IDEAL FUZZY NEAR-RING

Saman Abdurrahman, Na'imah Hijriati, Thresye

Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru

ABSTRAK

Dalam tulisan ini akan dibahas ideal near-ring, ideal fuzzy near-ring yang meliputi hubungan antara ideal near-ring dan ideal fuzzy near-ring.

Kata kunci: Near-ring, ideal, ideal fuzzy.

1. PENDAHULUAN

Near-ring yang dikontruksi oleh Pilz (1983), Clay (1992) dan Kandasamy (2002), merupakan salah satu perluasan dari ring, dimana beberapa aksioma yang ada pada ring tidak harus diberlakukan pada near-ring. Operasi pertama (*aditif*) pada near-ring sebarang tidak harus komutatif, dan terhadap operasi pertama (*aditif*) dan kedua (*multiplikatif*), cukup dipenuhi salah satu sifat distributif kiri atau kanan.

Seiring dengan perkembangan zaman, penelitian pada near-ring tidak hanya berkisar pada strukturnya tetapi mulai memadukan dengan teori lain, diantaranya dengan himpunan fuzzy yang diperkenalkan oleh Zadeh pada tahun 1965, seperti penelitian yang dilakukan oleh Abou-Zaid (1991).

Abou-Zaid (1991) melakukan fuzzyfikasi pada struktur near-ring, sehingga melahirkan definisi near-ring fuzzy, subnear-ring fuzzy, ideal fuzzy near-ring yang meliputi ideal prima fuzzy dan mendefinisikan ideal yang dibangun oleh satu elemen di near-ring secara detail.

Penelitian yang dilakukan oleh Abou-Zaid, memberikan ide bagi penulis untuk meneliti hubungaan antara ideal near-ring dan ideal fuzzy near-ring, sehingga buku dan jurnal tentang near-ring, ideal near-ring, near-ring fuzzy, dan ideal fuzzy near-ring yang ada pada daftar pustaka, akan di jadikan acuan utama dalam mengkaji ideal fuzzy near-ring yang meliputi hubungan antara ideal near-ring dan ideal fuzzy near-ring.

2. TINJAUAN PUSTAKA

Berikut ini, disajikan definisi dan sifat dari near-ring dan himpunan fuzzy yang digunakan pada pembahasan ideal fuzzy near-ring.

Definisi 2.1. Himpunan R tidak kosong dengan dua operasi biner + dan . disebut near ring, jika memenuhi:

- (1) (R, +) adalah grup (tidak harus grup komutatif),
- (2) (R, \cdot) adalah semigrup,
- (3) untuk setiap $x,y,z \in R$ berlaku salah satu sifat distributif kanan atau kiri
 - (i). distributif kanan : $(x + y) \cdot z = x \cdot z + y \cdot z$
 - (ii). distributif kiri $: x \cdot (y+z) = x \cdot y + x \cdot z$

Selanjutnya yang dimaksud *near-ring* adalah *near-ring kiri*, kecuali ada keterangan lebih lanjut, $x \cdot y$ adalah xy.

Pada near-ring, grupnya tidak harus komutatif terhadap operasi +, maka dalam mendefinisikan ideal di near-ring subgrupnya harus normal.

Definisi 2.2. Diberikan $(R, +, \cdot)$ adalah near-ring. Subgrup normal I di R disebut ideal di R, jika

- (1). $RI \subseteq I$
- (2). $(r+i)s rs \in I$ untuk setiap $r, s \in R$ dan $i \in I$.

Subgrup normal I di R memenuhi kondisi (1) disebut *ideal kiri* di R, sedangkan subgrup normal I di R memenuhi kondisi (2) disebut *ideal kanan* di R.

