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Abstract 

This study aims at implementing a truncated matrix approach based on harmonic oscillator eigenfunctions 
to calculate energy eigenvalues of anharmonic oscillators containing quadratic, quartic, sextic, octic, and 
decic anharmonicities. The accuracy of the matrix method is also tested. Using this method, the wave 
functions of the anharmonic oscillators were written as a linear combination of some finite number of 
harmonic oscillator basis states. Results showed that calculation with 100 basis states generated accurate 
energies of oscillators with relatively small coupling constants, with computation time less than 1 minute. 
Including more basis states could result in more correct digits. For instance, using 300 harmonic oscillator 
basis states in a simple Mathematica code in about 8 minutes, highly accurate energies of the oscillators 
were obtained for relatively small coupling constants, with up to 15 correct digits. Reasonable accuracy 
was also found for much larger coupling constants with at least three correct digits for some low lying 
energies of the oscillators reported in this study. Some of our results contained more correct digits than 
other results reported in the literature. 

Keywords: anharmonic oscillators, harmonic oscillator basis, matrix approach  

1. Introduction 

Quantum anharmonic oscillators have long 

been used to test the power and shortcomings of 

new approximation techniques proposed to solve 

the Schrödinger equation of quantum systems. 

They are also often used in testing computational 

approaches originally designed for systems with 

many fermions [1]. Moreover, anharmonic osci-

llators can be used to represent various challen-

ging potentials, such as the double-well potential, 

which is very often used in theoretical physics 

studies [2]. More importantly, they were found to 

be useful in modeling many phenomena in nuclear 

physics, solid-state physics, atomic and molecular 

physics, and laser theory [3-4]. Their importance is 

mainly due to the anharmonic nature of vibrations 

of many quantum systems [5], ranging from that of 

diatomic molecules [6-7] to extended solids [8].    

Various analytical and computational approa-

ches have been developed to calculate the energies 

of the anharmonic oscillators. Some of the approa-

ches include an algebraic method based on the 

ladder operator [9], analytic quasilinearization 

method [10], Lie algebra [11,12], the Poincare-

Linstedt method [13], multiple-scale perturbation 

theory [14], Wick’s normal ordering technique [15], 

examination of polynomial solution [16],  quantum 

Monte Carlo method [17], and pertur-bation theory  

[18]. Many other approaches have also been 

developed to calculate the energies of the systems. 

Some approaches, including the semi-classical 

and standard perturbation theory, have limited 

success in calculating the energies of the anhar-

monic oscillators due to the divergence issues even 

for small coupling constants [10,19-22]. It is also 

well known that for large coupling, the perturbation 

expansion becomes worse and results in very poor 

accuracy [10]. This means that utilizing an effective 

and simple method with a high level of accuracy is 

still challenging [2]. 

A simple truncated matrix approach presented 

in [23-26] was successfully applied to obtain 

accurate ground state and some excited state ener-

gies of the helium atom and its isoelectronic series. 

Recently, energies of linear oscillator and quartic 

oscillators with potential 𝑉(𝑥) = 𝛼𝑥2 + 𝛽𝑥4  were 

determined using this method with a matrix of size 

25 for fixed values of 𝛽 = 0.05 and different values 

of 𝛼  ranging from 0 to 1.9 [27]. This method was 

also implemented in a simple Matlab code to obtain 

some energies of a pure quartic anharmonic 

oscillator with fixed 𝛽  and matrix of size ranging 

from 7 to 40 [28]. However, in their study, only 

some energies of the quartic oscillators with one 

coupling constant were reported. Hence, the 

accuracy of the method for other anharmonic 
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oscillators with various coupling constants is still 

unknown. Therefore a comprehensive study utili-

zing this method to calculate energies of various 

anharmonic oscillators with a much larger range of 

coupling constant values is of great importance in 

testing the accuracy of the method in such systems. 

