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Abstract. In engineering education, some assignments require the students to 
submit program code, and since that code might be a result of plagiarism or 
collusion, a similarity detection tool is often used to filter excessively similar 

programs. To improve the scalability of such a tool, it is suggested to initially 

suspect some programs and only compare those programs to others (instead of 
exhaustively compare all programs to one another). This paper compares the ef-

fectiveness of two common techniques to raise such initial suspicion: focusing 
on the submissions of smart students (as they are likely to be copied), or the 
submissions of slow-paced students (since those students are likely to breach 

academic integrity to get higher assignment mark). Our study shows that the 
latter statistically outperforms the former by 13% in terms of precision; slow-
paced students are likely to be the perpetrators, but they fail to get the 

submissions of smart students. 
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1 Introduction   
Academic dishonesty is a concerning issue in engineering education [1], [2], espe-

cially when the classes are going online due to Covid-19 pandemic [3]. In online 

environment, assignments are completed without direct supervision by the lecturer 

and this might tempt the students to cheat [4]. A study even shows that student 

submissions during the pandemic have higher similarity than the ones before the 

pandemic [5]. It becomes worse as some of the assignments are not text-based and 

therefore cannot be easily detected with Turnitin [6], a popular text-based similarity 

detection system. Programming courses offered in some engineering majors (e.g., 

information technology, electrical engineering, and mechatronics) for instance, assess 

the students based on their submitted program code, which is arguably different from 

standard text [7]. 

To maintain academic integrity in programming, many attempts have been 

proposed and generally, they can be classified into five categories [8]. The most 

obvious attempt is educating students about academic integrity and penalizing them if 

any breaches of academic integrity occur. Sometimes, it is also possible to make 
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cheating difficult by introducing additional restrictions during completion of the 

assignment (e.g., requiring students to do the work during a particular period of time 

while directly monitored by lecturers or tutors). Alternatively, lecturers can also 

reduce the benefits of cheating by giving many assignments with a small portion to 

the overall mark. 

Considering student psychological states, lecturers can discourage cheating by 

informing them about the real consequences if they are cheating. They can also 

encourage students to maintain academic integrity by providing additional help like 

peer-assisted learning. 

In programming courses, plagiarism and collusion are often found as attempts of 

breaching academic integrity. Code plagiarism refers to illegally reusing program 

code with no or limited acknowledgment to the authors [9]. Code collusion is quite 

similar to code plagiarism except that the original authors are aware of such misbe-

havior and let it happens [10]. 

To detect code plagiarism and collusion, a similarity detection tool like JPlag [11] 

is often used to raise suspicion of programs with unduly similarity. That kind of tool 

typically works in twofold [12]. Each student submission is translated to an 

intermediate representation like source code tokens [13], linearized syntax tree [14], 

and low-level tokens [15]. All submissions are subsequently compared to one another 

and submission pairs with overly high similarity are reported.  The similarity 

algorithms vary from cosine similarity from Information Retrieval [16], running 

Karp-Rabin greedy string tiling [17] from string matching, to string alignment [18]. 

Many existing similarity detection tools are not really scalable due to cubic time 

complexity of their pairwise comparison, especially when a large number of long 

student submissions are involved. As a result, it is suggested to initially suspect some 

submissions based on the lecturer’s knowledge about the students, and only compare 

those submissions to others [19]. This positively affects the scalability given that the 

time complexity becomes linear to the number of initially suspected submissions. 

Further, this might increase the accuracy as well since the excluded submissions are 

unlikely to be relevant. 

Nevertheless, to the best of our knowledge, no studies specifically evaluate how 

the initial suspicion is raised, though it directly affects the effectiveness. An existing 

study about a scalable similarity detection tool [19] is only focused on the 

development of the tool and evaluating other aspects instead of how initial suspicion 

is raised. This paper compares two popular ways of raising initial suspicion. The first 

one is to use the submissions of smart students, assuming that these submissions are 

the main target of the perpetrators since they tend to result in high assignment mark. 