Definisi 2.3. Diberikan X adalah himpunan tidak kosong. Suatu pemetaan μ disebut subset fuzzy di X jika $\mu: X \to [0,1]$. Selanjutnya himpunan semua subset fuzzy di X dinotasikan dengan $\mathbb{F}(X)$ dan Image dari μ dinotasikan dengan $\mathbb{Im}(\mu) := \{\mu(x) \mid x \in X\}$.

Definisi 2.4. *Diberikan sebarang* $\mu, \upsilon \in \mathbb{F}(X)$ *, maka*

- (1) $\mu = v$ jika dan hanya jika $\mu(x) = v(x)$ untuk setiap $x \in X$,
- (2) $\mu \subseteq \upsilon$ jika dan hanya jika $\mu(x) \le \upsilon(x)$ untuk setiap $x \in X$,
- (3) $(\mu \cap \upsilon)(x) := min\{\mu(x), \upsilon(x)\}\ untuk\ setiap\ x \in X.$

Definisi 2.5. Diberikan $\mu \in \mathbb{F}(X)$ dan $t \in [0,1]$. Level subset (t-cut) di μ dinotasikan dengan μ_t yang didefinisikan dengan, $\mu_t := \{x \in R \mid \mu(x) \ge t\}$.

Lemma 2.6. Diberikan sebarang $\mu, \nu \in \mathbb{F}(X)$, maka

- (1) $\mu \subseteq v$ maka $\mu_a \subseteq v_a$ untuk setiap $a \in [0,1]$
- (2) $a \le b$ maka $\mu_b \subseteq \mu_a$ untuk setiap $a,b \in [0,1]$
- (3) $\mu = v$ jika dan hanya jika $\mu_a = v_a$ untuk setiap $a \in [0,1]$

3. METODE PENELITIAN

Penelitian ini dilakukan berdasarkan studi literatur berupa buku-buku dan jurnal-jurnal ilmiah, khususnya yang berkaitan dengan near-ring, ideal near-ring, near-ring fuzzy dan ideal fuzzy near-ring.

Pada tahap awal dipelajari konsep-konsep dasar tentang near-ring, subnear-ring, ideal near-ring. Konsep-konsep dasar ini yang nantinya akan banyak membantu untuk memahami konstruksi near-ring fuzzy, subnear-ring fuzzy, dan ideal fuzzy near-ring.

Setelah memahami konstruksi near-ring fuzzy, subnear-ring fuzzy, dan ideal fuzzy near-ring, dibuktikan beberapa lemma dan teorema yang terkait dan ditentukan asumsi-asumsi sehingga terbentuk sifat baru, yang mendukung pada pembahasan hubungan antara ideal near-ring dan ideal fuzzy near-ring.

Langkah terakhir, dengan menggunakan lemma-lemma dan teorema-teorema yang saling terkait, maka diperoleh hubungan antara ideal near-ring dan ideal fuzzy near-ring.

4. HASIL DAN PEMBAHASAN

4.1. IDEAL FUZZY NEAR-RING

Definisi 4.1.1. Diberikan near-ring R dan $\mu \in \mathbb{F}(R)$. Subset fuzzy μ disebut subnear-ring fuzzy di R jika untuk setiap $x, y \in R$ berlaku:

- (1) $\mu(x y) \ge \min{\{\mu(x), \mu(y)\}}, dan$
- (2) $\mu(xy) \ge \min{\{\mu(x), \mu(y)\}}$.

Selanjutnya, μ disebut ideal fuzzy di R jika μ adalah subnear-ring fuzzy di R dan untuk setiap $x, y, z \in R$ berlaku:

- (3) $\mu(x) = \mu(y + x y)$,
- (4) $\mu(xy) \ge \mu(y)$, dan
- (5) $\mu((x+z)y xy) \ge \mu(z)$.

Suatu μ disebut *ideal kiri fuzzy di R* jika memenuhi kondisi (1), (2), (3) dan (4), sedangkan μ disebut *ideal kanan fuzzy di R* jika memenuhi kondisi (1), (2), (3) dan (5).

