

Journal of Information Technology and Computer Science
Volume 5, Number 3, December 2020, pp. 338-347

Journal Homepage: www.jitecs.ub.ac.id

Mobile Application Architecture Restructuring with

Microservice Approach

Ardiono Roma Nugraha
1
, Aini Suri Talita

2
1Master of Information System Management, 2Faculty of Industrial Technology

Gunadarma University, Indonesia
{1ardionoroma, 2ainikrw}@gmail.com

Received 01 September 2020; accepted 30 December 2020

Abstract. Microservice is an architecture that can solve many problems in a
monolithic architecture. One of the problems is the ability to handle many
concurrent users. The existing monolithic application can be restructured into
microservices to increase robustness in handling a lot of users, without exception
native mobile application. This study aimed to restructure the existing native
mobile application named TemanBisnis into microservices. The restructuring
process can be done by splitting the application features according to its business
domain into one service. Two microservice architecture designs were proposed
in this study, named 3-1 architecture and 2-1-1 architecture. Both architectures

can handle up to 100 concurrent users, although they start to produce errors. By
performance, the 3-1 architecture is better than the 2-1-1 architecture. In the end,
an existing native mobile application can be restructured into microservices. The
3-1 architecture should be adopted to achieve the best results between these two
architectures.

Keyword: Microservices, Software Architecture, Architecture Restructuring,
Native Mobile Application, SME

 Introduction
Monolithic is one of the most popular software architecture. It is an

architecture that combines all of its components into one thing (monolith) [1].
Monolithic allows software architects to deploy the software once, and all of the

system components will be in production. To accompany the system needs, new
features are added into the system. Now the system grows, much more complex and
slower than before.

This problem can be solved by microservices. Microservices is an architecture
that structures a system into collection of services that highly maintainable, loosely
coupled, independently deployable, and organized around the business capabilities
[2]. All the functionalities inside the monolith system will be arranged into a

subsystem that small enough to maintain. If we want to upgrade one of the services,
it will not affect the whole system because they are not directly dependent. If there
is an error to one of the services, user will not consider it because the user interface

is still displaying as usual.
TemanBisnis is a mobile application that enables SME (small, medium-sized

enterprises) entrepreneurs to record their financial transactions through their

smartphone, rather than manually recording them. The current architecture of
TemanBisnis is a native mobile application combined with a simple monolithic web

Nugraha & Talita. , Mobile Application Architecture: ...339

p-ISSN: 2540-9433; e-ISSN: 2540-9824

service. Its main business process are mainly done in the user’s smartphone and the
web service will handle the report export and payment features. This architecture

creates a problem when a user uses a low specification smartphone and they have
a lot of transactions recorded, TemanBisnis performance will be much slower.
When there are a lot of users access the export feature concurrently, sometime the
web service also fails to generate the report.

In 2023, TemanBisnis has the vision to get more than one million users from
SME entrepreneurs. With their current architecture, it seems difficult and high risk
to handle that number of users with million transactions. This study will discuss

how to restructure the current architecture of TemanBisnis into microservices and
what kind of microservice architecutre that suitable with their need.

Related to this study, in 2019 Rizki Mufrizal and Dina Indarti have been

restructured the existing monolithic application into microservices [3]. They used
the strangler pattern strategy to restructure the application. Chen-Yuan Fan and
Shang-Pin Ma in 2017 also successfully migrated a mobile application named
EasyLearn into a microservice architecture [4]. Bucchiarone et al. researched in

2018 about how reimplementing a monolithic architecture into microservices can
improve scalability [5].

This study will adopt the Waterfall model as a research method. By splitting

current TemanBisnis features into services according to its business domain, the
microservice architecture is designed. The current TemanBisnis features that will
be restructured into microservice architecture are only transaction recording,

business contact, custom category, inventory management, and inventory
transaction recording. The microservice architecture then will be implemented and
tested to find out how its performance, whether it can fulfill the TemanBisnis’ need
or not.

