

Journal of Information Technology and Computer Science
Volume 6, Number 1, April 2021, pp. 9-17

Journal Homepage: www.jitecs.ub.ac.id

Initial Suspicion on Detecting Code Plagiarism and

Collusion in Academia: Case Study of Algorithm and Data

Structure Courses

Mewati Ayub*1, Oscar Karnalim2, Maresha Caroline Wijanto3,
Risal4

1,2,3,4Faculty of Information Technology, Maranatha Christian University, Bandung, Indonesia

{1mewati.ayub@it.maranatha.edu, 2oscar.karnalim@it.maranatha.edu,
3maresha.cw@it.maranatha.edu, 4laurentius.risal@it.maranatha.edu}

*Corresponding Author

Received 30 October 2020; accepted 26 March 2021

Abstract. In engineering education, some assignments require the students to
submit program code, and since that code might be a result of plagiarism or
collusion, a similarity detection tool is often used to filter excessively similar

programs. To improve the scalability of such a tool, it is suggested to initially

suspect some programs and only compare those programs to others (instead of
exhaustively compare all programs to one another). This paper compares the ef-

fectiveness of two common techniques to raise such initial suspicion: focusing
on the submissions of smart students (as they are likely to be copied), or the
submissions of slow-paced students (since those students are likely to breach

academic integrity to get higher assignment mark). Our study shows that the
latter statistically outperforms the former by 13% in terms of precision; slow-
paced students are likely to be the perpetrators, but they fail to get the

submissions of smart students.

Keyword : students, SPS, perpetrators, precision

1 Introduction
Academic dishonesty is a concerning issue in engineering education [1], [2], espe-

cially when the classes are going online due to Covid-19 pandemic [3]. In online

environment, assignments are completed without direct supervision by the lecturer

and this might tempt the students to cheat [4]. A study even shows that student

submissions during the pandemic have higher similarity than the ones before the

pandemic [5]. It becomes worse as some of the assignments are not text-based and

therefore cannot be easily detected with Turnitin [6], a popular text-based similarity

detection system. Programming courses offered in some engineering majors (e.g.,

information technology, electrical engineering, and mechatronics) for instance, assess

the students based on their submitted program code, which is arguably different from

standard text [7].

To maintain academic integrity in programming, many attempts have been

proposed and generally, they can be classified into five categories [8]. The most

obvious attempt is educating students about academic integrity and penalizing them if

any breaches of academic integrity occur. Sometimes, it is also possible to make

10 JITeCS Volume 6, Number 1, April 2021, pp 9-17

p-ISSN: 2540-9433; e-ISSN: 2540-9824

cheating difficult by introducing additional restrictions during completion of the

assignment (e.g., requiring students to do the work during a particular period of time

while directly monitored by lecturers or tutors). Alternatively, lecturers can also

reduce the benefits of cheating by giving many assignments with a small portion to

the overall mark.

Considering student psychological states, lecturers can discourage cheating by

informing them about the real consequences if they are cheating. They can also

encourage students to maintain academic integrity by providing additional help like

peer-assisted learning.

In programming courses, plagiarism and collusion are often found as attempts of

breaching academic integrity. Code plagiarism refers to illegally reusing program

code with no or limited acknowledgment to the authors [9]. Code collusion is quite

similar to code plagiarism except that the original authors are aware of such misbe-

havior and let it happens [10].

To detect code plagiarism and collusion, a similarity detection tool like JPlag [11]

is often used to raise suspicion of programs with unduly similarity. That kind of tool

typically works in twofold [12]. Each student submission is translated to an

intermediate representation like source code tokens [13], linearized syntax tree [14],

and low-level tokens [15]. All submissions are subsequently compared to one another

and submission pairs with overly high similarity are reported. The similarity

algorithms vary from cosine similarity from Information Retrieval [16], running

Karp-Rabin greedy string tiling [17] from string matching, to string alignment [18].

Many existing similarity detection tools are not really scalable due to cubic time

complexity of their pairwise comparison, especially when a large number of long

student submissions are involved. As a result, it is suggested to initially suspect some

submissions based on the lecturer’s knowledge about the students, and only compare

those submissions to others [19]. This positively affects the scalability given that the

time complexity becomes linear to the number of initially suspected submissions.

Further, this might increase the accuracy as well since the excluded submissions are

unlikely to be relevant.