Contoh 4.1.2. Diberikan $R := \{a, b, c, d\}$ adalah near-ring seperti pada Contoh 2.1.3. Jika $\mu \in \mathbb{F}(R)$ dengan $\mu(c) = \mu(d) < \mu(b) < \mu(a)$, maka dapat ditunjukkan μ adalah *ideal fuzzy* di R.

Contoh 4.1.3. Diberikan $R := \{a, b, c, d\}$ adalah near-ring dengan dua operasi biner yang didefinisikan pada tabel Cayley berikut:

+	a	b	c	d		a	b	c	d
а	а	b	С	d	а	а	а	а	а
b	b	a	d	c		а			
c	c	d	b	a	c	а	a	a	a
d	d	c	a	b	d	a	b	c	d

Jika $\mu \in \mathbb{F}(R)$ dengan $\mu(c) = \mu(d) < \mu(b) < \mu(a)$, maka dapat ditunjukkan μ adalah *ideal kiri fuzzy* di R, tetapi bukan *ideal kanan fuzzy* di R, karena ada b, $d \in R$ sedemikian hingga

$$\mu((d+b))d - dd = \mu(cd - dd) = \mu(a - d) = \mu(a + c) = \mu(c) \not\ge \mu(b).$$

Setelah definisi subnear-ring fuzzy dan ideal fuzzy near-ring, berikut diberikan sifat dari subnear-ring fuzzy.

Lemma 4.1.4. Diberikan near-ring R. Jika μ adalah subnear-ring fuzzy di R, maka untuk setiap $x \in R$

- (1) $\mu(0_R) \ge \mu(x)$, dan
- (2) $\mu(-x) = \mu(x)$.

Setelah sifat dari subnear-ring fuzzy, berikut diberikan sifat dari ideal fuzzy near-ring.

Lemma 4.1.5. Diberikan near-ring R. Jika μ adalah ideal fuzzy di R, maka untuk setiap $x, y \in R$

- (1) $\mu(x + y) = \mu(y + x)$, dan
- (2) $\mu(x y) = \mu(0_R) \, maka \, \mu(x) = \mu(y)$.

Berikut diberikan sifat dari ideal fuzzy near-ring yang berhubungan dengan level subset (t-cut) dari μ .

Teorema 4.1.6. Diberikan near-ring R dan $\mu \in \mathbb{F}(R)$. Level subset μ_t adalah ideal di R untuk setiap $t \in [0,1]$ jika dan hanya jika μ adalah ideal fuzzy di R.

Bukti:

- (⇒) Misalkan $\mu \in \mathbb{F}(R)$ dan μ_t ideal di R untuk setiap $t \in [0,1]$. Akan dibuktikan μ ideal fuzzy di R.
- 1) Andaikan ada $x_0, y_0 \in R$ sedemikian hingga $\mu(x_0 y_0) < \min\{\mu(x_0), \mu(y_0)\}.$

Misalkan
$$t_0 = \frac{1}{2} \left[\mu(x_0 - y_0) + \min\{\mu(x_0), \mu(y_0)\} \right]$$
, maka

$$\min\{\mu(x_0), \mu(y_0)\} > t_0 > \mu(x_0 - y_0) \Leftrightarrow \mu(x_0) > t_0 \land \mu(y_0) > t_0 \land \mu(x_0 - y_0) < t_0.$$

Berdasarkan analisa di atas, maka $x_0, y_0 \in \mu_{t_0}$ dan $x_0 - y_0 \notin \mu_{t_0}$ yang mengakibatkan μ_{t_0} bukan ideal di R. Kontradiksi dengan μ_t ideal di R untuk setiap $t \in [0,1]$ sehingga pengandaian salah, seharusnya

$$\mu(x-y) \ge \min\{\mu(x), \mu(y)\}\$$
untuk setiap $x, y \in R$.