To the best of our knowledge, the matrix 

method [23-26] has not been applied to calculate 

energy eigenvalues of other quantum anharmonic 

oscilla-tors containing sextic, octic, and decic 

anharmoni-city. In addition, despite being reported 

for quartic oscillators in [27,28] and linear 

oscillators in [27], their results were not enough to 

test the accuracy of the method for the oscillators 

since limited values of coupling constants were 

used. 

Hence, it is the main purpose of this research to 

implement the matrix method based on harmonic 

oscillator basis states in a simple Mathematica code 

to obtain accurate ground-state energies and some 

excited state energies of quadratic, quartic, sextic, 

octic, and decic anharmonic oscillators with a large 

range of coupling constants. In addition, the accu-

racy of the method is tested for the systems. 

2. Computational Details 

By treating anharmonicity terms as a perturba-

tion, the Hamiltonian of the anharmonic oscillators 

can be written  

Ĥ = Ĥ0 + λĤ′ (1) 

Where Ĥ0  is the Hamiltonian of the harmonic 

oscillator, which in the study of anharmonic oscilla-

tors is written in its dimensionless form as: 

Ĥ0 = p̂2 + x̂2 (2) 

Using this expression, Ĥ0  is in the units of 

ℏω/2, p̂ is in the units of √ℏmω and x̂ is in the units 

of  √ℏ/mω. As a result, energies are in the units of 

ℏω/2. These units are used throughout this article. 

It is important to note that some papers defined 

equation (2) in a slightly different way. Therefore, 

the conversion of units is vital to compare the 

energies of the oscillators. 

𝜆 in equation (1) is the perturbation parameter 

which will be set equal to 1 at the end and Ĥ′ is the 

perturbation term which in this research is of the 

form: 

Ĥ′ = ∑ cm

10

m=2,even

x̂m (3) 

Where 𝑚 = 2, 4, 6, 8, 10  correspond to 

quadratic, quartic, sextic, octic, and decic 

anharmonicities, respectively and 𝑐𝑚  are the 

coupling constants defined to be 𝑐2 = 𝛼 , 𝑐4 = 𝛽 , 

𝑐6 = 𝛾 , 𝑐8 = 𝜀  and 𝑐10 = 𝛿 . More explicit forms of 

equation (3) were shown in equations (3a), (3b), 

(3c), (3d), and (3e) for the respective oscillators. 

Figure 1 illustrates the oscillators.   

Ĥ′ = αx̂2 (3a) 

Ĥ′ = αx̂2 + βx̂4 (3b) 

Ĥ′ = αx̂2 + βx̂4 + γx̂6 (3c) 

Ĥ′ = αx̂2 + βx̂4 + γx̂6 + εx̂8 (3d) 

Ĥ′ = αx̂2 + βx̂4 + γx̂6 + εx̂8 + δx̂10 (3e) 

Using the matrix method, the time-independent 

Schrödinger equation of anharmonic oscillators of 

the form 

Ĥ|Ψn〉 = En|Ψn〉 (4) 

is written in its matrix form using the standard 

matrix mechanics method as follows. The wave 

function of the anharmonic oscillator in this 

research is approximated as a linear combination of 

some finite number of harmonic oscillator basis 

states N, i.e. 

|Ψn〉 = ∑ci|i〉

N

i=0

 (5) 

Where i = 0, 1, 2, 3, …  are the ith states of the 

harmonic oscillators of the form [29]: 

|i〉 =
1

√i!
(â+)i|0〉 (6) 

 

Figure 1. Quadratic, quartic, sextic, octic and decic 
oscillators. 
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Substituting equation (5) into (4) and 

multiplying from left by 〈𝑗|, one obtains the reduced 

form of the Schrödinger equation in N dimension: 

∑Hjici

N

i=0

= Ejcj (7) 

The elements of the Hamiltonian matrix Hji can 

be obtained by the standard method, i.e. 