The second one is to use the submissions of slow-paced students, assuming that the 

students might be the perpetrators of academic dishonesty. As our case study, the 

comparison was performed on three programming classes for one academic semester 

with a total of 67 assignments and 1034 student submissions.   

It is worth to note that this study does not contribute a new similarity detection for 

code plagiarism and collusion. Instead, it empirically compares two ways of using  

scalable similarity detection in three algorithm and data structure classes.  
The paper is organized as follows: Section 2 describes our method evaluating the 

impact of initial suspicion; Section 3 shows our results and discussion; Section 4 
explains our limitations; and finally Section 5 is about conclusions and future work. 

2 Method 
 
The study empirically compares the effectiveness of two techniques of raising initial 
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suspicion. The first one initially suspects the submissions of smart students as those 

submissions are likely to be copied by the perpetrators who want to get a high assess-

ment mark. The second one does the opposite by using the submissions of slow-paced 

students; some of those students might be the perpetrators since academic dishonesty 

often occurs as a result of desperate act seeking help [20] for higher assignment mark. 

For convenience, the former will be referred to as smart-oriented suspicion (SS) while 

the latter will be referred to as slow-paced oriented suspicion (SPS).  

Both techniques of raising initial suspicion require lecturer’s knowledge about 

student academic performance. We cannot therefore use publicly available data sets 

[21], [22], [23], [24] as they have no such information. We create our own data set 

just for this purpose. 

As our case study, the comparison was performed on three classes of algorithm 

and data structure; two of them covered basic materials (BC) while another one 

covered the ad-vanced ones (AC). In total there are 1034 student submissions 

collected from 41 weekly student assignments for one academic semester (14 weeks). 

Table 1 shows statistics of the average, maximum, and minimum score of each class. 

On average, their scores are not much different. 

 
Table 1 Statistics 

Class Number of 

students 

Average 

score 

Maximum 

score 

Minimum 

score 

BC1 29 86.43 100 24.14 

BC2 17 79.63 98.07 3.21 
AC 9 80.2 92.1 70.2 

 

BC contributes 28 weekly assignments as it has two classes (BC1 and BC2) in 

which each of them has 14 weekly assignments. The assignments are about 

implementing the algorithm and data structure taught in the lecture with Python as the 

programming language. Some weekly assignments consist of more than one task. In 

terms of class size, the first class has 29 students enrolled while the second one only 

has 17 students. 

AC has 13 Java and one C# weekly assignments. Since our search of copied pro-

grams was based on a similarity detection tool that does not cover C# (will be 

explained later), only the Java assignments are considered. They are about 

implementing algorithm and data structure and learning new programming languages. 

Similar to BC, the assignments occasionally have more than one task. AC has one 

class with nine students enrolled. 

Our method works as in Figure 1. At first, student code files were collected for all 

assignments. For each class, the lecturer was asked to find copied programs of each 

weekly assignment with both suspicion techniques, via the help of a similarity 

detection tool proposed in [19].  

The tool [19] searches similar code files in the same assignment based on the 

given code file. It has four modes. The first one is to convert the code file to token 

string and then measure the similarity with RKRGST, which is partly adapted from 

JPlag [11]. The second one is similar to the first except that RKRGST is replaced with 

cosine similarity from Information Retrieval, which is more time-efficient but less 

accurate. The third one is derived from the second, but the token string is taken from a 

linearized syntax tree, that is believed to be more effective though the translation 

takes a considerable amount of time. The fourth one uses a linearized syntax tree but 

with cosine similarity to compensate for its long execution time. Further details about 

the tool can be found in the following paper [19]. 
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In this case, we set the tool to use the second mode, token string with cosine 

similarity since it is arguably the most scalable one. We do not use several similarity 

measurements as our main goal is to evaluate the effectiveness of common techniques 

of raising initial suspicion, not the similarity measurements.  

Per initially suspected submission, the tool compared it with other submissions in 

which top-5 program pairs with the highest similarity were used as the basis of 

performance comparison. A suspicion technique is more effective than another if its 

suggested program pairs result in higher effectiveness.  