2) (i) Andaikan ada $x_0, y_0 \in R$ sedemikian hingga $\mu(x_0) > \mu(y_0 + x_0 - y_0)$.

Misalkan
$$t_0 = \frac{1}{2} [\mu(x_0) + \mu(y_0 + x_0 - y_0)]$$
, maka

$$\mu(x_0) > t_0 > \mu(y_0 + x_0 - y_0) \Leftrightarrow \mu(x_0) > t_0 \land \mu(y_0 + x_0 - y_0) < t_0.$$

Berdasarkan analisa di atas, maka $x_0 \in \mu_{t_0}$ dan $y_0 + x_0 - y_0 \notin \mu_{t_0}$ yang mengakibatkan μ_{t_0} bukan ideal di R. Kontradiksi dengan μ_t ideal di R untuk setiap $t \in [0,1]$ sehingga pengandaian salah, seharusnya

$$\mu(x) \le \mu(y+x-y)$$
, untuk setiap $x, y \in R$.

(ii) Andaikan ada $x_0, y_0 \in R$ sedemikian hingga $\mu(x_0) < \mu(y_0 + x_0 - y_0)$.

Misalkan $t_0 = \frac{1}{2} \left[\mu(x_0) + \mu(y_0 + x_0 - y_0) \right]$, maka

$$\mu(y_0 + x_0 - y_0) > t_0 > \mu(x_0) \Leftrightarrow \mu(y_0 + x_0 - y_0) > t_0 \land \mu(x_0) < t_0.$$

Berdasarkan analisa di atas, maka $y_0 + x_0 - y_0 \in \mu_{t_0}$ dan $x_0 \notin \mu_{t_0}$ yang mengakibatkan μ_{t_0} bukan ideal di R. Kontradiksi dengan μ_t ideal di R untuk setiap $t \in [0,1]$ sehingga pengandaian salah, seharusnya

$$\mu(x) \ge \mu(y + x - y)$$
, untuk setiap $x, y \in R$.

Berdasarkan (i) dan (ii), maka $\mu(x) = \mu(y + x - y)$ untuk setiap $x, y \in R$.

3) Andaikan ada $x_0, y_0 \in R$ sedemikian hingga $\mu(x_0y_0) < \mu(y_0)$.

Misalkan $t_0 = \frac{1}{2} \left[\mu(x_0 y_0) + \mu(y_0) \right]$, maka

$$\mu(y_0) > t_0 > \mu(x_0y_0) \Leftrightarrow \mu(y_0) > t_0 \land \mu(x_0y_0) < t_0.$$

Berdasarkan analisa di atas, maka $y_0 \in \mu_{t_0}$ dan $x_0 y_0 \notin \mu_{t_0}$ yang mengakibatkan μ_{t_0} bukan ideal di R. Kontradiksi dengan μ_t ideal di R untuk setiap $t \in [0,1]$ sehingga pengandaian salah, seharusnya $\mu(xy) \ge \mu(y)$ untuk setiap $x, y \in R$.

4) Andaikan ada $x_0, y_0, i_0 \in R$ sedemikian hingga $\mu((x_0 + i_0)y_0 - x_0y_0) < \mu(i_0)$.

Misalkan $t_0 = \frac{1}{2} \left[\mu((x_0 + i_0)y_0 - x_0y_0) + \mu(i_0) \right]$, maka

$$\mu(i_0) > t_0 > \mu((x_0 + i_0)y_0 - x_0y_0) \Leftrightarrow \mu(i_0) > t_0 \land \mu((x_0 + i_0)y_0 - x_0y_0) < t_0.$$

Berdasarkan analisa di atas, maka $i_0 \in \mu_{t_0}$ dan $(x_0 + i_0)y_0 - x_0y_0 \notin \mu_{t_0}$ yang mengakibatkan μ_{t_0} bukan ideal di R. Kontradiksi dengan μ_t ideal di R untuk setiap $t \in [0,1]$ sehingga pengandaian salah, seharusnya

$$\mu((x+i)y-xy) \ge \mu(i)$$
, untuk setiap $x, y, i \in R$.