Nevertheless, to the best of our knowledge, no studies specifically evaluate how

the initial suspicion is raised, though it directly affects the effectiveness. An existing

study about a scalable similarity detection tool [19] is only focused on the

development of the tool and evaluating other aspects instead of how initial suspicion

is raised. This paper compares two popular ways of raising initial suspicion. The first

one is to use the submissions of smart students, assuming that these submissions are

the main target of the perpetrators since they tend to result in high assignment mark.

The second one is to use the submissions of slow-paced students, assuming that the

students might be the perpetrators of academic dishonesty. As our case study, the

comparison was performed on three programming classes for one academic semester

with a total of 67 assignments and 1034 student submissions.

It is worth to note that this study does not contribute a new similarity detection for

code plagiarism and collusion. Instead, it empirically compares two ways of using

scalable similarity detection in three algorithm and data structure classes.
The paper is organized as follows: Section 2 describes our method evaluating the

impact of initial suspicion; Section 3 shows our results and discussion; Section 4
explains our limitations; and finally Section 5 is about conclusions and future work.

2 Method

The study empirically compares the effectiveness of two techniques of raising initial

Mewati Ayub, et al. , Initial Suspicion on Detecting Code Plagiarism ... 11

p-ISSN: 2540-9433; e-ISSN: 2540-9824

suspicion. The first one initially suspects the submissions of smart students as those

submissions are likely to be copied by the perpetrators who want to get a high assess-

ment mark. The second one does the opposite by using the submissions of slow-paced

students; some of those students might be the perpetrators since academic dishonesty

often occurs as a result of desperate act seeking help [20] for higher assignment mark.

For convenience, the former will be referred to as smart-oriented suspicion (SS) while

the latter will be referred to as slow-paced oriented suspicion (SPS).

Both techniques of raising initial suspicion require lecturer’s knowledge about

student academic performance. We cannot therefore use publicly available data sets

[21], [22], [23], [24] as they have no such information. We create our own data set

just for this purpose.

As our case study, the comparison was performed on three classes of algorithm

and data structure; two of them covered basic materials (BC) while another one

covered the ad-vanced ones (AC). In total there are 1034 student submissions

collected from 41 weekly student assignments for one academic semester (14 weeks).

Table 1 shows statistics of the average, maximum, and minimum score of each class.

On average, their scores are not much different.

Table 1 Statistics

Class Number of

students

Average

score

Maximum

score

Minimum

score

BC1 29 86.43 100 24.14

BC2 17 79.63 98.07 3.21
AC 9 80.2 92.1 70.2

BC contributes 28 weekly assignments as it has two classes (BC1 and BC2) in

which each of them has 14 weekly assignments. The assignments are about

implementing the algorithm and data structure taught in the lecture with Python as the

programming language. Some weekly assignments consist of more than one task. In

terms of class size, the first class has 29 students enrolled while the second one only

has 17 students.

AC has 13 Java and one C# weekly assignments. Since our search of copied pro-

grams was based on a similarity detection tool that does not cover C# (will be

explained later), only the Java assignments are considered. They are about

implementing algorithm and data structure and learning new programming languages.

Similar to BC, the assignments occasionally have more than one task. AC has one

class with nine students enrolled.

Our method works as in Figure 1. At first, student code files were collected for all

assignments. For each class, the lecturer was asked to find copied programs of each

weekly assignment with both suspicion techniques, via the help of a similarity

detection tool proposed in [19].

The tool [19] searches similar code files in the same assignment based on the

given code file. It has four modes. The first one is to convert the code file to token

string and then measure the similarity with RKRGST, which is partly adapted from

JPlag [11]. The second one is similar to the first except that RKRGST is replaced with

cosine similarity from Information Retrieval, which is more time-efficient but less

accurate. The third one is derived from the second, but the token string is taken from a

linearized syntax tree, that is believed to be more effective though the translation

takes a considerable amount of time. The fourth one uses a linearized syntax tree but

with cosine similarity to compensate for its long execution time. Further details about

the tool can be found in the following paper [19].

12 JITeCS Volume 6, Number 1, April 2021, pp 9-17

p-ISSN: 2540-9433; e-ISSN: 2540-9824

In this case, we set the tool to use the second mode, token string with cosine

similarity since it is arguably the most scalable one. We do not use several similarity

measurements as our main goal is to evaluate the effectiveness of common techniques

of raising initial suspicion, not the similarity measurements.

Per initially suspected submission, the tool compared it with other submissions in

which top-5 program pairs with the highest similarity were used as the basis of

performance comparison. A suspicion technique is more effective than another if its

suggested program pairs result in higher effectiveness.