Hji = 〈j|Ĥ0|i〉 + ∑ cm

10

m=2,even

〈j|x̂m|i〉 (8) 

The first term in equation (8) is the well-known 

matrix elements of the unperturbed harmonic 

oscillators which have the following form: 

〈j|Ĥ0|i〉 = (2i + 1)δij (9) 

Furthermore, the second term can be easily 

calculated using the fact that matrix elements of  x̂ 

are well known from quantum mechanics classes, 

which using the units here are of the form: 

〈j|x̂|i〉 =
√j + i + 1

2
δ|j−i|,1 (10) 

The 〈j|x̂m|i〉 term in equation (8) can be easily 

and effectively evaluated utilizing a very convenient 

matrix multiplication offered in Mathematica.  

Once the Hamiltonian matrix elements of the 

anharmonic oscillators shown in equation (8) are 

determined for a particular matrix size N with 

particular values of coupling constants, the matrix 

is then diagonalized to obtain N energy eigenvalues 

of the oscillators, which was performed using a 

Mathematica code in this research. 

3. Results and Discussion 

3. A. Hamiltonian matrix representation 

Matrix representation of the Hamiltonian of the 

anharmonic oscillators was performed by solving 

equation (8) using equations (9) and (10). This 

could be easily done “by hand” using very simple 

algebraic manipulations involving ladder operators 

as discussed in any undergraduate quantum 

mechanics class, which can also be easily found in 

most lecture notes and problem sets of 

undergraduate quantum mechanics. On the one 

hand, this “by hand” calculation is important to help 

undergraduate students understand simple 

algebraic manipulations involving Dirac notation 

and creation and annihilation operators. On the 

other hand, for larger values of 𝑚 in equation (8), 

this “by hand” type calculation becomes less 

effective since the same procedure is repeated with 

no new physical significance observed from such 

repetition. Additionally, such “by hand” calculation 

can only be used to diagonalize the Hamiltonian of 

relatively small size, which (of course) leads to less 

accurate energy eigenvalues of the systems. It is for 

these reasons that we used Mathematica to do the 

job. Only some elements of the Hamiltonian matrix 

of the form of equation (8) are shown in equation 

(11) due to the limited space. The Mathematica 

codes, which can be downloaded from the 

supplementary material, can be easily adjusted to 

deal with any order of anharmonicities and matrix 

of any size. The codes not only determine the 

Hamiltonian matrix but also calculate the energies 

of the oscillators. 

3. B. Convergence of Energies as a Function of 
Basis States 

Diagonalizing equation (11) resulted in N 

energy eigenvalues of the systems. Table 1 shows 

the first five energies of the anharmonic oscillators 

using a different number of basis states for pure 

quadratic (𝛼 = 1.0), pure quartic (𝛽 = 0.2), pure 

sextic (𝛾 = 0.2), pure octic (𝜀 = 0.2), and pure decic 

anharmonicity (𝛿 = 0.2 ). Despite the fact that N 

energy eigenvalues were obtained, only the first 

five energies were reported due to the limited space 

provided. Exact values are taken from [1] for 

quartic, sextic and octic oscillators and from [15] 

for the quadratic oscillators. 

It is clear from Table 1 that increasing the 

number of basis states does have a major effect on 

the accuracy of the energies obtained, as shown by 

the increase in the number of decimal places that 

are in agreement with the exact values (the 

underlined digits). This effect became more 

significant as one goes to higher order 

anharmonicities. For instance, when using 5 basis 

states, the ground state energies of quartic 

oscillators agree with the exact values to 3 digits 

H =

[
 
 
 
 
 
 
 1 +

𝛼

2
+

3𝛽

4
+

15𝛾

8
+

945𝛿

32
+

105𝜖

16
0

16𝛼 + 48𝛽 + 180𝛾 + 4725𝛿 + 840𝜖

16√2
… H1,N

0 3 +
3

32
(16𝛼 + 40𝛽 + 140𝛾 + 3465𝛿 + 630𝜖) 0 … H2,N

16𝛼 + 48𝛽 + 180𝛾 + 4725𝛿 + 840𝜖

16√2
0 5 +

1

32
(80𝛼 + 312𝛽 + 1500𝛾 + 57645𝛿 + 8610𝜖) … H3,N

… … … … …
HN,1 HN,2 HN,3 … HNN]

 
 
 
 
 
 
 

 (11) 
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while only 2 correct digits are found for the sextic 

oscillator and 1 correct digit for the octic oscillator. 