Jadi, μ ideal fuzzy di R.

(⇐) Misalkan μ ideal fuzzy di R. Akan dibuktikan μ_t ideal di R untuk setiap $t \in [0,1]$

Diambil sebarang $t \in [0,1]$, maka menurut definisi $\mu_t := \{x \in R \mid \mu(x) \ge t\}, \ 0_R \in \mu_t \text{ yang mengakibatkan } \mu_t \subseteq R \text{ dan } \mu_t \ne \emptyset.$

Mengingat μ adalah ideal fuzzy di R, maka untuk setiap $r, s \in R$ dan $x, y \in \mu_t$ berlaku:

- 1) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\} \ge t$ yang mengakibatkan $x-y \in \mu_t$, dengan kata lain $(\mu_t, +)$ adalah subgrup di (R, +).
- 2) $\mu(r+x-r) = \mu(x) \ge t$ yang mengakibatkan $r+x-r \in \mu_t$, dengan kata lain $(\mu_t, +)$ subgrup normal di (R, +).
- 3) $\mu(rx) \ge \mu(x) \ge t$ yang mengakibatkan $rx \in \mu_t$, dengan kata lain $R\mu_t \subseteq \mu_t$.
- 4) $\mu[(r+i)s rs] \ge \mu(i) \ge t$ yang mengakibatkan $(r+i)s rs \in \mu_t$.

Jadi, μ_t ideal di R.

Teorema 4.1.7. Diberikan near-ring R. Jika I adalah ideal di R, maka untuk setiap $t \in (0,1]$, ada μ ideal fuzzy di R sedemikian hingga $\mu_t = I$.

Bukti:

Misalkan $\mu \in \mathbb{F}(R)$ yang didefinisikan dengan,

$$\mu(x) := \begin{cases} t, & x \in I \\ 0, & x \in R - I \end{cases}$$

dengan $t \in (0,1]$. Akan dibuktikan ada μ ideal fuzzy di R sedemikian hingga $\mu_t = I$.

- 1) Diambil sebarang $x, y \in R$.
 - a) Jika $x, y \in R = I$, maka $\mu(x) = 0$ dan $\mu(y) = 0$ sedemikian hingga

$$\mu(x - y) \ge 0 = \min{\{\mu(x), \mu(y)\}} \text{ dan } \mu(xy) \ge 0 = \mu(y).$$

b) Jika $x, y \in I$, maka $x - y, xy \in I$ sedemikian hingga

$$\mu(x - y) = t = \min{\{\mu(x), \mu(y)\}} \text{ dan } \mu(xy) = t = \mu(y).$$

c) Jika $x \in I$ dan $y \notin I$, maka $\mu(x) = t$ dan $\mu(y) = 0$ sedemikian hingga

$$\mu(x - y) \ge 0 = \min{\{\mu(x), \mu(y)\}} \text{ dan } \mu(xy) \ge 0 = \mu(y).$$

Jadi, $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}} \operatorname{dan} \mu(xy) \ge \mu(y) \operatorname{untuk} \operatorname{setiap} x, y \in R$.

2) Andaikan $\mu(x) < \mu(y + x - y)$ untuk suatu $x, y \in R$.

Mengingat $Im(\mu) = \{0, t\}$, maka

$$\mu(x) = 0 \land \mu(y + x - y) = t \Leftrightarrow x \notin I \land y + x - y \in I.$$

Di lain pihak,

$$(I, +)$$
 subgrup normal di $(R, +)$ maka $[x - y] + (y + x - y) - [x - y] \in I$ tetapi, $[x - y] + (y + x - y) - [x - y] = [x + ((-y) + y)] + ([x - y] - [x - y])$ $= x + 0_R + 0_R = x \in I$.

