

Analisis Keragaman Fenotipe Generasi M₂ Dan M₃ Tanaman Kacang Hijau (*Vigna radiata* L.) Hasil Radiasi Sinar Gamma

Fitri Yanti¹, Aslim Rasyad² dan Herman³

¹Mahasiswa Program Pascasarjana, Fakultas Pertanian, Universitas Riau, Jalan HR. Subrantas KM. 12,5 Simpang Baru, Pekanbaru 28293, Indonesia

² Jurusan Agroteknologi, Fakultas Pertanian, Universitas Riau
³ Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam,
Universitas Riau

Email: fy.fitriyanti12@gmail.com

ABSTRACT

The objective of this research was to determine phenotypic variability of mung bean M2 and M3 Mutant populations resulted from gamma ray irradiation. The Field experiment was conducted by using a completely randomized design in which three populations including M_2 , M_3 and the parent (M_0) were planted in 2017. Each population was planted in a plot of 3 m x 2 m with planting space of 30 cm x 20 cm to obtain 100 individual plant per plot. Every population was repeated 5 times so to get 500 plants per population. Observations were collected on all individuals in the population including plant height, number of stem internodes, length of internode, number of primary branches, age of flowering plants, date of harvest, length of pods, number of filled pods, number of seeds per pod, number of seeds per plant, weight of seeds per plants, and weights of 100 seeds. The results showed that gamma ray irradiation produced mung bean plants with a similar date of harvest. It could be seen from mean values which were not significantly different, the values of diversity, and range were almost equal which indicates the diversity of M₂, M₃ and M₀ populations was relatively similar to the control. M₂ and M₃ generation of mung bean have large and high quality seeds weighing more than 6.5 g/100 seeds. The homogeneity of variance (HOV) analysis showed that variance of all population of all parameters observed were not homogeny except for plant height, number of stem internode and weight of 100 seeds.

Key words: mungbean, Correlation coefficient, Homogeneity of variance.

ABSTRAK

Tujuan dari penelitian ini adalah untuk menentukan variabilitas fenotipik kacang hijau M2 dan M3 mutan populasi yang dihasilkan dari iradiasi sinar gamma. Eksperimen Lapangan dilakukan dengan menggunakan desain yang sepenuhnya acak di mana tiga populasi termasuk M2, M3 dan induknya (M0) ditanam di 2017. Setiap populasi ditanam dalam sepetak 3 m x 2 m dengan ruang tanam 30 cm x 20 cm untuk mendapatkan 100 tanaman individu per plot. Setiap populasi diulang 5 kali sehingga untuk mendapatkan 500 tanaman per penduduk. Pengamatan dikumpulkan pada semua individu dalam populasi termasuk tinggi tanaman, jumlah Internode batang, panjang Internode, jumlah cabang utama, usia tanaman berbunga, tanggal panen, panjang polong, jumlah polong penuh, jumlah bibit per polong, jumlah bibit per tanaman, berat bibit per tanaman, dan bobot 100 biji. Hasilnya menunjukkan bahwa iradiasi sinar gamma menghasilkan tanaman kacang hijau dengan tanggal panen serupa. Hal ini dapat dilihat dari nilai yang tidak berbeda secara signifikan, nilai keragaman, dan jangkauan hampir sama yang menunjukkan keragaman M2, M3 dan M0 populasi relatif mirip dengan kontrol. M2 dan m3 generasi kacang hijau memiliki benih besar dan berkualitas tinggi dengan berat lebih dari 6,5 g/100 biji. varians menunjukkan bahwa varians yang dari semua parameter yang diamati adalah tinggi tanaman, jumlah ruas batang, dan bobot100 biji.

