderal Ahmad Yani No.43 Banjarmasin.
- 3. Meninjau kekuatan dan keamanan dalam memikul beban yang terjadi pada struktur kolom, balok, dan pelat gedung RSUD Ulin di jalan Jenderal Ahmad Yani No.43 Banjarmasin, berdasarkan SNI menggunakan program Etabs dan Sp Column.

2. METODOLOGI PENELITIAN


A. Informasi Umum Bangunan

Gedung ini terdiri dari 7 lantai dengan tinggi masing-masing lantai adalah sebagai berikut:

- 1. Lantai : 4,5 meter
- 2. Lantai 2 6 : 4.2 meter.
- 3. Lantai 7 : 3 meter

Langkah-langkah umum yang terdapat dalam analisis struktur dengan menggunakan aplikasi etabs adalah:

- 1. Membuat model struktur dalam bentuk 3 dimensi
- 2. Memasukkan data struktur yang akan digunakan seperti *tipe material*, *section frame*, *load combination*, dsb.
- 3. Analisa (run) gaya-gaya dalam struktur yang dimodelkan.

akhir

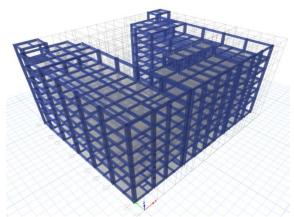
B. Sistem Pembebanan

Sistem pembebanan dalam perhitungan meliputi sistem pembebanan vertikal dan sistem pembebanan horizontal:

- a. Beban vertikal
 - Beban mati, berupa berat sendiri struktur ditambah komponen-komponen lain yang berhubungan dan bersifat tetap.
 - Beban hidup, disebabkan penggunaan bangunan sesuai dengan fungsinya dan bersifat sementara.
- b. Beban horizontal, berupa beban gempa. Sedangkan akibat beban angin tidak perlu diperhitungkan karena pengaruh beban gempa lebih besar sehingga yang diperhitungkan sebagai beban horizontal adalah beban gempa.

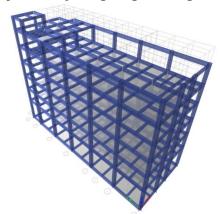
C. Peraturan yang Digunakan

Perhitungan struktur gedung memperhatikan ketentuan-ketentuan yang berlaku dan terdapat pada buku-buku sebagai pedoman, antara lain:

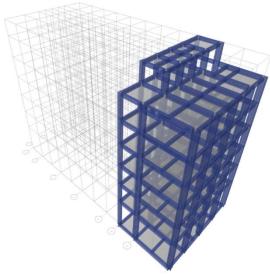

- 1. Peraturan Pembebanan Indonesia Untuk Gedung (PPIUG-1989).
- 2. Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung (SNI 03-1727-1989).
- 3. Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain (SNI 1727-2013).
- 4. Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung (SNI 1726:2012) dan SNI 1726:2002.
- 5. Persyaratan Beton Struktural untuk Bangunan Gedung (SNI 2847:2013).

D. Data Struktur

Adapun data-data yang Digunakan adalah sebagai berikut :


- Fungsi gedung = Gedung rumah sakit
- Jenis struktur = Beton bertulang
- Sistem struktur = SRPMM
- Jenis tanah = Tanah lunak
- Letak wilayah = Banjarmasin
- Jumlah lantai = 7 lantai
- Tinggi lantai 1 = 4.5 m
- Tinggi lantai 2 6 = 4.2 m
- Tinggi lantai 7 = 3 m
- Tinggi total bangunan = 28.5 m
- Mutu beton (fc') = 25 Mpa
- Mutu baja (fy) deform = 400 Mpa
- Mutu baja (fy) polos = 240 Mpa

JURNAL MOMEN

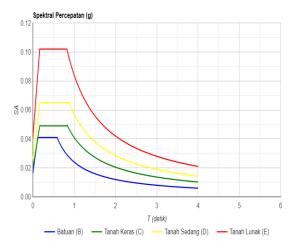


Gambar 2 Pemodelan Struktur tiga dimensi RSUD Ulin Banjarmasin

Untuk mengaplikasikan teori tentang pengaruh gempa pada bangunan asimetris, model bangunan akan dipisah menjadi tiga bagian sebagai berikut.