Kontradiksi dengan *x*∉*I* sehingga pengandaian salah, seharusnya

$$\mu(x) \ge \mu(y + x - y)$$
 untuk setiap $x, y \in R$.

Selanjutnya, andaikan $\mu(x) > \mu(y + x - y)$ untuk suatu $x, y \in R$.

Mengingat $Im(\mu) = \{0, t\}$, maka

$$\mu(x) = t \wedge \mu(y + x - y) = 0 \Leftrightarrow x \in I \wedge y + x - y \notin I.$$

Akibatnya, (I, +) bukan subgrup normal di (R, +). Kontradiksi dengan (I, +) subgrup normal di (R, +) sehingga pengandaian salah, seharusnya

$$\mu(x) \le \mu(y+x-y)$$
 untuk setiap $x, y \in R$.

Berdasarkan analisa di atas, maka $\mu(x) = \mu(y + x - y)$ untuk setiap $x, y \in R$.

3) Andaikan $\mu[(x+i)y - xy] < \mu(i)$ untuk suatu $x, y, i \in R$.

Mengingat $Im(\mu) = \{0, t\}$, maka

$$\mu((x+i)y - xy) = 0 \land \mu(i) = t \Leftrightarrow (x+i)y - xy \notin I \land i \in I.$$

Akibatnya, I bukan ideal di R. Kontradiksi dengan I ideal di R.

Jadi,
$$\mu((x+i)y - xy) \ge \mu(i)$$
 untuk setiap $x, y, i \in R$.

4) Akan dibuktikan $\mu_t = I$.

Berdasarkan definisi µ, maka

$$\mu_t = \{x \in R \mid \mu(x) \ge t\} = \{x \in R \mid \mu(x) = t \lor \mu(x) > t\} = \{x \in R \mid \mu(x) = t\} = I.$$

Jadi, ada μ ideal fuzzy di R sedemikian hingga $\mu_t = I$.

Selanjutnya akan didefinisikan fungsi karakteristik dari suatu near-ring yang merupakan kejadian khusus dari teorema di atas, yaitu pada saat t=1.

Definisi 4.1.8. Diberikan A subset tidak kosong di near-ring R dan $\chi_A \in \mathbb{F}(R)$ yang didefinisikan dengan,

$$\chi_A(x) := \begin{cases} 1, & x \in A \\ 0, & x \in R - A \end{cases}$$

untuk setiap $x \in R$. Selanjutnya χ_A disebut fungsi karakteristik dari A, kecuali ada keterangan lebih lanjut.

Berikut diberikan sifat dari ideal fuzzy di near-ring R, yang berhubungan dengan fungsi karakteristik dari suatu ideal di R.

Teorema 4.1.9 Diberikan I subset tidak kosong di near-ring R. Fungsi karakteristik dari I adalah ideal fuzzy di R jika dan hanya jika I ideal di R.

Bukti:

(⇒) Misalkan μ adalah ideal fuzzy di R yang didefinisikan dengan,

$$\mu(x) := \begin{cases} 1, & x \in I \\ 0, & x \in R - I \end{cases}$$

untuk setiap $x \in R$. Akan dibuktikan I adalah ideal di R.

Berdasarkan definisi μ , maka $\mu_1 = \{x \in R \mid \mu(x) \ge 1\} = \{x \in R \mid \mu(x) = 1\} = I$, sehingga menurut Teorema 4.1.6, I adalah ideal di R.

(⇐) Bukti sejalan dengan Teorema 4.1.7. ■

Berikut diberikan sifat kesamaan dari dua level subset (t-cut) dari suatu subset fuzzy di near-ring R.

Teorema 4.1.10. Diberikan ideal fuzzy μ di near-ring R. Dua level subset μ_{t_1} dan μ_{t_2} di μ dengan $t_1 < t_2$ adalah sama jika dan hanya jika tidak ada $x \in R$ sedemikian hingga $t_1 \le \mu(x) < t_2$.

