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Abstract 

With the development of competition in business and also today’s rapid changes in competitive market, understanding these 

changes are the key factor of being more efficient in markets. CRM which is known as basic structure for describing customer’s 

needs for efficiently understand customer’s behavior and finely get the maximum of market share and profit. There are major 

differences between B2B and B2C businesses such as long term purchase cycle, purchase interests and the amount of the 

transactions. These differences needs more interactive strategies. The knowledge that gets from CRM is extremely related to 

market changes. In recent years data mining increasingly help organizations to get and understand customer’s behavior.  But with 

the rapid changes in market these procedures must be change too. Change mining as the higher order of data mining tries to get 

knowledge by analysis patterns instead of data. In this paper we attempt to calculate customer’s value by using RFM model and K-

MEANS clustering method and then analysis changes in deferent time periods. We tries to find out cluster transitions and most 

frequent customer value changing trend for proactive decision making. For this purpose we use customer purchase transactions in 

insurance industry which are gathered in 3 years. 
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1. Introduction
*
 

With the development of customer-oriented behavior in business, growing attention has been paid to customers and 

their needs as one of vital factors to gain higher profits (Cheng & Chen, 2009). Customer relationship management 

(CRM) seeks to identify customer needs and facilitate the interaction between customers and businesses (Ling & Yen, 

2001). Given the changing customer behavior and needs in today’s market, businesses must make decisions in 

keeping with these changes. Most researches on customer value and clustering-based segmentation do not consider 

changes over time and there is a paucity of researches on customer behavior based on association rules (Böttcher, 

Spott, Nauck, & Kruse, 2009; Chen, Chiu, & Chang, 2005; Huang, 2012). The integration of CRM and analytic 

structures like data mining has been one of the important issues in recent years. This vision can help businesses 

develop new strategies or verify and correct their current strategies (Bose & Chen, 2009; Davenport, Harris, & 

Morison, 2010). Nowadays, With the application of data mining technology in CRM, techniques like decision trees, 

clustering algorithms, genetic algorithms, and association rules in different areas like commerce have been used to 

solve customer problems and formulate new strategies (Berson, Smith, & Thearling, 1999; Bramer, 2013; Turban, 

Sharda, Aronson, & King, 2008). In this research, attempts have been made to apply clustering techniques and mining 

changes to customer value over time to bring a new approach to the customer segmentation. The rest of this paper is 

organized as follows: definition of customer relationship management is provided in Section 2. Section 3 offers a 

review of customer value analysis. Temporal data mining defined in section 4. Our proposed model is presented in 

Section 5, the case study based on proposed model is represented in section 6 and the conclusions are in Section 7. 
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2. Customer Relationship Management 

Over the past few years, companies interact with customers has changed considerably and customers can change their 

providers easily than before. Because of this, Organizations must properly recognize the customer and anticipate their 

needs. Customer relationship management, let organizations to have better understand of their customers and the 

differences among theme. CRM is a comprehensive strategy and process of acquiring, retaining and partnering with 

selective customers to create superior value for the company and the customer (Parvatiyar & Sheth, 2001). Customer 

retention is key factor in this strategy. Feinberg and Kadam, profits increase by 25–80% when customer retention 

rates increase by five points (Feinberg & Kadam, 2002). 

3. Customer Value Analysis 

Customer value analysis is an analytical structure for interpreting customer behavior from the vast source of otherwise 

meaningless data. There are different definitions for customer value. Kotler (2001) defines it as the profit of net 

present value (NPV). Hwang et al. (2004) describes customer value as the sum of revenues gained by customers over 

lifetime of transitions. Thus, customer values are based on past and potential profit as well as defection probability. 