Kata Kunci: kacang hijau, Koefisien korelasi, homogenitas varians

1. PENDAHULUAN

Kacang hijau (Vigna radiata merupakan salah tanaman yang cukup penting di Indonesia. sebagai dan kandungan pangan aizi cukup tinggi (Nasution, 2015). Permasalahan yang sering muncul pada budidaya tanaman adalah kacang hijau tidak sehingga serempaknya panen membutuhkan waktu dan tenaga kerja yang lebih banyak. Salah satu jenis kacang hijau galur lokal mempunyai karakter morfologi yang kurang baik yaitu karakter biji kecil, mempunyai trikom yang banyak pada permukaan daun. batang dan kulit polong. Saat matang fisiologi kacang hijau tidak serentak, apabila terlambat panen polongnya mudah pecah. (Nuzila et al., 2013; Desnilia, et al., 2014).

Salah satu upaya untuk peningkatan mempercepat produktivitas kacang hijau adalah melalui perakitan varietas unggul kacang hijau. Perakitan varietas dapat menggunakan beberapa alternatif seperti penggunaan rekayasa genetik dan diawali dengan melakukan deteksi sifat melalui PCR (Polimerase Chain Reaction) Menggunakan Primer Spesifik (Oktavianti, 2019) dan hasil dari PCR dapat diperbanyak melalui kultur jaringan untuk melihat pertumbuhan mutan, kultur jaringan merupakan perbanyakan tanaman secara invitro (Heriansyah, 2019). Selain itu juga dapat menggunakan Mutasi buatan merupakan salah alternatif satu dalam upaya rekayasa menciptakan keragaman genetik tanaman, yaitu melalui perlakuan bahan mutagen tertentu terhadap materi

reproduksi tanaman. Kegiatan pemuliaan mutasi pada tanaman kacang hijau masih terus dilakukan, dengan tujuan agar diperoleh galur mutan berdaya hasil tinggi, berumur genjah, berukuran biji besar (Sulistyo dan Yuliasti, 2013). Sinar gamma diharapkan dapat menginduksi terjadinya mutasi pada tanaman kacang hijau dengan sifat-sifat yang diharapkan. Mutasi yang diinduksi oleh sinar gamma bersifat acak dan individual. sehingga induksi sinar gamma diharapkan memberikan peluang lebih vana besar dalam mendapatkan mutan tersebut.

2. BAHAN DAN METODE

Bahan yang digunakan pada penelitian ini adalah benih kacang hijau asal Kampar 500 benih, benih kacang hijau hasil radiasi generasi M₂ sebanyak 500 benih, dan benih kacang hijau generasi hasil radiasi Μз sebanyak 500 benih. Benih kacang hijau M₂ dan M₃ yang akan ditanam dipilih secara acak.

Penelitian menggunakan rancangan acak lengkap (RAL). Setiap perlakuan diulang sebanyak 5 kali sehingga didapatkan 15 unit percobaan. Tiap unit percobaan terdiri dari 100 populasi. Pengamatan dilakukan terhadap seluruh populasi tanaman didalam unit percobaan. Plot percobaan dibuat dalam bentuk bedengan dengan luas 3,0 m x 2,0 m. Tinggi bedengan yaitu 0,3 m dan jarak antar bedengan 1 m. Jarak tanam yang digunakan adalah 30 cm x 20 cm. Lubang tanam dibuat sedalam 3 cm. Pengamatan terhadap dilakukan tinggi tanaman (cm), panjang ruas (cm), jumlah buku batang, jumlah cabang primer, umur berbunga (hst), umur panen (hst), panjang polong (cm), jumlah polong bernas, jumlah biji per polong, jumlah biji per tanaman, bobot biji per tanaman (g), dan bobot 100 biji (g).

3. HASIL DAN PEMBAHASAN

1. Tinggi Tanaman (cm)

Analisis ragam memperlihatkan bahwa tidak ada perbedaan nilai tengah tinggi tanaman antara M_0 , M_2 , dan M_3 (Tabel 1).

Tabel 1. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV tinggi tanaman dua mutan kacang hijau dan M₀ (kontrol).

Parameter		Generasi	
	M ₀ (kontrol)	M ₂	M ₃
Rata-rata (cm)	48.94 a	57.77 a	55.71 a
Kisaran (cm)	20-95	17-97	18-102
Keragaman	285.05	306.70	340.80
Koefisien keragaman (%)	33.73	30.04	33.02
Jumlah individu	199	292	262
F Hitung HOV		1.37 ^{ns}	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance.