Bukti:

(⇒) Misalkan μ ideal fuzzy di R dan $\mu_{t_1} = \mu_{t_2}$ dengan $t_1 < t_2$. Akan dibuktikan tidak ada $x \in R$ sedemikian hingga $t_1 \le \mu(x) < t_2$.

Andaikan ada $x \in R$ sedemikian hingga $t_1 \le \mu(x) < t_2$, maka

$$\mu(x) \ge t_1 \land \mu(x) < t_2 \Leftrightarrow x \in \mu_{t_1} \land x \notin \mu_{t_2}.$$

Berdasarkan analisa di atas, maka $\mu_{t_1} \neq \mu_{t_2}$. Kontradiksi dengan $\mu_{t_1} = \mu_{t_2}$, sehingga pengandaian salah, seharusnya tidak ada $x \in R$ sedemikian hingga $t_1 \leq \mu(x) < t_2$.

(\Leftarrow) Misalkan μ ideal fuzzy di near-ring R dan tidak ada $x \in R$ sedemikian hingga $t_1 \le \mu(x)$ $< t_2$. Akan dibuktikan $\mu_{t_1} = \mu_{t_2}$ dengan $t_1 < t_2$.

Dimbil sebarang $x \in \mu_{t_2}$, maka $\mu(x) \ge t_2 > t_1$ yang mengakibatkan $\mu(x) > t_1$, yaitu $x \in \mu_{t_1}$, dengan kata lain $\mu_{t_2} \subseteq \mu_{t_1}$.

Selanjutnya, diambil sebarang $x \in \mu_{t_1}$ maka $\mu(x) \ge t_1$. Mengingat $\mu(x) \ge t_1$ dan tidak ada $x \in R$ sedemikian hingga $t_1 \le \mu(x) < t_2$, maka $\mu(x) \not< t_2$ yang mengakibatkan $\mu(x) \ge t_2$ sehingga $x \in \mu_{t_2}$, dengan kata lain $\mu_{t_1} \subseteq \mu_{t_2}$.

Berdasarkan analisa di atas, maka $\mu_{t_1} = \mu_{t_2}$ dengan $t_1 < t_2$.

Setelah sifat kesamaan dua level suset (t-cut) dari suatu subset fuzzy di near-ring R, berikut diberikan sifat dari koleksi ideal di near-ring R yang identik dengan koleksi semua level subset μ di R.

Teorema 4.1.11. Diberikan ideal fuzzy μ di near-ring R. Jika $Im(\mu) = \{t_1, t_2, ...t_n\}$ dengan $t_1 < t_2 < ... < t_n$, maka koleksi ideal $\{\mu_{t_i} | 1 \le i \le n\}$ di R adalah koleksi semua level subset di μ .

Bukti:

Misalkan μ ideal fuzzy di R, $Im(\mu) = \{t_1, t_2, ...t_n\}$ dengan $t_1 < t_2 < ... < t_n$ dan $\{\mu_{t_i} \mid 1 \le i \le n\}$ adalah koleksi ideal di R. Akan dibuktikan untuk setiap $t \in [0,1]$ ada $i \in \{1,2, ..., n\}$ sedemikian hingga $\mu_t = \mu_{t_i}$.

Mengingat $t_1 < t_2 < ... < t_n$, maka $t_i < t_{i+1}$, $1 \le i \le n-1$ sehingga menurut Lemma 2.6, $\mu_{t_{i+1}} \subseteq \mu_{t_i}$ dalam arti $\mu_{t_1} \supseteq \mu_{t_2} \supseteq ... \supseteq \mu_{t_n}$.

Mengingat $\mu_{t_1} := \{x \in R \mid \mu(x) \geq t_1\}, \{\mu_{t_i} \mid 1 \leq i \leq n\}$ adalah koleksi ideal di R dan $\mu_{t_1} \supseteq \mu_{t_2} \supseteq \ldots \supseteq \mu_{t_n}$, maka $\mu_{t_1} = R$.