The exact values for the decic oscillator were not 

presented in [1] and hence were not compared to 

our results. It is also obvious that when using 100 

and 200 basis states, all the results agree with the 

exact values for all anharmonicities up to 8 and 

even to 9 decimal digits, indicating that our results 

are accurate. It might be true here that adding a 

basis from 100 to 200 only has a minor effect on the 

accuracy of our calculation. However, it was found 

that for much larger coupling constants, this has a 

more significant effect. Therefore, in the calculation 

presented in the next section, we used 300 basis 

states. 

It is also obvious from Table 1 that using a  

relatively small number of basis states resulted in 

less accurate energy eigenvalues for the oscillators. 

For example, using N=5, which might be considered 

as the largest number of basis states that one could 

use to diagonalize the Hamiltonian matrix using ‘by 

hand’ calculation explained in the previous section, 

errors obtained for the first four energy levels of the 

quadratic oscillators were about 0.06%, 0.40%, 

2.88%, and 8.49% respectively. This increasing 

trend in the errors as one goes to higher energies 

strongly suggested that ‘by hand’ type calculation 

using Hamiltonian of relatively small size can not be 

used if one wants to obtain highly accurate 

energies, especially for higher state energies of the 

anharmonic oscillators. Therefore, the use of 

modern computational techniques such as 

Mathematica is highly recommended to obtain 

much more accurate energies.        

Table1. The first five energies of the pure quadratic (Q), pure quartic (QQ), pure sextic (S), pure octic (O), 
and pure decic (D) oscillators for different basis states. Correct digits are underlined 