Tabel 1. menunjukkan bahwa tinggi tanaman hasil mutasi sinar gamma generasi M₂

dan M₃ tidak berbeda dengan tetua (kontrol). Nilai keragaman dan koefisien keragaman (KK)

ketiga populasi hampir antar setara walaupun nilai kisaran cenderung lebih besar pada populasi tanaman mutan (M2 dan keseragaman M_3). Analisis varians (HOV) menunjukkan nilai F hitung lebih kecil dari F tabel mengindikasikan vang keragaman populasi M₀, M₂ dan M₃ relatif seragam. Walaupun keragaman hampir sama nilainya tapi kisaran nilai cukup besar pada generasi M₂ dan M₃.

Balai Penelitian Tanaman Aneka Kacang dan Umbi (2016) melaporkan bahwa tinggi tanaman varietas unggul kacang hijau yaitu 30-80 cm. Menurut Trustinah et al. (2017) tanaman kacang hijau yang tinggi memiliki umur panen lebih dalam.

2. Panjang ruas (cm)

Analisis ragam memperlihatkan bahwa terdapat perbedaan nilai tengah panjang ruas antara M_0 , M_2 , dan M_3 (Tabel 2).

Tabel 2. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV paniang ruas dua mutan kacang hijau dan M₀ (kontrol).

Parameter	Generasi		
	M ₀ (kontrol)	M_2	M ₃
Rata-rata (cm)	5.97 ab	6.57 a	5.17 b
Kisaran (cm)	3.83-10.88	1.30-13.67	1.33-9.38
Keragaman	1.21	2.01	2.91
Koefisien keragaman (%)	18.16	21.02	31.81
Jumlah individu	199	292	262
F Hitung HOV		3.65*	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel 2. menunjukkan perbedaan panjang ruas antar generasi M₂ dan M₃, dan M₀ (kontrol). Tanaman kacang hijau generasi M2 memiliki ruas yang lebih panjang dibandingkan tanaman kacang hijau generasi M₃, tetapi relatif sama dengan tanaman tetua. Nilai keragaman dan koefisien keragaman antar populasi menunjukkan perbedaan, dimana populasi M₃ memiliki nilai koefisien keragaman (KK) tertinggi dan memiliki populasi M_0 nilai keragaman koefisien dan keragaman terendah. Berdasarkan analisis HOV terlihat bahwa populasi keragaman tanaman kacang hijau hasil mutasi sinar gamma antar

populasi pada generasi M₀, M₂ dan M₃ tidak seragam dengan nilai F hitung lebih besar dari F tabel. Kisaran nilai panjang ruas Μз lebih generasi rendah dibandingkan M₂ dan M₀ (kontrol). Ini menunjukkan bahwa terjadi peningkatan panjang ruas setelah adanya radiasi sinar gamma pada generasi M2. Pada generasi selanjutnya paniang ruas tanaman kacang hijau semakin pendek sementara tinggi tanaman lebih tinggi.

3. Jumlah Buku Batang

Analisis ragam memperlihatkan bahwa terdapat perbedaan nilai tengah jumlah buku batang antara M_0 , M_2 , dan M_3 (Tabel 3).

Tabel 3. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV jumlah buku batang dua mutan kacang hijau dan M₀ (kontrol).

Parameter		Generasi	
	M ₀ (kontrol)	M ₂	M ₃
Rata-rata (buku)	8.18 b	8.72 b	11.01 a
Kisaran (buku)	5-15	4-15	3-15
Keragaman	4.48	7.43	6.64
Koefisien keragaman (%)	32.68	31.45	24.27
Jumlah individu	199	292	262
F Hitung HOV		2.60 ^{ns}	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Pada Tabel 3. terlihat tanaman kacana hiiau hasil mutasi dengan irradiasi sinar gamma generasi M₃ memiliki jumlah buku batang lebih banyak dibandingkan tanaman kacang hijau generasi M₂ dan tetua. Nilai koefisien keragaman (KK) hiiau tanaman kacang hasil mutasi sinar gamma generasi M₃ lebih rendah daripada M₂ dan M₀, keragaman sedangkan kisaran nilai antar ketiga populasi hampir setara. Hal ini juga dipertegas dengan nilai HOV dengan nilai F hitung yang kecil dari F tabel.