Gambar 3 Model struktur A

Gambar 4 Model struktur B


Gambar 5 Model struktur C

3. ANALISIS PEMBEBANAN

A. Perhitungan Gempa

Perhitungan beban gempa pada gedung perkuliahan ini, spektrum respons desain menggunakan program yang disediakan oleh dinas Pekerjaan Umum melalui situs puskim.pu.go.id.

- Kategori resiko = IV
- Kelas situs = SE (tanah lunak)
- (Ss) = 0.061 g
- (S1) = 0.036 g
- Fa = 2.5
- Fv = 3.5
- SDS = 0.102 g
- SD1 = 0.084 g
- Faktor keutamaan gempa (Ie) = 1,5
- Koefisien modifikasi respons (R) = 5
- Faktor kuat lebih sistem $(\Omega 0) = 3$
- Faktor pembesaran defleksi (Cd) = 4,5

Gambar 6 Spektrum respon desain wilayah kota Banjarmasin

B. Periode Fundamental

Dengan Rangka beton pemikul momen, penentuan fundamental pendekatan adalah sebagai berikut:

$$\begin{array}{ll} T_{min} &= 0.466 (h_n)^{0.90} \\ &= 0.466 \; x \; (30.5)^{0.90} \\ &= 1.009 \\ T_{maks} &= C_u \; x \; T_{min} \\ &= 1.7 \; x \; 1.009 \\ &= 1.564 \end{array}$$

Nilai periode fundamental pendekatan struktur (T) juga harus dibandingkan dengan nilai T hasil dari program output etabs.

Untuk perhitungan nilai T bangunan A, B, dan C semuanya seragam dan memenuhi persamaan Tmin < Tprogram < Tmaks. Sehingga untuk bangunan A nilai yang dipakai untuk T adalah Tx = 1,303 dan Ty = 1,307. Bangunan B Tx = 1,068 dan Ty = 1,009. Bangunan C Tx = 1,304 dan Ty = 1,306.

C. Koefisien respon seismik

Berdasarkan SNI 1726:2012 pasal 7.8.1.1 untuk menentukan nilai koefisien respon seismik (C_s) adalah sebagai berikut:

 $\begin{array}{ll} Cs & = S_{DS} \, / \, (R \, / \, I_e) \\ Cs_{max} & = S_{D1} \, / \, (T \, x \, (R \, / \, I_e)) \\ Cs_{min} & = 0,044 \, S_{DS} \, x \, Ie \end{array}$

Dengan ketentuan: $Cs_{min} < Cs < Cs_{max}$

Sehingga Cs dapat dihitung sebagai berikut:

Tabel 1 Perhitungan nilai Cs untuk bangunan A, B, dan C RSUD Ulin

		Cs_{min}	Cs	Cs_{max}					
Bangunan	A	0,0067	0,0306	0,019					
arah x									
Bangunan	A	0,0067	0,0306	0,019					
arah y									
Maka digunakan Cs = 0,0306									
Bangunan	В	0,0067	0,0306	0,024					
arah x									
Bangunan	В	0,0067	0,0306	0,025					
arah y									
Ma	ka di	gunakan (Cs = 0.030	6					
Bangunan	С	0,0067	0,0306	0,019					
arah x									
Bangunan	C	0,0067	0,0306	0,019					
arah y									
Ma	ka di	gunakan ($C_{S} = 0.030$	6					

D. Gaya geser desain seismik

Gaya geser desain seismik dapat dihitung dengan persamaan:

$$V = C_s x W_{total}$$

Sehingga, didapatkan nilai V pada bangunan A, B, dan C adalah sebagai berikut.

Tabel 2 Perhitungan gaya geser desain bangunan A. B. dan C

	A, D, uan	C
Bangunan	Arah	Gaya geser
Bangunan A	X	942,167 kN
Bangunan A	у	938,518 kN
Bangunan B	X	343,049 kN
Bangunan B	у	358,388 kN
Bangunan C	X	918,860 kN
Bangunan C	у	917,453 kN

E. Distribusi vertikal gaya gempa

Berdasarkan SNI 1726 : 2012 pasal 7.8.3 untuk gaya gempa lateral (Fx) yang timbul disemua tingkat harus ditentukan dari persamaan berikut.