 n N=5 N=20 N=100 N=200 Exact  
Q 0 1.4133998690894

228 
1.41421356237309
98 

1.41421356237309
50 

1.41421356237309
50 

1.414213562
3731 

 1 4.2596296507960
699 

4.24264068711873
80 

4.24264068711928
51 

4.24264068711928
51 

4.242640687
11928 

 2 6.8672488915437
138 

7.07106781189275
42 

7.07106781186547
52 

7.07106781186547
52 

7.071067811
86548 

 3 10.740370349203
9301 

9.89949493567890
10 

9.89949493661166
53 

9.89949493661166
53 

9.899494936
61166 

 4 11.719351239366
8634 

12.7279220816831
344 

12.7279220613578
554 

12.7279220613578
55 - 

Q
Q 

0 1.1171878908585
502 

1.11829265479212
26 

1.11829265436703
7 

1.11829265436702
3 1.118292654 

 1 3.5096296507960
69 

3.53900530119711
83 

3.53900528789811
64 

3.53900528789813
8 3.539005288 

 2 6.3680665609041
49 

6.27724862192640
9 

6.27724861699624
8 

6.27724861699624
8 6.277248617 

 3 9.9903703492039
3 

9.25776309840202
5 

9.25776561777629
7 

9.25776561777624
2 9.257765618 

 4 11.014745548237
299 

12.4405833278371
7 

12.4406018000130
49 

12.4406018000130
27 

12.44060180
0 

S 0 1.1470661237542
623 

1.17389499345765
84 

1.17388934512543
97 

1.17388934512543
06 1.173889345 

 1 3.7413507575012
783 

3.90097149953005
2 

3.90083557025874
63 

3.90083557025864
55 3.900835570 

 2 7.1656923028772
62 

7.38278780412620
25 

7.38164721634840
95 

7.38164721634814
6 7.381647216 

 3 20.008649242498
73 

11.5526929967264
87 

11.5474676073857
04 

11.5474676073839
38 

11.54746760
7 

 4 20.437241573368
482 

16.2961325850009
26 

16.2951065775540
5 

16.2951065775458
8 

16.29510657
8 

O 0 1.1616739257968
003 

1.24028090625743
96 

1.24102790371854 1.24102790505589
34 1.241027906 

 1 3.8362165944284
6 

4.27132907326269
9 

4.27547725048257
2 

4.27547725993550
55 4.275477260 

 2 7.3899001866142
17 

8.44441242041859
4 

8.45303064388158
6 

8.45303068140087
9 8.453030681 

 3 61.788783405571
536 

13.7731212489482
34 

13.7371625469160
2 

13.7371626329238
82 

13.73716263
3 
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 4 62.073425887588
98 

20.2765729813657 19.9930202895809
86 

19.9930202891251
4 

19.99302028
9 

D 0 1.1634624593569
365 

1.30208015270787
65 

1.30888258429956
44 

1.30888218329481
8 

- 

 1 3.8556037679380
34 

4.57916758549058 4.62333282693778
1 

4.62332973998772
8 

- 

 2 7.4377944037464
51 

9.24023685491855
5 

9.39882448901846
4 

9.39881045808787
4 

- 

 3 232.70689623206
184 

15.272872149643 15.6341953084504
2 

15.6341411762082
09 

- 

 4 232.96124313689
657 

22.6714571028047
66 

23.1922819046391
03 

23.1921039387271
65 

- 

Figure 2 shows the convergence of the energies 

as a function basis states for the sextic oscillators. 

As can be seen, from N=20 onwards, the energies 

converged more rapidly, in agreement with the 

results of [28] for the quartic oscillators. However, 

as shown in Table 1, to obtain much more accurate 

energies, one needs 200 basis states for relatively 

small coupling constants. It was also found that 

using 300 basis states for much larger coupling 

constants significantly improved the accuracy of 

the calculation. 

In terms of the computation time, a larger 

number of basis states resulted in longer 

computation time, as expected. For N=5, it took 

about 0.12 seconds to obtain the energies of the 

oscillators, but a larger deviation from the exact 

values was obvious from Table 1 and Figure 2, 

especially for larger quantum numbers n. Accurate 

results were obtained with only 20 basis states, 

which were obtained in 1.62 seconds. Accuracy was 

significantly improved when using 100 basis states 

with a computation time of approximately 48.34 

seconds. Meanwhile, calculations involving 200 and 

300 basis states added more correct digits to the 

results and took about 4.35 minutes and 8.54 

minutes, respectively. These results showed that 

the truncated matrix method implemented in this 

research was not only effective and simple, but also 

accurate. The computation time presented here can 

be faster or lower depending on the computer used. 

In this study, AMD E1-1200 APU with Radeon (tm) 

HD Graphics 1.40 GHz with 2 GB RAM was used in 

performing the calculation.  

By considering the accuracy and numerical 

efforts needed, it is highly recommended to use 100 

basis states for quick calculations, especially for 

oscillators with relatively small coupling constants. 

However, if one needs to generate more correct 

digits, especially for those with relatively large 

coupling constants, calculation using 300 basis 

states can be used.   

3. C. Energies of the Quadratic and Quartic 
Oscillators 

The first few energies of the quadratic and 

quartic oscillators for various coupling constants 

using N=300 and 30 digit precision calculation are 

shown in Table 2, compared with corresponding 

results using different methods in the literature. It 

was important to note that some coupling constants 

values taken from literature and presented here 

may look different from those in the original papers 

but they are actually equivalent after conversion of 

units. This is due to the fact that while some papers 

used the same units as units in this article, some 

others used slightly different units. As a 

consequence, some energies are multiplied by 2 to 

have the same units as ours.  

Table 2 clearly shows that for relatively small 

coupling constants, energies from our calculation 

are in excellent agreement with the most accurate 

energies in the literature. Moreover, we reported 

more correct digits in our results compared to some 

other results in the literature. For much larger 

coupling constants, our approach results in less 

accurate energies but is still comparable to other 

approaches. For instance, using β=2000 for the 

ground state energy, we have 6 correct digits, which 

are the same as the results of [30]. 