Later,  Kim et al. (2006) proposed a new customer value model which was based on current value, potential value and 

loyalty. One of the most effective customer segmentation models based on customer value is the RFM model 

(Verhoef, Spring, Hoekstra, & Leeflang, 2003), which was introduced by Bauer (1988) and later developed by 

Hughes (1994). In recent studies, the RFM model has been adopted in different industries and under various 

conditions by adding extra parameters. Stone (1995) introduced RFM model with unequal value for each R, F, and M 

parameter. Tsai and Chiu (2004) attempted to weigh the parameters based on the characteristics of industries. Liu and 

Shih (2005) proposed WRFM, which is the defining weight for each parameter, using the analytic hierarchy process 

(AHP). Chang and Tsay (2004) proposed LRFM model that incorporates customer retention length (L) to the RFM 

model. Chang & Tsai (2011) tried to incorporate the characteristics of purchased products into their analysis by 

introducing GRFM (group RFM). Later Hosseini et al. (2010) included another factor called “period of product 

activity” in  the RFM model (RFML) for vehicle manufacturing industries. 

4. Mining Changes over Time 

Data mining is the statistical analysis of data based on the information of models, which is appropriate for the time 

period. Recent studies suggest that data changes over time and therefor the results would not be helpful (Roddick & 

Spiliopoulou, 2002). Today’s world is in a constant state of flux which makes the previous results out-of-date. The 

new approach is to mine these changes over time periods. In this approach, time is split into intervals    
         where for each    there is a    model. These models are based on statistical methods of data mining. Here, 

the main purpose is to analyze the evolution of <            > that creates the final model M (Böttcher, Höppner, 

& Spiliopoulou, 2008).In this context, most approaches are in association rules. Chen et al. (2005) attempted to 

integrate customer behavior variables, demographic variables and transaction database to present a method of mining 

changes in customer behavior. Böttcher et al. (2009) presented a system of customer segmentation based on the 

discovery of frequent item-sets and the analysis of their change over time. Hu, Huang & Kao (2013) used RFM 

analysis in the sequential pattern mining process. As can be seen, there is a paucity of studies on customer value 

analysis based on clustering techniques. 

Clustering is one of the key method in pattern recognition and machine learning. Over the past decades, many studies 

have been done on these methods. Monitor the cluster evolution is very important in many real-world applications. 

The changes that found in clusters over time, can be associate with real world changes. For this reason, tracking 

cluster evolution over Time can be useful in many areas, including marketing, fraud detection and economy. The 

cluster evolution, can be defines into two different types, internal and external transition. In this study we working on 

external transition of clusters. 
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4.1. Cluster transition types 

There are different types of cluster transition, but based on cluster transitions that represent in literature (Oliveira & 

Gama, 2012; Spiliopoulou, Ntoutsi, Theodoridis, & Schult, 2006), the main external transitions are Birth, Death, Split, 

Merge and Survival. Table 1 bring more details about these transitions. 

Table 1 Main Types of Cluster External Transition 

Transition Type Mathematical Notation Description 

Birth         From time interval t1 to t2 new cluster Y emerge 

Death X       From time interval t1 to t2 existing cluster X 

removed  

Split        {               } Cluster X in time interval t1 split into p cluster Y1 

to Yp in time interval t2 

Merge {               }  
        P cluster Y1 to Yp in time interval t1 are merge 

and make cluster X in time interval t2  

Survival  X           From time interval t1 to t2  cluster X survive as 

cluster Y 

 

All of the transitions in table 1 are based on the minimum threshold survival   and minimum threshold split λ 

(Spiliopoulou et al., 2006). For example in Death transition if members of cluster X in time interval T1 less than 

minimum threshold        in time interval T2 then we found that a Death occurred. 

4.2. Interpretation of Cluster Transition in Business 

We defined 5 external cluster transition types in section 4.1, the meaning of these transitions and the strategies based 

on them, can be useful as proactive strategies to businesses. For example if a split occurred, that means a group of our 

customers are going to make new cluster with differences value, business behavior characteristics and so on. 

Based on these result, businesses can define different strategies such as because of resulting clusters are more 

manageable and have more homogeneous characteristics, we let this split be stable, otherwise we make proper 

strategies to get back these clusters together, because this split made group a of customers that are going to churn. 

Other cluster transitions can be describe like above. In the section 5 we will propose new model by using these cluster 

transitions. 