$$Fx = C_{vx} x V$$

Dengan Cv yang diambil dari persamaan berikut:

$$C_{vx} = \frac{Wi_x h_x^k}{\sum_{i=1}^n W_i h_x^k}$$

Tabel 3 Distribusi vertikal gempa pada bangunan A arah x

Lantai													
ke	(hi)	(Wi)	k	wi x hi ^k	Cvx	Fx (kg)	Fx (kN)						
7	30,5	11351,25	1,4	1358511,952	0,006700683843	643,5439484	6,313166133						
6	27,5	133156,48	1,4	13785676,32	0,06799605881	6530,445725	64,06367256						
5	23,3	549440,395	1,4	45104396,38	0,2224715797	21366,51156	209,6054784						
4	19,1	896424,99	1,4	55713529,1	0,2747997496	26392,18921	258,9073762						
3	14,9	937583,705	1,4	41159569,77	0,2030142346	19497,79831	191,2734014						
2	10,7	937583,915	1,4	25890917,26	0,1277035882	12264,84838	120,3181626						
1	6,5	1435626,385	1,4	19729684,06	0,09731410533	9346,195857	91,68618136						
Total		4901167,12		202742284,9	1	96041,53299	942,1674386						

Tabel 4 Distribusi vertikal gempa pada bangunan A arah y

Lantai							
ke	(hi)	(Wi)	k	wi x hi ^k	Cvx	Fx (kg)	Fx (kN)
7	30,5	11351,25	1,4	1358511,952	0,006700683843	641,0515241	6,288715451
6	27,5	133156,48	1,4	13785676,32	0,06799605881	6505,153526	63,81555609
5	23,3	549440,395	1,4	45104396,38	0,2224715797	21283,75977	208,7936834
4	19,1	896424,99	1,4	55713529,1	0,2747997496	26289,97314	257,9046365
3	14,9	937583,705	1,4	41159569,77	0,2030142346	19422,28398	190,5326059
2	10,7	937583,915	1,4	25890917,26	0,1277035882	12217,34703	119,8521744
1	6,5	1435626,385	1,4	19729684,06	0,09731410533	9309,998352	91,33108383
Total		4901167,12		202742284,9	1	95669,56733	938,5184555

Tabel 5 Distribusi vertikal gempa pada bangunan B arah x

Lantai							
ke	(hi)	(Wi)	k	wi x hi ^k	Cvx	Fx (kg)	Fx (kN)
7	30,5	36978,8	1,28	2936679,882	0,05724026093	2001,657476	19,63625984
6	27,5	136902,39	1,28	9522629,295	0,1856102154	6490,677529	63,67354656
5	23,3	217314,375	1,28	12226552,98	0,2383137117	8333,687076	81,75347021
4	19,1	234781,57	1,28	10242045,78	0,1996327132	6981,035836	68,48396155
3	14,9	234781,57	1,28	7453194,006	0,1452738421	5080,138831	49,83616193
2	10,7	234781,57	1,28	4878375,634	0,09508680054	3325,12819	32,61950754
1	6,5	368456,355	1,28	4044968,538	0,07884245605	2757,073239	27,04688847
Total		1463996,63		51304446,11	1	34969,39818	343,0497961

Tabel 6 Distribusi vertikal gempa pada bangunan B arah y

Lantai										
ke	(hi)	(Wi)	k	wi x hi ^k	Cvx	Fx (kg)	Fx (kN)			
7	30,5	36978,8	1,25	2650498,806	0,05637950128	2059,709991	20,20575501			
6	27,5	136902,39	1,25	8621382,175	0,1833878311	6699,700057	65,72405756			
5	23,3	217314,375	1,25	11124573,16	0,2366339065	8644,936729	84,80682931			
4	19,1	234781,57	1,25	9374664,011	0,1994110997	7285,077465	71,46660993			
3	14,9	234781,57	1,25	6873007,819	0,1461976713	5341,033483	52,39553847			
2	10,7	234781,57	1,25	4543533,396	0,0966467694	3530,792433	34,63707377			
1	6,5	368456,355	1,25	3824086,851	0,08134322077	2971,708524	29,15246062			
Tota1		1463996,63		47011746,22	1	36532,95868	358,3883247			

Tabel 7 Distribusi vertikal gempa pada bangunan C arah x

Lantai							
ke	(hi)	(Wi)	k	wi x hi ^k	Cvx	Fx (kg)	Fx (kN)
7	30,5	11351,25	1,4	1358511,952	0,006753565448	632,5771434	6,205581777
6	27,5	132619,54	1,4	13730086,98	0,06825633067	6393,274042	62,71801836
5	23,3	550728,925	1,4	45210173,76	0,2247531697	21051,65326	206,5167185
4	19,1	891151,325	1,4	55385766,61	0,2753390569	25789,8136	252,9980714
3	14,9	923382,02	1,4	40536121,18	0,2015170694	18875,22866	185,1659931
2	10,7	923382,29	1,4	25498746,39	0,1267618237	11873,22947	116,4763811
1	6,5	1414210,7	1,4	19435370,23	0,09661898421	9049,880615	88,77932883
Total		4846826,05		201154777,1	1	93665,65679	918,8600932