Usually, the microservice architecture is designed by splitting the monolithic
architecture by its business domain [6, 7]. Each service is deployed individually and
can communicate with each others. This splitting cause the architecture to has

branch-like form. This form is commonly found in the real world. [3, 4] use this and
this form is also explained in many books [8, 9, 10]. We also use this form in this
study and later we will call it as 3-1 architecture.

The branch-like or 3-1 architecture form is not an obligation when creating

microservice. We can modify the architecture form according to what we need.
There are many patterns that we can consider while designing the microservice
architecture, like aggregator pattern, chained pattern, branch microservice pattern,

API gateway pattern, etc [8, 13]. Each pattern has its own pros and cons, resulting
in different architecture form. In paper [5], they modified the microservice
architecture to circular-like form because they need to use Redis and RabbitMQ. In

this study, we later will also modify the 3-1 architecture to compare the modified
architecture performance (later we will call it as 2-1-1 architecture) with the usual
3-1 architecture form.

 Research Method
In this study, the Waterfall model is adopted as a research method with an

adjustment. Waterfall model is used in this study because it is focused on its each
stage and relative statically defined at the first stage [16]. This helps TemanBisnis

as a small company to plan the time of developing this architecture without distract
their other developments. Because this study only provide prototype of the
microservice architecture, the maintenance stage in the Waterfall model will be

replaced with results and discussion process to get a conclusion from the

340 JITeCS Volume 5, Number3, December 2020, pp 338-347

p-ISSN: 2540-9433; e-ISSN: 2540-9824

microservice architecture that has been created. In general, the research method
stages of this study can be seen in Figure 1.

Figure 1. Research Method Stages

2.1 Requirement Analysis
In the first stage, requirement analysis process is done by collecting data from

an interview with the CTO of TemanBisnis. The data collected from the requirement
analysis stage will be used for designing system architecture in the next stage. To

create a microservice, a monolithic application is usually splitted by its business
domain [6, 7]. In this study, the existing TemanBisnis application is splitted into
three services, namely Accounting, Inventory, and User service. Accounting service

is responsible for features that related with accounting domain, that are transactions
recording, business contact, and custom category. Inventory service is responsible
for features that related with inventory domain, like inventory management and
inventory transactions recording. User service is responsible for features that related

with user management, like register, login, logout and profile edit.

2.2 System Design
For this study, two architecture designs were proposed. The first one is called

“3-1 form” that is usually used and explained in many microservice books [8, 9,
10]. The second one is called “2-1-1 form”. The reason about proposal of these two
designs is because the researcher wants to know the performance of the commonly

used “3-1 form”, and what will happen to its performance if a slight change is done
to that architecture by using “2-1-1 form”. Figure 2 and 3 show the comparison
between the 3-1 and 2-1-1 architecture design.

As shown in the Figure 2, the 3-1 architecture deployed all of its services

including databases and API gateway into the Google Cloud Platform (GCP) server.
All services (Accounting, Inventory, and User service) are placed parallel an each
wrapped in a Docker container. All databases are grouped into one database Docker

container, and this container can interact with the services container vice-versa. All
of these services are guarded by an API gateway which can determine what request
can be processed into the system and what request must be rejected. To add more

security, each request also protected by a JWT token that must be verified and valid
before allowed to access the service.

The 2-1-1 architecture is slightly different with the 3-1 architecture. As shown
in the Figure 3, all services are still deployed into GCP server. Instead of placing

services parallely, only the Accounting and Inventory service that placed parallel,
while the User service guarding them at the front. The reason of moving the User

Nugraha & Talita. , Mobile Application Architecture: ...341

p-ISSN: 2540-9433; e-ISSN: 2540-9824

service in front of Accounting and Inventory service is the researcher expecting
more security because the request need to pass the API gateway and User service,

before proceed to the Accounting or Inventory service.

Figure 2. The 3-1 architecture design

Figure 3. The 2-1-1 architecture design

Besides the architecture design, the database also needs to be refactored. The

database per service concept is used in this study [11, 12]. Figure 4 shows the

database architecture before refactoring.