5. Propose Model 

As we mentioned before, to have more proactive decision making system we have to use models that run over time 

interval and mine the changes over these time intervals. In Fig 1 we propose new model based on RFM customer 

value calculator model combined with cluster transitions in order to cover customer value changing trends. 

All procedures are described separately below: 

Step 1- Data preparation and cleansing:  

In step 1, the data is cleaned by removing irrelevant values, noisy and incorrect data as well as the fields of data 

inappropriate to our research and we prepare data structure for implementing RFM analysis like choosing R, F and M 

parameters.  

Step 2- Incorporating data into time intervals: 

As mentioned earlier, we try to include time into the RFM model. For this purpose, we split the time period into z 

equal time intervals (equation 1). 
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Step 3- Implementing customer value calculation model (RFM model) for each time interval: 

After preparing data in step 3, customer segmentation based on one of the customer value calculation model (RFM 

model) and data mining clustering technique like K-means technique (Han 2005) were implemented. Because of using 

RFM model in Current model. To control the effect of each parameter on other parameters, we normalize R, F and M 

parameters between (0, 1) (Bramer, 2013). Here, because of the independency of time intervals in analysis, each time 

interval must be normalized separately. If the whole time is normalized and then split into time intervals, there would 

be some values that their influence exceeds time intervals and affect the normalization of whole data.  Given the 

importance of the independent of analysis of each time interval, this will be inaccurate. 

Step 4- finding cluster transitions in whole duration 

Based on provided definitions in section 4.1 and results of step 3, external transitions based on minimum threshold λ 

and    are known. Based on these transition and the data with them companies can made proper decisions.  

Step 5- Determining most frequent customer value changing trends 

After implementing customer value calculation in step 3, now we have value changing trend for each customer. By 

using these trends we can found the value changing attitude of our customer and what the most frequent customer 

changing trend is. Fig 2 present more information. 

 

Figure 2 customer value changing trend 

Fig 2 shows the value changing trend of customer (I) in 3 time stamp that in time stamp 1 our customer have the value 

of X in time stamp 2 its value change to Y and in time stamp 3 the customer (I) have value of Z. now we can show 

that out customer value changing trend among these 3 durations are : X →Y→Z based on increasing or decreasing 

attitude of this trend we can found the status of our customer, is it going to be more profitable? Or it is churning our 

business. 

 

Value=

Z 

Time stamp 1 Time stamp 2 Time stamp 3 

Value=
Y 

Value=X 

Cluster ID: α Cluster ID: α Cluster ID: α 

Customer (I) Customer (I) 
Customer (I) 
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Fig. 1 Purpose Model 

 

6. Empirical Implementation 

Out data consist of patient’s prescription of an insurance company. Table 2 represent data fields  

Table 2 data Field Description 

Field name ID 

Patient ID 1 

medicines 2 

Price of medicines 3 

Prescriber Doctor 4 

Pharmacy Name 5 

Date of prescription 6 

 

Based on propose model in section 5 the implementation steps are describe below: 

1. First, the data is cleaned by deleting irrelevant values, noisy and incorrect data as well as the fields of data 

inappropriate to our research. Then, the data is organized in such a way to extract parameters of customer value 

calculator model that in this paper is RFM model. Table 3 shows the data ready for analysis. 

2. As we mentioned for finding cluster evolutions we must divided data into time intervals. Here we divide data into 

4 time stamp that each time stamp includes 3 month. Because of having different durations we add new field to 

our data as duration that indicate duration of analysis. Table 3 shows the final data ready for analysis. 

3. We use K-means data mining technique to cluster customers in each time period. Table 5 shows the results of 

customer clustering for two consecutive time periods. The important point is that the cluster number is similar in 

two time intervals. Also, given the independent analysis of each time interval, there is no relationship between 

them. 

4. Based on the results in step 3 we can find cluster transitions in whole time intervals. For instance, Table 5 shows 

survival of cluster 1 in whole time intervals. In table 5, cluster 1 in duration 1, survived to cluster 5 with overlap 

on 0.89 which means more than 89% of cluster 1 customers in time interval 1, survived into cluster 5 in time 

interval 2. This stability means that the customers inside cluster 1 are strongly homogeneous. Other transitions of 

this cluster can be seen in table 5. 