Tabel 8 Distribusi vertikal gempa pada bangunan C arah y

Lantai					_		
ke	(hi)	(Wi)	k	wi x hi ^k	Cvx	Fx (kg)	Fx (kN)
7	30,5	11351,25	1,4	1358511,952	0,006753565448	631,6084188	6,196078589
6	27,5	132619,54	1,4	13730086,98	0,06825633067	6383,483424	62,62197239
5	23,3	550728,925	1,4	45210173,76	0,2247531697	21019,41489	206,2004601
4	19,1	891151,325	1,4	55385766,61	0,2753390569	25750,31925	252,6106318
3	14,9	923382,02	1,4	40536121,18	0,2015170694	18846,32326	184,8824311
2	10,7	923382,29	1,4	25498746,39	0,1267618237	11855,04689	116,2980099
1	6,5	1414210,7	1,4	19435370,23	0,09661898421	9036,021686	88,64337274
Total		4846826,05		201154777,1	1	93522,21781	917,4529567

F. Distribusi horizontal gaya gempa

Berdasarkan SNI 1726 : 2012 pasal 7.8.3 untuk gaya geser tingkat desain gempa di semua tingkat (Vx) harus ditentukan bedasarkan pada persamaan berikut.

$$Vx = \sum_{i=1}^{n} F_{xi}$$

Tabel 9 Gaya geser tingkat di semua tingkat Bangunan A arah x dan y

Lantai	Tinggi	Ara	ıh x	Arah y		
ke		Fx (kN)	Vx (kN)	Fx (kN)	Vx (kN)	
7	30,5	6,313166133	6,313166133	6,288715451	6,288715451	
6	27,5	64,06367256	70,3768387	63,81555609	70,10427154	
5	23,3	209,6054784	279,9823171	208,7936834	278,8979549	
4	19,1	258,9073762	538,8896933	257,9046365	536,8025914	
3	14,9	191,2734014	730,1630946	190,5326059	727,3351973	
2	10,7	120,3181626	850,4812573	119,8521744	847,1873717	
1	6,5	91,68618136	942,1674386	91,33108383	938,5184555	

Tabel 10 Gaya geser tingkat di semua tingkat Bangunan A arah x dan y

Builguium 11 urum 7 uum j												
Lantai	Tinggi	Ara	hх	Arah y								
ke	imggi	Fx (kN)	Vx (kN)	Fx (kN)	Vx (kN)							
7	30,5	19,63625984	19,63625984	20,20575501	20,20575501							
6	27,5	63,67354656	83,3098064	65,72405756	85,92981257							
5	23,3	81,75347021	165,0632766	84,80682931	170,7366419							
4	19,1	68,48396155	233,5472382	71,46660993	242,2032518							
3	14,9	49,83616193	283,3834001	52,39553847	294,5987903							
2	10,7	32,61950754	316,0029076	34,63707377	329,2358641							
1	6,5	27,04688847	343,0497961	29,15246062	358,3883247							

Tabel 11 Gaya geser tingkat di semua tingkat Bangunan A arah x dan y

	Banganan 11 aran 4 aan y												
Lantai	Tinggi	Ara	ıh x	Arah y									
ke	Imggi	Fx (kN)	Vx (kN)	Fx (kN)	Vx (kN)								
7	30,5	6,205581777	6,205581777	6,196078589	6,196078589								
6	27,5	62,71801836	68,92360013	62,62197239	68,81805097								
5	23,3	206,5167185	275,4403186	206,2004601	275,0185111								
4	19,1	252,9980714	528,43839	252,6106318	527,6291429								
3	14,9	185,1659931	713,6043832	184,8824311	712,511574								
2	10,7	116,4763811	830,0807643	116,2980099	828,809584								
1	6,5	88,77932883	918,8600932	88,64337274	917,4529567								

G. Simpangan antar lantai

Untuk memperoleh simpangan antar lantai, diperlukan perhitungan sebagai berikut:

- δTotal = simpangan total hasil output program etabs
- $\delta x = simpangan arah x$, didapatkan dari hasil perhitungan Δxe dikali Cd
- δIzin = simpangan yang diijinkan, didapatkan dari tabel 4.30 dikali tinggi antar lantai.
- Cd = Faktor pembesaran defleksi (0,010 x h)