 
Figure 2. First five energies of a sextic oscillator as a 
function of a number of basis states for 𝛾 = 0.2. 
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Table 2. First few energies of quadratic (Q) and quartic (QQ) oscillators for different coupling constants. 
Correct digits with respect to the most accurate results in the literature are underlined. 

 
α β n 

En 
This work Other methods 

Q -0.98 0 0 0.14142135623729152 0.1414213562373 [15] 
   1 0.42426406871193517 0.42426406871192 [15] 
   2 0.7071067811865436 0.70710678118654 [15] 
   3 0.9899494936611659 0.98994949366116 [15] 
 1 0 0 1.4142135623730950488

0168872421 1.4142135623731 [15] 
   1 4.2426406871192851464

0506617263 4.24264068711928[15] 
   2 7.0710678118654752440

0844362105 7.07106781186548 [15] 
   3 9.8994949366116653416

1182106947 9.89949493661166 [15] 
 199 0 0 14.142135623730950555

1376840151 14.14213562373 [15] 
   1 42.426406871192845722

2546037706 42.426406871192 [15] 
   2 70.710678118654979673

6434508424 70.710678118654 [15] 
   3 98.994949366110468891

9063036577 98.994949366116 [15] 
QQ 0 0.2 0 1.1182926543670404 1.118292654 [1];1.11829 [30];1.118305[11] 

1.11829265436704[31];1.120614 [9] 

 0 2  1.6075413024685475387
0817192947 

1.607541302[1] ; 1.60754[30], 
1.6075413[14]; 1.625[9] 

 0 100  4.9994175451375811462
8125162587 

4.999417545[1] ; 4.99942[30] 

 0 2000  13.388438209504510616
1362966783 

13.388441701[1] ;13.3884[30] 

 9 10  3.7029004216665292587
8327593685 

3.7029004216662731[32] 

 -1 200  6.2010351230065557281
1753728287 

6.201550 [15] 

 -1 1  1.0603620904841828996
4704601669 

1.060362 [28]ǂ 

 0 0.2 1 3.5390052878980747 3.539005288[1]; 3.539[30]; 3.546780[9] 
 0 2  5.4757845360168685219

1247456374 
5.475784536[1]; 5.47578[30]; 5.4757859 [14] 

 0 100  17.830192715952448857
3367214913 

17.830192716[1]; 17.8302[30] 

 0 2000  47.944383571247695846
8130951916 

47.944412113[1]; 47.9444[30] 

 -1 200  22.220622677092216522
6211816639 

22.221200[15] 

 -1 1  3.7996730298013941687
8309418851 

3.799674[28] ǂ 

 0 0.2 2 6.277248616996231 6.277248617[1]; 6.277240[30]; 6.27868[9] 
 0 2  10.358583375278781918

0457257284 
10.358583375[1]; 10.35858[30] 

 0 100  34.873984261994736719
9757219477 

34.873984262[1]; 34.874[30] 

 0 2000  94.034767898186937661
1735962156 

94.034677465[1]; 94.0346[30] 

 -1 200  43.601186043150053308
1481546120 

43.661100[15] 

 -1 1  7.4556979379867383921
5659134719 

7.455698[28] ǂ 

 0 0.2 3 9.257765617776318 9.257765618[1]; 9.25776[30]; 9.254240[9] 
 0 2  15.884807968781930093

4300154412 
15.884807969[1]; 15.8848[30] 
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 0 100  54.385291571613841033
4092635735 

54.385291572[1]; 54.3852[30] 

 0 2000  146.84165291992586219
9105465933 

146.838227689[1]; 146.8382[30] 

 -1 200  68.098884869217605918
2863521493 

68.098800[15] 

 -1 1  11.644745511378162020
8503732814 

11.644746[28] ǂ 

 0 0.2 4 12.440601800013024 12.440601800[1]; 12.4406[30]; 12.4353[9] 
 0 2  21.927166188254945851

5981034270 
21.927166188[1]; 21.9272[30] 

 0 100  75.877004028787250907
3194764940 

75.877004029[1]; 75.877[30] 

 0 2000  205.03875502682410687
7582055596 

205.032314268[1]; 205.032[30] 

 -1 1  16.261826018850225937
8949544304 

16.261826[28] ‡ 

‡ calculation in [28] used only 40 basis states compared to 300 in this article. Therefore, it is clear that we reported 

more correct digits, and hence underlining correct digits is irrelevant for this particular case. 

