

Compression of Color Image Using Quantization Method

Denni M Rajagukguk¹, Iqbal Panjaitan²

^{1,2} Manajemen Informatika, Universitas Imelda Medan Email: dennimr17@gmail.com¹, iqbalpanjaitan12@gmail.com²

Abstract. The development of large-capacity storage media causes people to no longer
have problems if they have large files. More so if the file we have is an image file.
_ Nevertheless, sometimes the large file size feels annoying if we have to manage the
storage media that we have for various data, thepurpose of this study is to compress color
imagery. By using quantization method can be taken, By using data compression then
the data capacity will be minimized, Utilization of quantization method will facilitate
data compression (image), Image compression with kunatization method in RGB Image
can reduce thesize of the compressed file, so as to save storage space(Storage).

1. INTRODUCTION

The development of large-capacity storage media causes people to no longer have problems if they have large files. More so if the file we have is an image file. However, sometimes the large file size feels annoying if we have to manage the storage media that we have for various data [1], [2]. Especially if the file will be sent electronically, of course the capacity of the file becomes a problem in itself. Image compression is the process of minimizing the number of bits that represent an image so that the image size becomes smaller. Basically image compression techniques are used for data transmission and storage. Image compression is widely applied to television broadcasting, remote sensing, military communication, radar and others [3].

Nowadays the use of RGB imagery (Read, Greed, Blue) is already a necessity in various fields. However, its use is constrained by large file capacity, but it is possible to compress the imagery according to your needs. RGB imagery is a 3-dimensional matrix, i.e. length dimension, width dimension and RGB dimension. If further parsed, three two-dimensional matrices will be obtained, call it R matrix, G matrix, B matrix. With quantization methods, the R matrix, G matrix and B matrix will be reduced in tier, resulting in the number of bits used to represent the image to be reduced. As the number of bits decreases, the file size becomes smaller. The quantization method belongs to the Lossy Compression category, so the compressed image cannot be decompressed again as it was because of missing information [4], [5].

To solve the problem above one of the solutions is to compress the information data so that it is smaller than the original size without reducing the content of the data. Thus, various algorithms were created regarding data compression. Data compression algorithms that are lossy and lossless have been widely known and researched. Similarly, the development with lossless compressionalgorithm, which for this type of algorithm is used for the purposes of transferring important data that requires no data loss. This has given rise to a variety of new lossless algorithms that have diverse performance and quality [6].

2. METHOD

2.1 Image Data Encoding in RGB

Data is stored in the computer on the main memory for processing. A character of data stored in the main memory occupies a position of 1 byte. On the first generation computer, 1 byte consists of 4 bits, the second generation computer, 1 byte consists of 6 bits and on the current generation computer, 1 byte consists of 8 bits. A character of data stored in main memory is represented by a combination of binary digits (binary digits or bits). A binary code can be used to represent a character[7]. A different computer uses different binary code to represent a character. A 1-byte computer consists of 4 bits, using binary code in the form of a combination of 4 bits, namely BCD (Binary Coded Decimal).

Computers that use 6 bits for 1 byte, using binary code consisting of 6 combinations of bits, Jurnal Info Sains : Informatikan dan Sains is licensed under a Creative Commons Attribution-Non Commercial

namely SBCDIC (Standard Binary Coded Decimal Interchange Code). A computer consisting of 8 bits, using binary code consisting of a combination of 8 bits, namely EBCDIC (Extended Binary Coded Decimal Interchange Code) or ASCII (American Standard Code of Information Interchange) [2].

2.2 Digital Imagery Basics

Digital imagery is a two-dimensional image that can be displayed on a computer monitor screen as a diskretic set of digital values called pixels (picture elements). A pixel is an image element that has a value that indicates the intensity of color.Based on how it is storeed or built, digital imagery can be divided into two types. The first type is a digital image formed by a collection of pixels in a twodimensional array. This type of image is called a bitmap image or raster image. The second type of imagery is an image formed by geometric and mathematical functions. This type of image is calledvector graphics. Digital imagery (discrete) is produced from analog imagery (continuous) through digitization Digitalization of analog imagery consists of sampling and quantization (quantization) Desecration is the division of imagery into discrete elements (pixels), while quantization is the giving ofvalue, color intensity on each pixel with a value that is an integer. The amount of value that can be used in image quantization depends on the pixel depth, which is the number of bits used to represent the intensity of pixel color. Pixel depth is often referred to as color depth. Digital images that have a pixel n bit depth are also called n-bit images. Based on the constituent colors, digital imagery can be divided into three kinds: Binary image, which is an image consisting of only two colors, black and white. Therefore, each pixel of the binary image is simply represented by 1 bit [8], [9].