Precision, a metric from information retrieval [25] was used to represent the 

effectiveness. It is the proportion of suggested program pairs that are actually copied 

(true positives) to all suggested program pairs (true + false positives). Typically, this 

metric is featured with recall, which is the proportion of suggested program pairs (true 

positives) that are actually copied to all copied program pairs (true positives + false 

negatives). However, since the determination of copied program pairs is based on the 

suggested program pairs, that metric is not applicable as the result will be the same to 

precision; both will have the same divider. If there were more than one initially 

suspected submission, the precision would be averaged prior comparison. The 

formula of precision is given in (1) and recall in (2). 

 

 
Fig. 1. Research method diagram 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
         (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
              (2) 

 

Since the assignments are arguably simple, the resulted precision is not expected 

to be high. However, we believe this is not an issue in our study as our goal is to 

compare the suspicion techniques, not to propose an effective technique. 
 

3    Result and Discussion 
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Table 2 shows that both techniques result in zero precision in half of BC1 assess-

ments. Further observation shows that these assignments only had one expected 

solution with limited possible variation; most of them were given in early lecture 

weeks and they were simple by default. Moreover, there was no convincing evidence 

for plagiarism and collusion on their suggested program pairs (e.g., uncommon 

identifier names or whitespaces).  

More BC1 assignments favor SPS than SS; the former outperforms the latter in 

five of seven remaining assignments (week 6, 7, 8, 12, and 14). The perpetrators were 

mostly slow-paced students, but on most occasions, they copied the code from aver-

age-paced or other slow-paced students. The smart students were aware of the conse-

quences of letting their code copied by the perpetrators and decided to keep their code 

only for their own. 

In general, SS and SPS are equally effective. Their averaged precision scores are 

similar (12% and 14% respectively) while the difference is only about 2%. When 

measured with two-tailed paired t-test with 95% confidence rate, the difference is not 

significant (p-value = 0.6). 

 
Table 2 Resulted precision for BC1 

Week SS SPS SPS - SS 

1 0% 0% 0% 
2 0% 0% 0% 

3 0% 0% 0% 

4 0% 0% 0% 

5 0% 0% 0% 
6 40% 60% 20% 

7 30% 40% 10% 

8 0% 40% 40% 

9 0% 0% 0% 
10 0% 0% 0% 

11 20% 0% -20% 

12 0% 20% 20% 

13 40% 0% -40% 
14 36% 40% 4% 

Average 12% 14% 2% 

 

For BC2 assignments, fewer assignments result in zero precision for both 

techniques at once. Table 3 shows only week 1 and week 9 fall to that category, 

though the assignments were similar to those given in BC1. Further observation 

shows that the perpetrators in this class left many convincing pieces of evidence for 

plagiarism and collusion, even for simple tasks. The copied programs either have 

uncommon variable names, logic flows, or whitespaces.  

Among the remaining twelve assignments, nine of them favor SPS over SS while 

two of them see both as equally effective. Similar to BC1, the perpetrators were slow- 

paced students who did not copy code from smart students. They mainly got the code 

from average or slow-paced students. The smart students were good in not sharing 

their code to others. 

SPS is more effective than SS since its average precision (47%) is 13% higher. 

However, the difference is still not statistically significant, though the p-value is lower 

than that of BC1 (p-value = 0.1). 

The effectiveness of suspicion techniques might be affected by the students’ 

behavior. BC2 results in higher averaged precision than BC1 for both techniques 

despite they share the same assignment tasks. Further, it has fewer zero precision 
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scores and favors SPS more. We observe two potential reasons. First, BC2 

perpetrators exclusively copied code with unusual patterns and those patterns were 

useful for raising suspicion. Second, BC2 had more perpetrators than BC1 and most 

of them were recognized by the lecturer as slow-paced students.  