Table 2 clearly shows that for relatively small 

coupling constants, energies from our calculation 

are in excellent agreement with the most accurate 

energies in the literature. Moreover, we reported 

more correct digits in our results compared to some 

other results in the literature. For much larger 

coupling constants, our approach results in less 

accurate energies but is still comparable to other 

approaches. For instance, using β=2000 for the 

ground state energy, we have 6 correct digits, which 

are the same as the results of [30].  

3. D. Energies of Sextic, Octic, and Decic 
Oscillators 

Energies of sextic, octic, and decic oscillators 

for various coupling constants using N=300 are 

shown in Table 3, Table 4, and Table 5, respectively. 

The energies are also compared with correspond-

ding results using different methods in the 

literature. The comparisons show that as in the case 

of quadratic and quartic oscillators, the energies are 

very accurate for small coupling constants, and the 

accuracy decreases as coupling constants increase  

 

Table 3. First five energies of the sextic (S) oscillators for different coupling constants. Correct digits 
with respect to the most accurate results in the literature are underlined. 

α β γ n 
En 

This work Other methods 
0 0 0.2 0 1.1738893451254298 1.173889345 [1] 

0 0 2  1.60993195202308357110398737809 1.609931952[1] 
0 0 2000  7.70174565427534579848663412143 7.701738365[1] 
9 10 10  3.89482061798484276356824036526 3.8948206179865981[32] 
-1 0 200  4.30514765136400109626324933823 4.30514765[15] 
0 0 0.2 1 3.90083557025869 3.900835570[1] 
0 0 2  5.74934775261506554895770970477 5.749347753[1] 
0 0 2000  29.1213436395098037043690941958 29.121275718[1] 
-1 0 200  16.3157477633129380099478063858 16.315747744[15] 
0 0 0.2 2 7.381647216348138 7.381647216[1] 
0 0 2  11.5439345718786266191059005354 11.543934572[1] 
0 0 2000  60.8109575850126611561781089928 60.810583703[1] 
-1 0 200  34.1202700713368052362892951832 34.120269932[15] 
0 0 0.2 3 11.547467607383927 11.547467607[1] 
0 0 2  18.6496945910116183942526940076 18.649694591[1] 
0 0 2000  100.037719329179075590538241123 100.036400295[1] 
-1 0 200  56.1652462906609178864322720918 56.165245514[15] 
0 0 0.2 4 16.295106577545674 16.295106578[1] 
0 0 2  26.8302427568214925747564941424 26.830242757[1] 
0 0 2000  145.391289112750728467435592309 145.391321051[1] 
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Table 4. First five energies of the octic (O) oscillators for different coupling constants. Correct digits with 
respect to the most accurate results in the literature are underlined. 

α β γ ε n 
En 

This work Other methods 
0 0 0 0.2 0 1.2410279050558444 1.241027906[1] 