Precision, a metric from information retrieval [25] was used to represent the

effectiveness. It is the proportion of suggested program pairs that are actually copied

(true positives) to all suggested program pairs (true + false positives). Typically, this

metric is featured with recall, which is the proportion of suggested program pairs (true

positives) that are actually copied to all copied program pairs (true positives + false

negatives). However, since the determination of copied program pairs is based on the

suggested program pairs, that metric is not applicable as the result will be the same to

precision; both will have the same divider. If there were more than one initially

suspected submission, the precision would be averaged prior comparison. The

formula of precision is given in (1) and recall in (2).

Fig. 1. Research method diagram

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (2)

Since the assignments are arguably simple, the resulted precision is not expected

to be high. However, we believe this is not an issue in our study as our goal is to

compare the suspicion techniques, not to propose an effective technique.

3 Result and Discussion

Mewati Ayub, et al. , Initial Suspicion on Detecting Code Plagiarism ... 13

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Table 2 shows that both techniques result in zero precision in half of BC1 assess-

ments. Further observation shows that these assignments only had one expected

solution with limited possible variation; most of them were given in early lecture

weeks and they were simple by default. Moreover, there was no convincing evidence

for plagiarism and collusion on their suggested program pairs (e.g., uncommon

identifier names or whitespaces).

More BC1 assignments favor SPS than SS; the former outperforms the latter in

five of seven remaining assignments (week 6, 7, 8, 12, and 14). The perpetrators were

mostly slow-paced students, but on most occasions, they copied the code from aver-

age-paced or other slow-paced students. The smart students were aware of the conse-

quences of letting their code copied by the perpetrators and decided to keep their code

only for their own.

In general, SS and SPS are equally effective. Their averaged precision scores are

similar (12% and 14% respectively) while the difference is only about 2%. When

measured with two-tailed paired t-test with 95% confidence rate, the difference is not

significant (p-value = 0.6).

Table 2 Resulted precision for BC1

Week SS SPS SPS - SS

1 0% 0% 0%
2 0% 0% 0%

3 0% 0% 0%

4 0% 0% 0%

5 0% 0% 0%
6 40% 60% 20%

7 30% 40% 10%

8 0% 40% 40%

9 0% 0% 0%
10 0% 0% 0%

11 20% 0% -20%

12 0% 20% 20%

13 40% 0% -40%
14 36% 40% 4%

Average 12% 14% 2%

For BC2 assignments, fewer assignments result in zero precision for both

techniques at once. Table 3 shows only week 1 and week 9 fall to that category,

though the assignments were similar to those given in BC1. Further observation

shows that the perpetrators in this class left many convincing pieces of evidence for

plagiarism and collusion, even for simple tasks. The copied programs either have

uncommon variable names, logic flows, or whitespaces.

Among the remaining twelve assignments, nine of them favor SPS over SS while

two of them see both as equally effective. Similar to BC1, the perpetrators were slow-

paced students who did not copy code from smart students. They mainly got the code

from average or slow-paced students. The smart students were good in not sharing

their code to others.

SPS is more effective than SS since its average precision (47%) is 13% higher.

However, the difference is still not statistically significant, though the p-value is lower

than that of BC1 (p-value = 0.1).

The effectiveness of suspicion techniques might be affected by the students’

behavior. BC2 results in higher averaged precision than BC1 for both techniques

despite they share the same assignment tasks. Further, it has fewer zero precision

14 JITeCS Volume 6, Number 1, April 2021, pp 9-17

p-ISSN: 2540-9433; e-ISSN: 2540-9824

scores and favors SPS more. We observe two potential reasons. First, BC2

perpetrators exclusively copied code with unusual patterns and those patterns were

useful for raising suspicion. Second, BC2 had more perpetrators than BC1 and most

of them were recognized by the lecturer as slow-paced students.

Table 3 Resulted precision for BC2

Week SS SPS SPS - SS

1 0% 0% 0%

2 0% 40% 40%
3 40% 40% 0%

4 60% 65% 5%

5 80% 80% 0%

6 100% 50% -50%

7 80% 85% 5%

8 80% 100% 20%

9 0% 0% 0%

10 0% 20% 20%
11 0% 40% 40%

12 40% 50% 10%

13 0% 20% 20%

14 0% 73% 73%

Average 34% 47% 13%

Table 4 shows that no AC assignments result in zero precision for both suspicion

techniques at once. In other words, at least one of our proposed techniques is

guaranteed to suggest copied programs, which is promising. Similar to BC2, many of

the perpetrators left convincing evidence (primarily uncommon identifier names), and

those were really useful for raising suspicion of plagiarism and collusion.