342 JITeCS Volume 5, Number3, December 2020, pp 338-347

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Figure 4. The database architecture before refactoring

 After refactoring, the database is now splitted into three databases, each

responsible for its service. The accounting database is responsible for the accounting
service, consists of the transaction table for transactions recording feature,
customersupplier table for the business contact feature, and category table for the

custom category feature. The inventory database is responsible for the inventory
service, consists of the stock table for inventory management feature, and
stockmutation table for inventory transactions recording feature. The user database

is responsible for the user service, consists of the users table for user management
feature. The Figure 5-7 show the accounting, inventory, and users table after
refactoring, respectively.

Nugraha & Talita. , Mobile Application Architecture: ...343

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Figure 5. The Accounting service database architecture after refactoring

Figure 6. The Inventory service database architecture after refactoring

Figure 7. The User service database architecture after refactoring

2.3 Implementation
The implementation stage is done by creating prototypes that implement the

microservice architecture designs that created in the Figure 2 and Figure 3. The

prototypes then deployed into the Google Cloud Platform (GCP) server. Table 1
shows the tools used in the implementation stage.

Table 1. System Development Tools

Type Tools Name

Programming Language PHP 7.2
Framework Lumen 5.8
Database MySQL 5.7

Web Server Apache 2.4.29
Containerization Docker 19.03.2

API Gateway NGINX 1.10.3
Server Platform Google Cloud Platform – Google Cloud Engine

Operating System Ubuntu Server 16.04 LTS

2.4 Testing
For the testing purpose, API performance testing is done. This testing aims to

determine the performance of both architectures in handling concurrent users. The
testing will be done in the GCP server for all services using Gatling framework.
Gatling is a highly capable load testing framework. It is suitable to test the

344 JITeCS Volume 5, Number3, December 2020, pp 338-347

p-ISSN: 2540-9433; e-ISSN: 2540-9824

performance of a variety of services, especially web applications that using HTTP
protocol like in this study [15]. Table 2 shows the testing scenario in this study. The

login case is for testing the User service, get all transactions is for testing the
Accounting service, and create an inventory transaction is for testing the Inventory
service. The results and discussion will be discussed in Section 3.

Table 2. Testing Scenario

Case Concurrent

Users

Testing

Duration

Login
25 users

5 minutes

50 users
100 users

Get all transactions
25 users
50 users
100 users

Create an inventory

transaction

25 users
50 users
100 users

3 Results and Discussion
This study was conducted by restructuring TemanBisnis architecture from a native

mobile application into microservices. In general, the processes of this study are

collecting data, designing the microservice architecture of the system, refactoring the

database, creating the prototype, deploying to the server, testing, and evaluating the

testing results. This section discusses the testing results and concludes which

architecture has the better performance and should be adopted.

3.1 Results
The testing flow in this study is by testing the 3-1 architecture for 25 concurrent

users, then testing the 2-1-1 architecture for 25 concurrent users, and so on. Table 3-5

show the testing result for each case.

Table 3. Login Testing Result

Architecture

Name

Concurrent

Users
Total

Requests
Response Time

t < 800

ms
800 ms < t < 1200

ms
t > 1200 ms Failed

3-1

Architecture

25 users 2669 16 12 2641 0
50 users 2623 4 6 2613 0

100 users 2483 0 10 2473 0

2-1-1

Architecture

25 users 2566 0 14 2552 0
50 users 2648 7 27 2614 0

100 users 2202 0 10 2192 0

Table 4. Get All Transactions Testing Result

Architecture

Name

Concurrent

Users
Total

Requests
Response Time

t < 800

ms
800 ms < t <

1200 ms
t > 1200

ms
Failed

3-1

Architecture

25 users 3456 349 677 2420 10
50 users 2872 7 16 2844 5
100 users 2795 1 5 2781 8

2-1-1

Architecture

25 users 1565 4 1 1556 4
50 users 1238 1 0 1237 0
100 users 6602 4044 295 998 1265