Misalkan $t \in [0,1]$ dan $t \notin Im(\mu)$.

- 1) Jika $t < t_1$, maka menurut Lemma 2.6, $\mu_{t_1} \subseteq \mu_t$. Mengingat $\mu_{t_1} = R$ dan $\mu_{t_1} \subseteq \mu_t$, maka $\mu_t = \mu_{t_1}$.
- 2) Jika $t_i < t < t_{i+1}$ dengan $1 \le i \le n-1$, maka menurut Lemma 2.6, $\mu_{t_{i+1}} \subseteq \mu_t$. Selanjutnya, diambil sebarang $x \in \mu_t$ maka $\mu(x) \ge t$.

Andaikan ada $x \in R$ sedemikian hingga $t \le \mu(x) < t_{i+1}$, maka $t_i < t \le \mu(x) < t_{i+1}$. Akibatnya, $\operatorname{Im}(\mu) = \{t, t_1, t_2, \dots, t_n\}$. Kontradiksi dengan $\operatorname{Im}(\mu) = \{t_1, t_2, \dots, t_n\}$.

Jadi, tidak ada $x \in R$ sedemikian hingga $t \le \mu(x) < t_{i+1}$.

Selanjutnya,

 $\mu(x) \ge t$ dan tidak ada $x \in R$ sedemikian hingga $t \le \mu(x) < t_{i+1}$, maka $\mu(x) \not< t_{i+1}$ yang mengakibatkan $\mu(x) \ge t_{i+1}$, yaitu $x \in \mu_{t_{i+1}}$ sehingga $\mu_t \subseteq \mu_{t_{i+1}}$.

Mengingat $\mu_{t_{i+1}} \subseteq \mu_t$ dan $\mu_t \subseteq \mu_{t_{i+1}}$, maka $\mu_t = \mu_{t_{i+1}}$.

Jadi, untuk setiap $t \in [0,1]$ ada $i \in \{1,2,...,n\}$ sedemikian hingga $\mu_t = \mu_{t_i}$.

5. KESIMPULAN

Berdasarkan hasil dan pembahasan pada penelitian maka dapat diambil kesimpulan bahwa setiap ideal di near-ring adalah ideal fuzzy near-ring dan juga sebaliknya.

DAFTAR PUSTAKA

- [1]. Abou-Zaid. S, 1991, *On fuzzy subnear-rings and ideals*, Fuzzy Sets and Systems, vol. 44, pp. 139-146.
- [2]. Clay. J.R, 1992, Nearrings, geneses and applications, Oxford, New York.
- [3]. Jun. Y.B, Sapanci. M. and Öztürk. M.A, 1998, Fuzzy ideal in gamma near-ring, Tr. J. of Math, vol. 22, no. __, pp. 449-459.
- [4]. Kandasamy. W.B.V, 2002, *Smarandache near-rings*, American Research Press Rehoboth.
- [5]. Kandasamy. W.B.V, 2003, *Smarandache fuzzy algebra*, American Research Press Rehoboth.
- [6]. Kim. S.D. and Kim. H.S, 1996, *On fuzzy ideals of near-rings*, Bull. Korean Math. Soc, vol. 33, no. 4, pp. 593-601.
- [7]. Mordeson, J.N, Malik D.S and Kuroki. N, 2003, *Fuzzy semigroup*, Springer-Verlag, Berlin Heidelberg.
- [8]. Mordeson, J.N, Bhutani. K.R. and Rosenfeld. A, 2005, *Fuzzy group theory*, Springer-Verlag, Berlin Heidelberg.
- [9]. Pilz. G, 1983, *Near-ring*, *the theory and applications* 2nd ed., North-Holland Mathematict Studies, vol. 23, North-Holland, Amsterdam.