Among 14 assignments, ten of them favor SPS, one favors SS, two favor both

equally, and one is not applicable for this study (week 13) given the assignment was

completed in C#, a programming language that is not covered by our tool. SPS is

more effective than SS as the averaged precision is about two times higher (47%) and

the difference is statistically significant when measured with two-tailed paired t-test

with 95% confidence rate (p-value = 0.01). The perpetrators were mostly slow-paced

students and they copied the programs from average-paced or slow-paced students

instead of the smart ones.

Table 4 Resulted precision for AC

Week SS SPS SPS-SS

1 20% 20% 0%
2 0% 20% 20%

3 0% 20% 20%

4 40% 20% -20%

5 20% 27% 7%
6 20% 44% 24%

7 100% 100% 0%

8 60% 70% 10%

9 0% 33% 33%
10 0% 73% 73%

11 0% 80% 80%

12 0% 52% 52%

13 NA NA NA
14 40% 50% 10%

Mewati Ayub, et al. , Initial Suspicion on Detecting Code Plagiarism ... 15

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Average 23% 47% 24%

When all assignments are considered, SS results in 23% averaged precision while

SPS results in 36%. SPS is generally more effective than SS since most of the

perpetrators were slow-paced students and they failed to copy the code from smart

students. The difference is statistically significant as the p-value is lower than 0.01

when measured with two-tailed paired t-test with 95% confidence rate.

4 Limitations of the Study

Our study has three limitations. First, we only considered three algorithm and

data structure classes. It is possible that the findings might be changed when more

classes are considered and/or the study was performed on other programming courses

like object-oriented programming. Second, the similarity measurement used in our

study is cosine similarity with token strings. The findings can be different if the

similarity measurement is replaced with other algorithms like running Karp-Rabin

greedy string tiling [17], and/or it utilizes more advanced intermediate representations

like syntax tree [14]. Third, per initially suspected submission, only top-five program

pairs with the highest similarity are considered. More program pairs involved might

change the findings as they affect the resulted precision.

5 Conclusion and Future Work

To improve the scalability of code plagiarism and collusion detection, it is

arguably important not to compare all student programs to one another. Consequently,

a study suggests to initially suspect some programs and only compare those programs

to others. This paper compares the effectiveness of two common techniques of raising

initial suspicion of plagiarism and collusion. The first one focuses on the programs of

smart students, which are likely to be copied if the perpetrators aim to get high

assignment marks. The second one focuses on the programs of slow-paced students

since those students might breach academic integrity to gain higher assignment marks.

According to the study, future use of scalable similarity detection is expected to

focus on slow-paced students. That results in higher effectiveness since these students

are likely to be the perpetrators and they copy the programs from average-paced or

other slow-paced students. They might want to get the programs from smart students

but apparently, those smart students are smart to keep their programs for themselves.

It is worth noting that both techniques of raising initial suspicion do not show high

precision. Focusing on smart students only shows 23% on average while focusing on

slow-paced students shows 36%. This is due to the fact that the assignments are

arguably simple, and it is quite difficult to differentiate evident similarity from the

coincidental one.

For future work, we plan to integrate student performance to a code similarity

detection system so that it can automatically list the slow-paced students and compare

their programs to others. We also plan to reconduct this study on assignments from

other programming courses to check the consistency of our findings.

6 Acknowledgment

This research has been supported by a research grant provided by Maranatha
Christian University, Indonesia. The authors would like to thank Gisela Kurniawati

16 JITeCS Volume 6, Number 1, April 2021, pp 9-17

p-ISSN: 2540-9433; e-ISSN: 2540-9824

and Rossevine Artha Nathasya from Maranatha Christian University for their
participation in this study.

References

1. Metruk, R.: Confronting the Challenges of MALL: Distraction, Cheating, and Teacher

Readiness. International Journal of Emerging Technologies in Learning (iJET), 15(2), 4–14

(2020).

2. Halak, B. and El-Hajjar, M.: Plagiarism detection and prevention techniques in engineering

education. In: 11th European Workshop on Microelectronics Education, pp. 1–3,

Southhampton (2016).

3. Masterson,M. : An Exploration of the Potential Role of Digital Technologies for Promoting

Learning in Foreign Language Classrooms: Lessons for a Pandemic. International Journal

of Emerging Technologies in Learning (iJET), 15(14) , 83–96 (2020).

4. McCabe, D.L., Treviño, L.K., and Butterfield, K.D. : Cheating in academic institutions: a

decade of research. Ethics & Behavior, 11(3), 219–232 (2001).