Figure 1. binary imagery and Image representation

Although color imagery is currently preferred because it gives a richer impression of binary imagery, it does not make binary images die. In some applications binary imagery is still needed, for example the image of the agency logo (which consists only of black and white), the image of the goods code (bar code) listed on the label of the goods, the image of the scanned text document, and so on. As mentioned above, binary imagery has only two grayish degree values: black and white. Pixel – object pixel is 1 and pixel – background pixel is 0. at the time of displaying the image, is white and 1 is black. So in binary image, the background is white while the object is black as shown in figure 2.1 above. Although computers today can process both grayscale and color imagery, binary images are still maintained [10].

3. RESULTS AND DISCUSSION

Quantization-based compression uses a method of reducing the amount of color intensity, thus reducing the number of bits used to represent an image. This compression is lossy, as the intensity of the color is reduced.

Figure 2 Image to beused

3.1 Quantization Compression Algorithm


```
Quantization compression algorithm is to find the size of the image matrix and look for the degree
value of R,G,B image to double as follows :
Compression = gblama =imread('famili.jpg');
[m,n,o]=size(gblama);
array=double(gblama);
gbbaru=zeros(m,n,3);
     for k=1:o
       for i=1:m
       for j=1:n
     if (mod(array(i,j,k),2)==0)
       imagenew(i,j,k)=(array(i,j,k)+1)/2;
    else
         imagenew(i,j,k)=(array(i,j,k))/2;
         end
      end
 end
 end
        The steps to determine the figh or image as follows:
Step 1;
Number of image pixels = 80
Grayish degree = 256 (24 \text{ bits})
Then the histrogram:

        Table 1
        RGB Color Histogram Table
```

	Number of	Number of	
Degree of	Pixels of	Pixels of Color	Number of Pixels
Grayness	Color R	G	Color B
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	1
5	0	0	0
6	0	0	1
7	0	0	0
8	0	0	0
9	0	0	2
10	0	0	2
11	0	0	0
12	0	0	0
13	0	0	1
14	0	0	0
15	0	0	0
254	0	0	2
255	0	0	4

Table 1 KGB Color Histogram Table

Step 2 :

For example, it will be compressed from 256 to 128 degrees grayish (7 bits) i.e. grayish value 0 to 127, then made n group fruit that is 128. Each group has an average of 80/7 = 11.42 pixels (can be less) **Table 2 New Grayish Value Grouping**

Jurnal Info Sains : Informatikan dan Sains is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0) Page | 15

Κ	Gray	Pixel R	Pixel G	Pixel B	P-KR	PK-G	PK-B
1	0	0	0	2			
	1	0	0	0	0	0	2
2	2	0	0	0			
	3	0	0	0	0	0	0
3	4	0	0	1			
	5	0	0	0	0	0	1
4	6	0	0	1			
	7	0	0	0	0	0	1
5	8	0	0	0			
	9	0	0	2	0	0	2
6	10	0	0	2			
	11	0	0	0	0	0	2
7	12	0	0	0			
	13	0	0	1	0	0	1
8	14	0	0	0			
	15	0	0	0	0	0	0
9	16	0	0	1			
	17	0	0	0	0	0	1
10	18	0	0	0			
	19	0	0	0	0	0	0
	•••	0	0	0	0	v	0
11	20	0	0	0			
	21	0	0	0	0	0	0

Step 3 :

Each pixel or image in the group is encoded with a new gray value of 0 to 127

Table	3	New	Coding	Group	Table
abic	0	110 11	Counig	Oroup	Table

group	Old Gray Value	New Gray Value
1	0	0
	1	0
2	2	1
	3	1
3	4	2
	5	Z
4	6	2
	7	3
5	8	4

Jurnal Info Sains : Informatikan dan Sains is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0)

	9	
6	10	5
	11	5
7	12	6
	13	6
8	14	7
	15	1
9	16	Q
,	17	0
10	18	0
	19	9
11	20	10
	21	10
12	22	
	23	11

Image that has been compressed with the following matrix:

Matrices R:

100 35 108 94 115	119 107 113 96 63 53	123 125 111 107 60 24	120 111 125 99 54	35 110 90 77 31	61 97 58 97 42	27 67 89 92 112	53 48 123 46 125	106 65 100 94 117	40 113 94 109 64 124
124	55 124	24 124	124	117	123	124	124	124	124
	Matrices G:								
3 91 81 88 75 50	42 85 70 100 78 47	58 77 94 72 83 69	48 84 97 87 76 88	39 84 69 73 46 86	26 88 78 28 60 77	56 28 50 33 75 74	86 39 30 40 77 66	22 83 78 36 76 45	39 99 74 89 67 52
71 92	89 92	92 92	92 92	92 92	92 92	92 92	92	92	92
Matrices B:									
36 31 4 0 127 126 53	53 31 2 39 93 126 18	62 12 19 127 46 77 36	56 26 55 72 39 18 44	0 39 127 4 64 37 44	69 58 117 12 23 43 44	69 83 25 8 22 127 44	50 93 16 6 31 126 44	38 13 3 5 127 125 44	53 5 6 16 127 118 44

Jurnal Info Sains : Informatikan dan Sains is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0) Page | 17

Compression ratio = $100\% - \left(\frac{128}{256}x100\%\right) = 50\%$, means that the original image has been

compressed as much as **50%**.

4. CONCLUSION

By using quantization method can be taken, By using data compression then the data capacity will be minimized, Utilization of quantization method will facilitate data compression (image), Image compression with kunatization method in RGB Image can reduce thesize of the compressed file, so as to save storage space (Storage).

REFERENCE

- [1] G.D.Sanjaya, R.Hadi, N.Luh, and G.Pivin, "Kompresi Citra Digital Menggunakan Metode Discrete Cosine Transform," 2018.
- [2] M. A. Maricar and O. Widyantara, "Pemampatan Citra Pas Foto dengan Menggunakan Algoritma Kompresi Joint-Photograpic Experts Group (JPEG) dan Principal Component Analysis (PCA)," Maj. Ilm. Teknol. Elektro, vol. 17, no. 1, 2018, doi: 10.24843/mite.2018.v17i01.p14.
- [3] I. M. A. D. S. Atmaja, "KOMPRESI CITRA MEDIS MENGGUNAKAN PACKET WAVELET TRANSFORM DAN RUN LENGTH ENCODING," Matrix J. Manaj. Teknol. dan Inform., vol. 8, no. 1, 2018, doi: 10.31940/matrix.v8i1.739.
- [4] B. D. Raharja and P. Harsadi, "IMPLEMENTASI KOMPRESI CITRA DIGITAL DENGAN MENGATUR KUALITAS CITRA DIGITAL," J. Ilm. SINUS, vol. 16, no. 2, 2018, doi: 10.30646/sinus.v16i2.363.
- [5] "Aplikasi Kompresi Citra Dengan Matlab R2015a Menggunakan Metode Discrete Cosine Transform (DCT) dan Kuantisasi," J. Ilm. Komputasi, vol. 17, no. 1, 2018, doi: 10.32409/jikstik.17.1.2339.
- [6] S. I. Murpratiwi and I. M. O. Widyantara, "Pemilihan Algoritma Kompresi Optimal untuk Citra Digital Bitmap," Maj. Ilm. Teknol. Elektro, vol. 17, no. 1, 2018, doi: 10.24843/MITE.2018.v17i01.P13.
- [7] M. Aria and A. Sanjaya, "Teknik Kompresi pada Transmisi Data Citra Payload KOMURINDO," Komputika J. Sist. Komput., vol. 7, no. 2, 2018, doi: 10.34010/komputika.v7i2.1512.
- [8] H. J. Park, K. B. Kim, and E. Y. Cha, "An effective color quantization method using color importance-based self-organizing maps," Neural Netw. World, vol. 25, no. 2, 2015, doi: 10.14311/NNW.2015.25.006.
- [9] M. Narzillo, S. Abdurashid, N. Parakhat, and N. Nilufar, "Automatic speaker identification by voice based on vector quantization method," Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 10, 2019, doi: 10.35940/ijitee.J9523.0881019.
- [10] F. A. Sianturi, "Kompresi File Citra Digital Dengan Arithmetic Coding," J. Tek. Inform. Unika St. Thomas, vol. 03, no. 1, 2018.