Tabel 12 Simpangan antar lantai arah x bangunan A

Lantai	Arah	δTotal	δxe	Cd	δx	Tinggi Tingkat mm	δIzin	Cek
7	X	14,154	0,557	4,5	2,5065	3000	30	OK
6	X	13,597	1,585	4,5	7,1325	4200	42	OK
5	X	12,012	1,444	4,5	6,498	4200	42	OK
4	X	10,568	1,987	4,5	8,9415	4200	42	OK
3	X	8,581	2,442	4,5	10,989	4200	42	OK
2	X	6,139	2,711	4,5	12,1995	4200	42	OK
1	X	3,428	3,428	4,5	15,426	6500	65	OK

Tabel 13 Simpangan antar lantai arah y bangunan A

-	ounguian 11							
Lantai	Arah	δTotal	δxe	Cd	δx	Tinggi Tingkat	δIzin	Cek
		mm	mm		mm	mm	mm	
7	Y	12,164	0,31	4,5	1,395	3000	30	OK
6	Y	11,854	0,531	4,5	2,3895	4200	42	OK
5	Y	11,323	0,991	4,5	4,4595	4200	42	OK
4	Y	10,332	1,521	4,5	6,8445	4200	42	OK
3	Y	8,811	1,928	4,5	8,676	4200	42	OK
2	Y	6,883	2,293	4,5	10,3185	4200	42	OK
1	Y	4,59	4,59	4,5	20,655	6500	65	OK

Tabel 14 Simpangan antar lantai arah x bangunan B

Lantai	Arah	δTotal	δxe	Cd	δx	Tinggi Tingkat	δIzin	Cek
		mm	mm		mm	mm	mm	
7	X	9,247	0,35	4,5	1,575	3000	30	OK
6	X	8,897	0,632	4,5	2,844	4200	42	OK
5	X	8,265	0,953	4,5	4,2885	4200	42	OK
4	X	7,312	1,226	4,5	5,517	4200	42	OK
3	X	6,086	1,426	4,5	6,417	4200	42	OK
2	X	4,66	1,635	4,5	7,3575	4200	42	OK
1	X	3,025	3,025	4,5	13,6125	6500	65	OK

Tabel 15 Simpangan antar lantai arah y bangunan B

Lantai	Arah	δTotal mm	δxe mm	Cd	δx	Tinggi Tingkat mm	δIzin mm	Cek
7	Y	9,7	0,443	4,5	1,9935	3000	30	OK
6	Y	9,257	0,832	4,5	3,744	4200	42	OK
5	Y	8,425	1,159	4,5	5,2155	4200	42	OK
4	Y	7,266	1,448	4,5	6,516	4200	42	OK
3	Y	5,818	1,659	4,5	7,4655	4200	42	OK
2	Y	4,159	1,791	4,5	8,0595	4200	42	OK
1	Y	2,368	2,368	4,5	10,656	6500	65	OK

Tabel 16 Simpangan antar lantai arah x bangunan C

Lantai	Arah	ôTotal mm	δxe	Cd	δx	Tinggi Tingkat mm	δIzin mm	Cek
7	Y	14,024	0,568	4,5	2,556	3000	30	OK
6	Y	13,456	1,575	4,5	7,0875	4200	42	OK
5	Y	11,881	1,432	4,5	6,444	4200	42	OK
4	Y	10,449	1,97	4,5	8,865	4200	42	OK
3	Y	8,479	2,417	4,5	10,8765	4200	42	OK
2	Y	6,062	2,68	4,5	12,06	4200	42	OK
1	Y	3,382	3,382	4,5	15,219	6500	65	OK

Tabel 17 Simpangan antar lantai arah y bangunan C

Lantai	Arah	δTotal	δxe	Cd	δx	Tinggi Tingkat	δIzin	Cek
		mm	mm		mm	mm	mm	
7	Y	11,212	0,293	4,5	1,3185	3000	30	OK
6	Y	10,919	0,49	4,5	2,205	4200	42	OK
5	Y	10,429	0,919	4,5	4,1355	4200	42	OK
4	Y	9,51	1,404	4,5	6,318	4200	42	OK
3	Y	8,106	1,777	4,5	7,9965	4200	42	OK
2	Y	6,329	2,11	4,5	9,495	4200	42	OK
1	Y	4,219	4,219	4,5	18,9855	6500	65	OK