5. Karnalim, O., Simon, Ayub, M., Kurniawati, G., Nathasya, R. A. and Wijanto, M. C.:

Work-in-Progress: Syntactic Code Similarity Detection in Strongly Directed Assignments.

In 2021 IEEE Global Engineering Education Conference (EDUCON), (2021).

6. Batane, T.: Turning to Turnitin to Fight Plagiarism among University Students. Journal of

Educational Technology & Society, 13(2), 1–12 (2010).

7. Simon, Cook, B., Sheard, J., Carbone, A., and Johnson, C. : Academic integrity: differences

between computing assignments and essays. In: 13th Koli Calling International Conference

on Computing Education Research, pp. 23–32, (2013).

8. Sheard, J., Simon, Butler, M., Falkner, K., Morgan, M. and Weerasinghe, A.: Strategies for

Maintaining Academic Integrity in First-Year Computing Courses. In ITiCSE '17:

Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer

Science Education, pp. 244-249, (2017).

9. Cosma, G. and Joy, M.: Towards a definition of source-code plagiarism. IEEE Transactions

on Education, 51(2), 195–200 (2008).

10. Fraser, R.: Collaboration, collusion and plagiarism in computer science coursework.

Informatics in Education, 13(2), 179–195 (2014).

11. Prechelt, L., Malpohl, G., and Philippsen, M.: Finding plagiarisms among a set of programs

with JPlag. Journal of Universal Computer Science, 8(11), 1016–1038 (2002).

12. Karnalim, O., Simon, and Chivers, W.: Similarity detection techniques for academic source

code plagiarism and collusion: a review. In: IEEE International Conference on Teaching,

Assignment, and Learning for Engineering (TALE), (2019).

13. Bejarano, A.M., García, L.E., and Zurek, E.E.: Detection of source code similitude in

academic environments. Computer Applications in Engineering Education, 23(1), 13–22

(2015).

14. Wang, L., Jiang, L., and Qin, G.: A search of Verilog code plagiarism detection method. In:

13th International Conference on Computer Science & Education, pp. 1–5, (2018).

15. Karnalim, O.: IR-based technique for linearizing abstract method invocation in plagiarism-

suspected source code pair. Journal of King Saud University - Computer and Information

Sciences, 31(3), 327–334 (2019).

16. Flores, E., Barrón-Cedeño, A., Moreno, L. and Rosso, P.: Uncovering source code reuse in

large-scale academic environments. Computer Applications in Engineering Education,

23(3), 383–390 (2015).

17. Wise, M.J.: YAP3: improved detection of similarities in computer program and other texts.

In: 27th SIGCSE Technical Symposium on Computer Science Education, pp. 130–134,

(1996).

18. Huang, X., Hardison, R.C., and Miller, W.: A space-efficient algorithm for local

similarities. Bioinformatics, 6(4), 373–381 (1990).

19. Franclinton, R., Karnalim, O., and Ayub, M.: A Scalable Code Similarity Detection with

Mewati Ayub, et al. , Initial Suspicion on Detecting Code Plagiarism ... 17

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Online Architecture and Focused Comparison for Maintaining Academic Integrity in

Programming. International Journal of Online and Biomedical Engineering (iJOE), 16(10),

40–52 (2020).

20. Vogts, D.: Plagiarising of Source Code by Novice Programmers a ‘Cry for Help’? In: 2009

Annual Research Conference of the South African Institute of Computer Scientists and

Information Technologists, pp. 141–149, (2009).

21. Heres, D. and Hage, J.: A Quantitative Comparison of Program Plagiarism Detection

Tools. In CSERC '17: Proceedings of the 6th Computer Science Education Research

Conference, pp. 73-82, (2017).

22. Karnalim, O., Budi, S., Toba, H., Joy, M.: Source Code Plagiarism Detection in Academia

with Information Retrieval: Dataset and the Observation, Informatics in Education 18(2),

pp. 321-344, (2019).

23. Mirza, O.M., Joy, M., and Cosma, G.: Style Analysis for Source Code Plagiarism Detection

— An Analysis of a Dataset of Student Coursework. In 2017 IEEE 17th International

Conference on Advanced Learning Technologies (ICALT), Timisoara, pp. 296-297, (2017).

24. Ljubovic, V., and Pajic, E.: Plagiarism Detection in Computer Programming Using Feature

Extraction From Ultra-Fine-Grained Repositories. IEEE Access, 8, pp. 96505-96514,

(2020).

25. Croft, W.B., Metzler, D., and Strohman, T.: Search Engines : Information Retrieval in

Practice. Addison-Wesley (2010).