Tanaman M₃ memiliki struktur yang lebih kompak dan kuat dibanding tanaman M₂. Tanaman yang lebih kompak biasanya akan lebih baik karena buku yang banyak cenderung mempunyai bunga yang lebih banyak, menghasilkan cabang yang lebih banyak dan batang yang lebih kokoh.

4. Jumlah Cabang Primer

Analisis ragam memperlihatkan bahwa terdapat perbedaan nilai tengah jumlah cabang primer antara M₀, M₂, dan M₃ (Tabel 4).

Tabel 4. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV iumlah cabang primer dua mutan kacang hijau dan M₀ (kontrol).

Parameter	Generasi			
	M ₀ (kontrol)	M_2	M_3	
Rata-rata (cabang)	5.86 b	5.76 b	8.08 a	
Kisaran (cabang)	2-14	1-14	1-16	
Keragaman	9.63	8.10	2.09	
Koefisien keragaman (%)	51.16	49.76	18.49	
Jumlah populasi	199	292	262	
F Hitung HOV		85.26*		

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Jumlah cabang primer tanaman kacang hijau hasil mutasi sinar gamma generasi M₃ lebih banyak dari populasi M₂ dan

 M_0 (kontrol). Nilai keragaman dan koefisien keragaman (KK) pada tanaman kacang hijau M_3 jauh lebih kecil dibanding M_2 atau M_0

sebagai tanaman tetua. Analisis HOV memperlihatkan nilai Fhit signifikan vang vang menunjukkan keragaman M₂, M₃ dan M₀ sebagai kontrol tidak homogen antara satu populasi dengan yang lain. Kisaran nilai cabang iumlah primer pada generasi M_3 lebih banyak dibanding M₂ dan M₀. Hal ini

memberikan indikasi tanaman M₃ sudah mulai homogen, sehingga tidak memerlukan seleksi yang lebih ketat.

5. Umur Berbunga (hst)

Analisis ragam memperlihatkan bahwa tidak ada perbedaan nilai tengah umur berbunga antara M_0 , M_2 , dan M_3 (Tabel 5).

Tabel 5. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV umur berbunga dua mutan kacang hijau dan M₀ (kontrol).

Parameter		Generasi	
	M ₀ (kontrol)	M_2	M ₃
Rata-rata (hst)	57.70 a	57.56 a	63.05 a
Kisaran (hst)	33-79	35-76	33-79
Keragaman	146.44	134.68	230.34
Koefisien keragaman (%)	26.61	20.44	25.25
Jumlah individu	199	292	262
F Hitung HOV		43.33*	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0,05 menurut uji berganda Duncan, HOV=homogeneity of variance

5. Tabel menunjukkan bahwa tidak ada perubahan ratarata umur berbunga tanaman kacang hijau hasil irradiasi sinar gamma generasi M₂ dan M₃ dibandingkan M∩. Nilai fenotipe keragaman pada M_3 generasi lebih besar dibandingkan dengan M₂ dan M₀, walaupun kisaran umur berbunga pada ketiga populasi relatif hampir sama. Uji HOV menunjukkan Fhit yang sangat memberikan signifikan yang indikasi bahwa variabilitas ketiga populasi (M₂, M₃ dan M₀) berbeda satu sama lain.

menyatakan bahwa kegiatan seleksi terhadap umur berbunga akan lebih efektif dilakukan pada generasi lanjut (M₃). Roslim et al. (2015) melaporkan bahwa radiasi menyebabkan sinar gamma waktu muncul bunga pada tanaman kacang hijau populasi M₁ lebih lambat dari tanaman kontrol.