 
Table 3 Resulted precision for BC2 

Week SS SPS SPS - SS 

1 0% 0% 0% 

2 0% 40% 40% 
3 40% 40% 0% 

4 60% 65% 5% 

5 80% 80% 0% 

6 100% 50% -50% 

7 80% 85% 5% 

8 80% 100% 20% 

9 0% 0% 0% 

10 0% 20% 20% 
11 0% 40% 40% 

12 40% 50% 10% 

13 0% 20% 20% 

14 0% 73% 73% 

Average 34% 47% 13% 

 

Table 4 shows that no AC assignments result in zero precision for both suspicion 

techniques at once. In other words, at least one of our proposed techniques is 

guaranteed to suggest copied programs, which is promising. Similar to BC2, many of 

the perpetrators left convincing evidence (primarily uncommon identifier names), and 

those were really useful for raising suspicion of plagiarism and collusion. 

Among 14 assignments, ten of them favor SPS, one favors SS, two favor both 

equally, and one is not applicable for this study (week 13) given the assignment was 

completed in C#, a programming language that is not covered by our tool. SPS is 

more effective than SS as the averaged precision is about two times higher (47%) and 

the difference is statistically significant when measured with two-tailed paired t-test 

with 95% confidence rate (p-value = 0.01). The perpetrators were mostly slow-paced 

students and they copied the programs from average-paced or slow-paced students 

instead of the smart ones. 

 
Table 4 Resulted precision for AC 

Week SS SPS SPS-SS 

1 20% 20% 0% 
2 0% 20% 20% 

3 0% 20% 20% 

4 40% 20% -20% 

5 20% 27% 7% 
6 20% 44% 24% 

7 100% 100% 0% 

8 60% 70% 10% 

9 0% 33% 33% 
10 0% 73% 73% 

11 0% 80% 80% 

12 0% 52% 52% 

13 NA NA NA 
14 40% 50% 10% 
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Average 23% 47% 24% 

When all assignments are considered, SS results in 23% averaged precision while 

SPS results in 36%. SPS is generally more effective than SS since most of the 

perpetrators were slow-paced students and they failed to copy the code from smart 

students. The difference is statistically significant as the p-value is lower than 0.01 

when measured with two-tailed paired t-test with 95% confidence rate. 

 

4    Limitations of the Study 

 

Our study has three limitations. First, we only considered three algorithm and 

data structure classes. It is possible that the findings might be changed when more 

classes are considered and/or the study was performed on other programming courses 

like object-oriented programming. Second, the similarity measurement used in our 

study is cosine similarity with token strings. The findings can be different if the 

similarity measurement is replaced with other algorithms like running Karp-Rabin 

greedy string tiling [17], and/or it utilizes more advanced intermediate representations 

like syntax tree [14]. Third, per initially suspected submission, only top-five program 

pairs with the highest similarity are considered. More program pairs involved might 

change the findings as they affect the resulted precision. 

 

5    Conclusion and Future Work 

 

To improve the scalability of code plagiarism and collusion detection, it is 

arguably important not to compare all student programs to one another. Consequently, 

a study suggests to initially suspect some programs and only compare those programs 

to others. This paper compares the effectiveness of two common techniques of raising 

initial suspicion of plagiarism and collusion. The first one focuses on the programs of 

smart students, which are likely to be copied if the perpetrators aim to get high 

assignment marks. The second one focuses on the programs of slow-paced students 

since those students might breach academic integrity to gain higher assignment marks. 

According to the study, future use of scalable similarity detection is expected to 

focus on slow-paced students. That results in higher effectiveness since these students 

are likely to be the perpetrators and they copy the programs from average-paced or 

other slow-paced students. They might want to get the programs from smart students 

but apparently, those smart students are smart to keep their programs for themselves. 

It is worth noting that both techniques of raising initial suspicion do not show high 

precision. Focusing on smart students only shows 23% on average while focusing on 

slow-paced students shows 36%. This is due to the fact that the assignments are 

arguably simple, and it is quite difficult to differentiate evident similarity from the 

coincidental one. 

For future work, we plan to integrate student performance to a code similarity 

detection system so that it can automatically list the slow-paced students and compare 

their programs to others. We also plan to reconduct this study on assignments from 

other programming courses to check the consistency of our findings. 
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