 

Data 

Data 
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Split data 

into time 

intervals 

Implementing customer value 

calculation model (RFM model) 

for each time interval using 

clustering algorithm (k-Means)  
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decision 

based on 

results 
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Table 3 Data ready for analysis 

R F M Patient ID DURATION 

17 2 20150 6624327 1 

1 2 18030 67832258 1 

8 3 94280 6807114 1 

3 1 19300 6837796963 1 

8 1 8050 68500644 1 

27 2 42200 6860787 1 

8 1 22880 69514032 1 

10 2 34310 69536751 1 

1 1 43300 69545023 1 

37 1 14250 6960138 1 

M: Unit: IRR 

R: Unit: Days, interval between customer’s last purchase and 

the last day of the time period 

F: Unit: number of items 

Table 4 Customer cluster Number for 2 consecutive time intervals 

Customer ID Cluster ID in first time interval Cluster ID in second time interval 

6624327 1 1 

67832258 1 2 

6807114 3 4 

6837796963 2 5 

68500644 4 1 

6860787 5 1 

Table 5 Survival of Cluster 1 

 duration1 duration2 duration3 duration4 

cluster1 1 5 4 2 

value 0.36 0.5 0.79 0.43 

overlap  0.89186 1 0.53204 

 

Another example of cluster transition in our data is represent in table 6. In table 6, in duration 2 a split and in 

duration 3 a merge occurred. This means that customers in cluster4 are split into 2 different clusters with 

different characteristics. But based on company strategies or Environmental conditions in duration 3 these 

customers get together again. Suppose that when split occurred in duration 2 one of the two cluster 2 or 5 are 

customers with specific characteristics that company want to recognize them. But in the next duration these 

customers merge into others and can’t be identifies. With our model companies can identify and manage these 

groups and let them to make new segment of manage them into get back into their previous segment. Fig 3 shows 

the bipartite graphs for Table 5 and Table 6 examples. 
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Table 6 Transition of Cluster 4 

 duration1 duration2 duration3 duration4 

cluster4 4 2,5 4 2 

Value 0.52  0.79 0.43 

overlap   0.9,1 0.53204 

 

In fig. 3 black lines show overlap of transitions in example table 5 and the orange lines show overlap of 

transitions in example table 6.   

 

 

Figure 3 bipartite graphs for Table 5 and Table 6 examples 

 

5. Based on results of step 3 we also can indicate most frequent value changing trend of customers. 

 

Table 7 shows top frequent customers changing trend in 4 durations. 

Table 7 most Frequent customers value changing trends 

Trend among 

clusters 

Number of customers 

with this trend 
Value changing trend 

1->4->4->4 1249 0.36->0.53->0.79->0.42 
 

1->5->4->4 1103 0.36->0.505>-0.79->0.42 
 

1->5->4->3 929 0.36->0.505->0.79->0.35 
 

1->4->4->1 922 0.36->0.53->0.79->0.12 
 

1->4->4->3 913 0.36->0.53->0.79->0.35 
 

 

In table 7 we can see most frequent trends of our customers in 4 duration. This information can be useful because 

we can find out what is most frequent trend among customers and based on that we can propose different 

strategies. Fig 4 shows value changing trend in table 7. 

7. Conclusion 

Change mining as mining the changes in data over time can be one of the most effective methods in today’s fast 

moving businesses. In this paper we introduce the use of change mining in customer segmentation by split data into 

time intervals and analysis them separately. The process of monitoring customer segments changing over time help us 

to deal with changes over time and make relevant strategies based on these changes. As future work we try to discuss 

the shape of survived clusters as internal cluster changes which means, how characteristics of survived clusters change 

Time interval1 Time interval2 

 

Time interval3 

 

Time interval4 

 

Cluster1 

Cluster4 

Cluster5 

Cluster2 

0.89 

0.4 

0.8 

1 
Cluster4 Cluster2 

0.53 

0.9 
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over time. 

 

 

Figure 4 most Frequent customers value changing trends 
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