6. Umur Panen (hst)

Analisis ragam memperlihatkan bahwa tidak ada perubahan nilai tengah umur panen antara tanaman kacang hijau M₀, M₂, dan M₃ (Tabel 6).

Tabel 6. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV umur panen dua mutan kacang hijau dan M₀ (kontrol).

	3 ,	<u> </u>	
Parameter	Generasi		
	M ₀ (kontrol)	M_2	M ₃
Rata-rata (hst)	87.89 a	88.02 a	90.31 a
Kisaran (hst)	80-94	80-94	80-94
Keragaman	45.75	48.25	45.47
Koefisien keragaman (%)	7.61	7.90	7.58
Jumlah individu	199	292	262
F Hitung HOV		2.09 ^{ns}	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel 6. menunjukkan bahwa umur panen tanaman kacang hijau hasil mutasi sinar gamma generasi M₂ dan M₃ tidak berbeda nyata dengan tetua (M₀). Nilai keragaman dan koefisien keragaman antar ketiga populasi juga hampir setara demikian pula dengan nilai kisaran cenderung sama antar ketiga populasi. Hal menandakan keragaman populasi M₂, M₃ dan M₀ sebagai kontrol relatif seragam.

Sulistyo dan Yuliasti (2013) melaporkan bahwa tanaman kacang hijau hasil radiasi sinar gamma memiliki umur panen lebih lama dibandingkan dengan tetua. Hasil penelitian Fiatin (2014)menunjukkan terjadi perlambatan nilai rata-rata umur panen antara kacang hijau hasil radiasi sinar gamma dengan kontrol. Tanaman kacang hijau hasil radiasi sinar gamma memiliki umur panen yang lebih lama dibandingkan tanaman kontrol.

7. Panjang Polong (cm)

Analisis ragam memperlihatkan bahwa terdapat perbedaan nilai tengah panjang polong antara M_0 , M_2 , dan M_3 (Tabel 7).

Tabel 7. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung homogeneity panjang polong dua mutan kacang hijau dan M_0 (kontrol).

Parameter	Generasi		
	M ₀ (kontrol)	M_2	M ₃
Rata-rata (cm)	9.08 ab	10.38 a	8.37 b
Kisaran (cm)	4.47-12.78	5.10-14.08	4.32-14.98
Keragaman	2.64	2.61	1.29
Koefisien keragaman (%)	10.93	15.76	13.69
Jumlah individu	199	292	262
F Hitung HOV		2.08 ^{ns}	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel 7. menunjukkan bahwa tanaman kacang hijau generasi M₃ memiliki polong yang lebih pendek dibanding tanaman kacang hijau M₂ dan tetua kontrol. Nilai keragaman antar ketiga populasi pun lebih kecil pada generasi lanjut, sementara nilai kisaran terlihat lebih besar pada populasi M₂ dan generasi M₃ dibanding M₀. Nilai koefisien keragaman (KK) pada ke tiga

generasi tanaman M_0 , M_2 dan M_3 relatif sama besarnya. Nilai uji homogenitas varians juga menunjukkan F_{hit} yang tidak signifikan.

8. Jumlah Polong Bernas

Analisis ragam memperlihatkan bahwa tidak ada perbedaan nilai tengah jumlah polong bernas antara M_0 , M_2 , dan M_3 (Tabel 8).

Tabel 8. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV jumlah polong bernas dua mutan kacang hijau dan M₀ (kontrol).

Parameter		Generasi	
	M ₀ (kontrol)	M ₂	M ₃
Rata-rata (polong)	17.22 a	14.15 a	18.46 a
Kisaran (polong)	3-36	3-82	3-45
Keragaman	73.19	182.66	63.94
Koefisien keragaman (%)	79.07	88.17	45.85
Jumlah individu	199	292	262
F Hitung HOV		36.06*	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel 8. menunjukkan bahwa iumlah polong bernas hijau tanaman kacang mutasi sinar gamma generasi M₂ dan M₃ tidak berbeda dengan tetua M₀. Nilai keragaman dan kisaran jumlah polong bernas tanaman populasi M₃ lebih sempit dibanding populasi M₂ sementara koefisien keragamannya besar pada populasi M₂ dan tetua dibandingkan M₁ Mз. homogenitas juga menunjukkan nilai F_{hit} yang sangat signifikan. ini menunjukkan bahwa generasi M₃ populasinya sudah mulai seragam dan tidak memerlukan seleksi yang ketat terhadap karakter jumlah polong bernas.