Nugraha & Talita. , Mobile Application Architecture: ...345

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Table 5. Create New Inventory Transaction Testing Result

Architecture

Name

Concurrent

Users
Total

Requests
Response Time

t < 800

ms
800 ms < t <

1200 ms
t > 1200

ms
Failed

3-1

Architecture

25 users 3456 90 198 3258 0
50 users 2872 0 10 2712 0
100 users 2795 2434 117 2354 1275

2-1-1

Architecture

25 users 1565 315 472 3092 5
50 users 1238 17 21 3445 19
100 users 6602 1801 597 2273 2821

From the testing results, both architectures can handle up to 50 concurrent users

without error. When handling 100 concurrent users, the system starts to unstable. In the

Table 3 and 4, the failed requests is quite small compared to the Table 5. This is because

the flow tested in Table 3 and 4 is a simple read process from the database that does not

need to processed further by the application. Most errors happened in the Inventory

service. This because to create a new inventory transaction, the Inventory service needs

to access the Accounting service to create a new transaction record there. This complex

and quite long process cause the system to produce errors when accessed by 100

concurrent users. However, the 2-1-1 architecture caused more errors than the 3-1

architecture, especially while handling 100 concurrent users because of its quite

complex flow inside the architecture. Most requests also done in more than 1200ms

may be caused by the busy Apache web server that still processes the incomplete

previous requests.

3.2 Discussion
From the results obtained in Subsection 3.1, the microservice architecture

designed in this study has been successfully implemented as a prototype and can

implement the current TemanBisnis features. Both 3-1 or 2-1-1 architecture can still

fulfill the TemanBisnis’ needs, that are capable to handle many users and not too rely

on user’s smartphone. The architectures start to reach its limit and produce many errors

while handling 100 concurrent users that access the system simultaneously. For the 2-

1-1 architecture, the errors may caused by the architecture form that require the request

to pass the User service first before continue to the Accounting or Inventory service, so

the flow become more complex than the 3-1 architecture. But in the 3-1 architecture,

the similar errors are still happened, although the flow is more simple.
The errors that happened may caused by the limitation of the tools used in this

study. This study uses Lumen, a PHP framework. PHP is an interpreted language that

translates the program in every execution that causes a slower process [12]. Besides

that, this study also uses Apache as a web server that runs the program inside the docker

container. Apache is a process-driven web server that creates a new thread for every

request [14]. This may cause huge memory consumption in the server. The server used

in this study only has 1.7 GB of RAM and all these limits can cause the server being

unstable while handling more than 100 concurrent users.
From this study, based on performance the 3-1 architecture is better and more

stable than the 2-1-1 architecture because of the simpler flow. In microservice practice,

it is also not recommended to build architecture similar to the 2-1-1 architecture. It is

because all services are still dependent to User service. If the User service is down, the

346 JITeCS Volume 5, Number3, December 2020, pp 338-347

p-ISSN: 2540-9433; e-ISSN: 2540-9824

whole system will be down and the system can do nothing. This is against the

microservice principle that the architecture should be loosely coupled [10].
From this discussion we can conclude that a native mobile application can change

their architecture into microservices. Both architectures are capable of handling many

users, although the number of maximum users that can be handled depends on the server

specification and the tools used. From the Results, the 3-1 architecture is better than the

2-1-1 architecture because of its simpler flow and each service inside is more

independent than the 2-1-1 architecture has. If a native mobile application, especially

TemanBisnis want to achieve the best performance between these two architectures,

they may adopt the 3-1 architecture as their new microservice architecture.