H. Pengaruh P-Delta

Struktur untuk bangunan tahan gempa harus diperhitungkan terhadap pengaruh P-delta yang dapat dihitung dengan rumus sebagai berikut.

$$\theta = \frac{P_x \Delta I_e}{V_x h_{sx} C_d}$$

Nilai koefisien stabilitas (Θ) tidak boleh melebihi (Θ max) yang ditentukan perumusan berikut:

$$\theta_{\text{max}} = \frac{0.5}{\beta C_d} \le 0.25$$

Sehingga diperoleh:

Tabel 18. Nilai teta max

Beta	1
Cd	4.5
Teta max	0,11111

Setelah dilakukan pengecekan, bangunan A,B, dan C arah x dan y aman terhadap pengaruh P-Delta.

I. Ketidakberaturan Struktur

Setelah dilakukan semua pengecekan ketidakberaturan struktur vertikal, maka dapat disimpulkan jika bangunan A, B, dan C tidak mengalami ketidakberaturan vertikal.

Tabel 19. Struktur RSUD Ulin terhadap ketidakberaturan vertikal dan horizontal

Ketidakberaturan	Cek	Ketidakberatur	С
horizontal		an vertikal	e
			k
1. Ketidakberatura	Х	1.Ketidakberatu	Х
n torsi		ran kekakuan	
		tingkat lunak	
2.Ketidakberaturan	Х	2.Ketidakberatu	Х
sudut dalam		ran berat massa	
3.Ketidakberaturan	Х	3.Ketidakberatu	Х
diskontinuitas		ran geometri	
diafragma		vertikal	
4.Ketidakberaturan	Х	4.Ketidakberatu	Х
akibat		ran akibat	
pergeseran		diskondinuitas	
tegak lurus		bidang pada	
terhadap bidang		elemen vertikal	
		pemikul gaya	
		lateral	
5.Ketidakberaturan	Х	5.Ketidakberatu	Х
sistem non		ran tingkat	
paralel		lunak akibat	
		diskontinuitas	
		pada kekuatan	
		lateral tingkat.	

J. Jarak Pemisah Antar Gedung (Dilatasi)

Berdasarkan SNI 1726 2012 pasal 7.12.3 Jarak pemisah antar gedung harus ditentukan paling sedikit sama dengan jumlah simpangan maksimum (δ_{SM}) masing-masing bangunan gedung pada tiap tingkatannya dengan menggunakan persamaan berikut.

$$\delta_{SM} = (Cd \times \delta_{maks}) / I_e$$

Struktur-struktur bangunan yang bersebelahan harus dipisahkan minimal sebesar δ_{MT} yang dapat dihitung dengan menggunakan persamaan di bawah ini.

$$\delta_{\text{MT}} = \sqrt{(\delta_{\text{SM1}})^2 + (\delta_{\text{SM2}})^2}$$

Tabel 20. Kontrol dilatasi

Tinjauan	δ_{MT}	Jarak	Cek
		dilatasi	
Bangunan	50,7207	130	δ _{MT} < jarak
A - B	mm	mm	dilatasi
(Arah x)			(Aman)
Bangunan	50,3946	130	δ _{MT} < jarak
B – C	mm	mm	dilatasi
(Arah x)			(Aman)

K. Perhitungan Balok

Properti material dan penampang

• Lebar balok (b): 400 mm

• Tinggi balok (h): 700 mm

• Diameter tulangan pokok: 19 mm

• Diameter tulangan sengkang: 13 mm

• Diameter tulangan torsi: 19 mm

• Selimut bersih (cc): 40 mm

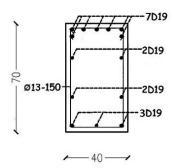
Kuat tekan beton (fc') : 25 MPa

• Kuat leleh tulangan pokok : 400 MPa

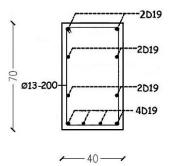
• Kuat leleh tulangan sengkang : 240 MPa

• β 1 (SNI 2847:2013 pasal 10.2.7.3) = f_c ' \leq 30 Mpa maka β 1 : 0,85

• Jumlah tulangan tumpuan atas : 10 buah


• Jumlah tulangan tumpuan bawah : 5 buah

• Jumlah tulangan lapangan atas : 5 buah

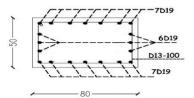

• Jumlah tulangan lapangan bawah : 10 buah

• λ (Menggunakan beton normal): 1

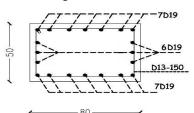
Berdasarkan perhitungan yang telah dilakukan, maka akan diperoleh gambar perencaaan sebagai berikut:

Gambar 7 Penulangan rencana balok B3 tumpuan bangunan A

Gambar 8 Penulangan rencana balok B3 lapangan bangunan A


Tabel 21. Rekapitulasi penulangan balok

Tipe	Lokasi	Longi	tudinal	Torsi	Sengk
balok		Atas	Bawah	10151	ang
B1					Ø 13
(20x40)	Tumpuan	3 D 19	2 D 19	-	-150
Bangun					Ø 13
an A	Lapangan	2 D 19	3 D 19	-	-200
B2					Ø 13
(30x55)	Tumpuan	5 D 19	2 D 19	2 D 19	- 150
Bangun					Ø 13
an A	Lapangan	2 D 19	5 D 19	2 D 19	-200
В3					Ø 13
(40x70)	Tumpuan	7 D 19	3 D 19	4 D 19	- 150
Bangun					Ø 13
an A	Lapangan	2 D 19	4 D 19	4 D 19	- 200
B2					Ø 13
(30x55)	Tumpuan	4 D 19	2 D 19	2 D 19	- 150
Bangun					Ø 13
an B	Lapangan	2 D 19	4 D 19	2 D 19	-200
B3					Ø 13
(40x70)	Tumpuan	4 D 19	2 D 19	4 D 19	- 150
Bangun					Ø 13
an B	Lapangan	2 D 19	4 D 19	4 D 19	-200
B1					Ø 13
(20x40)	Tumpuan	3 D 19	2 D 19	-	- 150
Bangun					Ø 13
an C	Lapangan	2 D 19	3 D 19	-	-200
B2					Ø 13
(30x55)	Tumpuan	5 D 19	2 D 19	2 D 19	- 150
Bangun					Ø 13
an C	Lapangan	2 D 19	5 D 19	2 D 19	-200
В3					Ø 13
(40x70)	Tumpuan	7 D 19	3 D 19	4 D 19	- 150
Bangun					Ø 13
an C	Lapangan	2 D 19	4 D 19	4 D 19	-200


L. Perhitungan Kolom

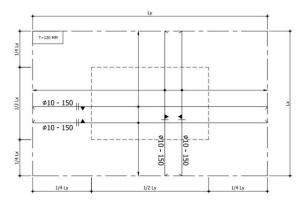
Properti material dan penampang

- Tinggi kolom (L): 6500 mm
- Sisi pendek kolom (b): 500 mm
- Sisi panjang kolom (h): 800 mm
- Diameter tulangan longitudinal: 19 mm
- Diameter tulangan sengkang: 13 mm
- Selimut bersih (cc): 40 mm
- Kuat tekan beton, (fc'): 25 MPa
- Kuat leleh tulangan pokok (fy): 400 MPa
- Kuat leleh tulangan sengkang (fy): 400 MPa
- Tinggi balok (hb): 700 mm
- Panjang bersih kolom (Ln) = 5800 mm

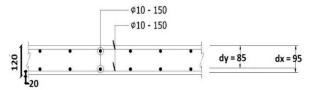
Gambar 9 Penulangan rencana kolom 1 tumpuan

Gambar 10 Penulangan rencana kolom 1 lapangan

Tabel 22. Rekapitulasi penulangan kolom


Tipe kolom	Lokasi	Longitudinal	Sengkang
K1 (80x50)	Tumpuan	20 D 19	D 13 – 100
Bangunan A	Lapangan	20 D 19	D 13 – 150
K2 (50x50)	Tumpuan	16 D 19	D 10-100
Bangunan A	Lapangan	16 D 19	D 10 – 150
K1 (80x50)	Tumpuan	20 D 19	D 13 – 100
Bangunan A	Lapangan	20 D 19	D 13 – 150
K2 (50x50)	Tumpuan	16 D 19	D 10-100
Bangunan A	Lapangan	16 D 19	D 10 – 150
K1 (80x50)	Tumpuan	20 D 19	D 13-100
Bangunan A	Lapangan	20 D 19	D 13 – 150
K2 (50x50)	Tumpuan	16 D 19	D 10-100
Bangunan A	Lapangan	16 D 19	D 10 – 150

M. Perhitungan Plat


Data plat lantai adalah sebagai berikut.