0 0 0 2  1.64137035713230483999848206633 1.641370366[1] 
0 0 0 400  4.14618922304026441557128550616 4.146188637[1] 
9 10 10 10  3.98402719572689161952803085163 3.9840271957255702[32] 
-1 0 0 200  3.53698086410349426486105573497 3.53698172[15] 
0 0 0 0.2 1 4.275477259935213 4.275477260[1] 
0 0 0 2  5.99960735924075831795086710824 5.999607360[1] 
0 0 0 400  15.9519905044699101386783669792 15.951984779[1] 
-1 0 0 200  13.7225972997842320100096492335 13.72260122[15] 
0 0 0 0.2 2 8.45303068140014 8.453030681[1] 
0 0 0 2  12.4210358814067419710097127860 12.421035881[1] 
0 0 0 400  34.1833408161090526288000240401 34.183309142[1] 
-1 0 0 200  29.5607590202676082079021794495 29.56078248[15] 
0 0 0 0.2 3 13.7371626329183 13.737162633[1] 
0 0 0 2  20.6606429048606361103925885583 20.660642905[1] 
0 0 0 400  57.7393983546606404774010901063 57.739246097[1] 
-1 0 0 200  50.0417052352523710943204775517 50.04178448 [15] 
0 0 0 0.2 4 19.993020289103356 19.993020289[1] 
0 0 0 2  30.4605767947675035862433515987 30.460576795[1] 
0 0 0 400  85.8256947044492553883767134099 85.825114583[1] 

Table 5. First five energies of the decic (D) oscillators for different coupling constants. Correct digits 
with respect to the most accurate results in the literature are underlined. 

α β γ ε δ n 
En 

This work Other methods 
-2 3 -2 0 0.1 0 -0.09629194581405878 -0.0962919462309655[32] 

9 10 10 10 10  4.032920287178127259616132380 4.0329202866021152[15] 
-11 -10 -10 -10 10  -22.44644982854958352171655311 -22.44623812979242[15] 
-0.9 0.1 0.1 0.1 0.1  1.05204824730981 1.0520482472987258[15] 
0 1 1 10 10  2.423729990768602132735281187 2.4237300030396556[15] 
-2 3 -2 0 0.1 1 0.6729932436627116 0.672993242745170[32] 
-2 3 -2 0 0.1 2 3.1110223299994777 3.111022328724715[32] 

 

but is still comparable to the accuracy of some other 

results in the literature. 

3. E. Accuracy of The Truncated Matrix 
Approach 

From Table 3, Table 4, and Table 5, it can be 

seen that, in general, there is a declining trend in the 

accuracy of the matrix approach as the coupling 

constants increase. For instance, for the ground 

state energy of the quartic oscillator, when the 

coupling constant is 0.2 there were 15 correct digits 

in our results, which were reduced to 10 and 6 

correct digits for coupling constants of 2 and 2000, 

respectively. This is also true for the case of 

quadratic, sextic, octic, and decic oscillators. This is 

expected since the Hamiltonian used in this article 

was written in terms of an unperturbed Hamil-

tonian and a perturbation which was assumed to be 

much smaller than the unperturbed Hamiltonian. 

Despite this declining trend in accuracy, we still 

reported reasonable accurate energies for osci- 

llators with large coupling constants. 

In addition, coupling constants ranged from -11 

to 2000 have been tested in our calculation, and the 

results showed that at least 3 correct digits were 

found in our energies compared to the exact values 

in the literature. This strongly indicates that despite 

using a simple calculation, our results can produce 

highly accurate energies for small coupling cons-

tants and reasonable accuracy for large ones. This 

also indicates that the divergence issues experien-

ced by the ordinary perturbation expansion method 

have not been found in this study. 

Finally, some of our results contained more 

correct digits than some other methods in the 

literature. For example, using [31] for the exact 

ground state energy of the quartic oscillator, there 

are 15 correct digits obtained from our calculation 

compared to only 2 correct digits reported in [9], 4 
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correct digits presented in [11], and 6 correct digits 

in [30]. 

4. Conclusion 

Accurate energies of quadratic, quartic, sextic, 

octic, and decic oscillators with various coupling 

constants were obtained using a simple matrix 

approach using harmonic oscillator eigenfunctions. 

Highly accurate energies of all anharmonic 

oscillators were obtained for relatively small 

coupling constants. It was also found that the 

accuracy decreased as the coupling constants 

increased but a reasonable degree of accuracy for 

much larger coupling constants was still obtained 

for relatively low energy levels of the oscillators.  
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