4 Conclusion

The process of restructuring a native mobile application architecture from an

application named TemanBisnis to microservice architecture has been successfully

done. It can be done by collecting data about the existing architecture as much as

possible and used it as a benchmark for designing the microservice architecture. The

current features of the existing application then splitted into services based on its

domain. The current single database is also redesigned using database per service

concept.
The prototype of the new architecture also successfully implemented the current

features of TemanBisnis. The transaction recording, business contact, custom category,

inventory stock management, and inventory transaction recording feature has been

implemented in the microservice architecture prototype. The architectures that

proposed in this study are the 3-1 architecture and the 2-1-1 architecture. Based on

performance, the 3-1 architecture is better than the 2-1-1 architecture.
Based on testing conducted in this study, both architectures can handle up to 50

concurrent users without produce any error. When the user number is increasing until

100 concurrent users, the microservice architecture especially the 2-1-1 architecture

starts to become unstable and produces many errors. The errors may caused by the

limitation of the tools used in this study.
From the Conclusion, some things can be improved from this study. The tools used

in this study can be changed or upgraded to improve the performance of the

microservice architectures proposed. As a recommendation for the future researches,

the microservice architecture designs proposed in this study can be developed by

modifying or combining the other principles or patterns in microservice. This research

can be used as a reference for other future researches that want to restructure the native

mobile application or monolithic application into microservices.

References

1. Fowler, S. J.: Production-Ready Microservices: Building Standardized Systems Across an

Engineering Organization, p. 20. O’Reilly Media, Inc., California (2017)
2. Newman, S.: Building Microservices: Designing Fine-Grained System, p. 2. O’Reilly Media,

Inc., California (2015)

3. Mufrizal, R., Indarti, D.: Refactoring Arsitektur Microservice pada Aplikasi Absensi PT.

Graha Usaha Teknik. Jurnal Nasional Teknologi dan Sistem Informasi vol. 05 no. 01, 57-68

(2019)

Nugraha & Talita. , Mobile Application Architecture: ...347

p-ISSN: 2540-9433; e-ISSN: 2540-9824

4. Fan, C. Y., Ma, S. P.: Migrating Monolithic Mobile Application to Microservice Architecture:

An Experiment Report. IEEE 6th International Conference on AI & Mobile Services, 109-112
(2017)

5. Bucchiarone, A., et. al.: From Monolithic to Microservices: An Experience Report from the

Banking Domain. IEEE Software vol. May/June, 50-55 (2018)
6. Nadareishvili, I., et. al.: Microservice Architecture: Aligning Principles, Practices, and

Culture, pp. 62-64. O’Reilly Media, Inc., California (2016)
7. Carneiro Jr., C., Schmelmer, T.: Microservices from Day One: Build Robust and Scalable

Software from the Start, pp. 25-26. Florida, Apress (2016)
8. Torre, C. D. L., et. al.: .NET Microservices: Architecture for Containerized .NET Applications,

p. 45. Microsoft Corporation, Washington (2019)
9. Daya, S., et. al.: Microservices from Theory to Practice: Creating Applications in IBM

Bluemix Using the Microservice Approach, p. 26. IBM Redbooks, New York (2015)
10. Pacheco, V. F.: Microservices Patterns and Best Practices, p. 280. Packt Publishing,

Mumbai (2018)
11. Indrasiri, K., Siriwardena, P.: Microservices for Enterprise: Designing, Developing,

and Deploying. Apress, Florida (2018)
12. Sánchez, C. P., Vilariño, P. S.: PHP Microservices. Packt Publishing, Mumbai (2017)
13. Tutorialspoint.: Microservice Architecture. Tutorials Point (I) Pvt. Ltd., Madhapur

(2017)
14. Garrett, O.: NGINX vs Apache: Our View of a Decade-Old Question.

https://www.nginx.com/blog/nginx-vs-apache-our-view. NGINX (2015)
15. Gatling Corp.: Gatling Documentation. https://www.gatling.io/docs/current. Gatling

Corp (2020)
16. Gallagher, A., et. al.: The Waterfall Model: Advantages, Disadvantages, and When

You Should Use It. https://developer.ibm.com/technologies/devops/articles/waterfall-model-

advantages-disadvantages. IBM Developer (2019)

https://www.nginx.com/blog/nginx-vs-apache-our-view
https://www.nginx.com/blog/nginx-vs-apache-our-view
https://www.nginx.com/blog/nginx-vs-apache-our-view