- Kuat tekan beton: 25 Mpa
- Tegangan leleh tulangan lentur : 240 MPa
- Panjang bentang plat arah x (Lx): 3800 mm
- Panjang bentang plat arah y (Ly): 4000 mm
- Tebal pelat lantai (h): 120 mm
- Diameter tulangan : Ø10 mm
- Tebal bersih selimut beton : 20 mm

JURNAL MOMEN

Gambar 11 Tampak atas penulangan rencana plat

Gambar 12 Detail penulangan rencana plat

Berdasarkan perhitungan yang telah dilakukan, digunakan diameter dan jarak yang sama untuk plat lantai dan plat atap pada bangunan A, B, dan C, yaitu:

• Tulangan tumpuan arah x : Ø -150

• Tulangan lapangan arah x : Ø -150

• Tulangan tumpuan arah y : Ø -150

• Tulangan lapangan arah y : Ø -150

3. KESIMPULAN DAN SARAN

A. Kesimpulan

Dari hasil analisis penulisan ini dapat diambil kesimpulan seperti berikut ini:

- 1. Dari hasil pemodelan struktur 3D yang dilakukan oleh program Etabs v.16, struktur gedung yang dianalisis masuk dalam kategori aman
- 2. Bangunan A, B, dan C tidak mengalami ketidak beraturan struktur vertikal dan horizontal.
- 3. Dilatasi antara bangunan sudah aman dan memenuhi persyaratan SNI 1726:2012 dan SNI 03 1726:2002.
- 4. Terdapat perbedaan dimensi komponen struktur pada hasil analisis dengan keadaan eksisting dikarenakan pada analisis ini tidak memperhitungan tangga.

B. Saran

Berdasarkan hasil penelitian pada tugas akhir ini, beberapa saran yang dapat diberikan mengenai tinjauan struktur bangunan gedung rumah sakit ini antara lain sebagai berikut:

 Dibutuhkan literatur dan sumber referensi yang mendukung dalam penulisan tugas akhir ini

- supaya mempermudah dalam proses analisis yang dilakukan.
- Dalam menganalisis suatu bangunan harus diketahui fungsi/kegunaan bangunan tersebut, supaya dalam tahap perhitungan mampu memperoleh hasil yang efektit dan meminimalisasi terjadinya kegagalan struktur.
- 3. Dalam melakukan analisis menggunakan program, harus selalu dipastikan bahwa data material dan beban-beban yang diinput ke dalam program harus sesuai dengan peraturan yang berlaku di Indonesia.
- 4. Perlu menguasai aplikasi atau program perhitungan agar mempermudah proses pengerjaan.

DAFTAR PUSTAKA

20201.

Amdhani, P., 2012. Perencanaan Struktur Gedung Beton Bertulang Sistem Rangka Pemikul Momen Menengah, Universitas Negeri Yogyakarta, Yogyakarta.

Insinyursipil, 2015. *Perhitungan Lendutan Plat Lantai*. http://www.http://insinyursipil.blogspot.com/2015/01/perhitungan-lendutan-pelat-lantai.html, [diakses bulan November 2020].

Medianeliti, 2017. *Jenis-jenis Balok.* https://media.neliti.com/media/publication s/140486-ID-evaluasi-balok-dan-kolom-sede.pdf, [diakses bulan November 2020].

PMK, 2019. *Klasifikasi dan Perizinan Rumah Sakit*, Menteri Kesehatan Republik Indonesia, Jakarta.

Puskim, 2011. Desain Spektra Indonesia http://puskim.pu.go.id/Aplikasi/desain_spe ktra_indonesia_2011/, [diakses bulan Juli 2020].

Slidshare, 2014. Klasifikasi Plat Lantai pada Bangunan. https://www.slideshare.net/AbrahamLcn/p elat-lantai, [diakses bulan September

Spesialiskonstruksi, 2018. Konstruksi Komposit. https://www.spesialiskonstruksi.com/2018 /12/konstruksi-komposit.html, [diakses bulan Maretr 2020].

Syukri, N., 2016. Tinjauan Kekuatan Struktur Kolom, Blok, dan Pelat pada Proyek Pembangunan Klenteng Ho Tek Chieng Sin, Politeknik Negeri Manado, Manado.

Wardhani, Anedya. 2015. Dilatasi materi kuliah Teknologi Bangunan 3. Fakultas Teknik Arsitektur Universitas Pancasila: Jakarta.