Jumlah polong mempengaruhi produktivitas kacang hijau, semakin banyak polong maka semakin banyak biji kacang hijau yang dihasilkan. Jumlah polong yang dihasilkan sangat berkaitan dengan jumlah cabang produktif. Semakin banyak jumlah cabang tanaman semakin banyak akan pula jumlah polong yang dihasilkan (Desnilia, 2014; Putri, 2015). Menurut Garg et al. (2017)Karakter hasil penen, iumlah polong per tanaman. panjang polong, dan hasil panen merupakan salah satu kriteria penting seleksi vand karena langsung berpengaruh secara terhadap perbaikan hasil pada komoditas kacang hijau.

9. Jumlah Biji Per Polong Analisis ragam memperlihatkan bahwa tidak ada perbedaan nilai tengah jumlah polong bernas antara M₀, M₂, dan M₃ (Tabel 9).

Tabel 9. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV jumlah biji per polong dua mutan kacang hijau dan M₀ (kontrol).

Parameter _			
	M ₀ (kontrol)	M_2	M ₃
Rata-rata (biji)	10.09 a	11.07 a	11.14 a
Kisaran (biji)	3.00-14.86	3.33-15.73	4.37-15.73
Keragaman	5.83	4.55	2.93
Koefisien keragaman (%)	24.15	19.70	15.78
Jumlah individu	199	292	262
F Hitung HOV		15.93*	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0,05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel menunjukkan 9. bahwa iumlah biji per polong tanaman kacang hijau hasil irradiasi sinar gamma generasi M₂ dan M₃ relatif sama dengan tetua sebagai tanaman kontrol. Nilai keragaman dan koefisien keragaman lebih besar pada populasi M₀ dibanding mutan M₂ dan M₃. Uji homogenitas juga menunjukkan nilai $\mathsf{F}_{\mathsf{hit}}$ yang

sangat signifikan. Hal ini menunjukkan ketidakhomogenan variance antar populasi yang dievaluasi.

10. Jumlah Biji Per Tanaman

Hasil sidik ragam memperlihatkan bahwa tidak ada perbedaan nilai tengah jumlah biji per tanaman antara M_0 , M_2 , dan M_3 (Tabel 10).

Tabel 10. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung homogeneity jumlah biji per tanaman dua mutan kacang hijau dan M_0 (kontrol).

Parameter	Generasi		
	M ₀ (kontrol)	M ₂	M ₃
Rata-rata (biji)	191.67 a	162.97 a	202.97 a
Kisaran (biji)	9.00-715.00	10.00-779.00	35.00-513.00
Keragaman	25,048.61	24,559.77	7,702.70
Koefisien keragaman (%)	88.59	90.91	46.85
Jumlah individu	199	292	262
F Hitung HOV		54.77*	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel 10. menunjukkan bahwa jumlah biji per tanaman kacang hijau hasil mutasi sinar gamma generasi M₂ dan M₃ tidak berbeda dengan tanaman tetua. Nilai keragaman jumlah biji per generasi M₃ tanamaan lebih sempit dibanding tanaman M₂ dan M₀. Kisaran biji per tanaman generasi M₂ dan M₀ lebih luas generasi Koefisien dari M_3 . keragaman biji per tanamaan pada tanaman mutan M₂ dan tetua M0 lebih tinggi dibanding generasi M₃. Uji homogenitas menunjukkan F_{hit} yang sangat

signifikan. Kisaran jumlah biji per tanaman cukup besar pada generasi M₂. Hal ini memberikan kesempatan kepada pemulia untuk melakukan seleksi terhadap jumlah biji per tanaman kacang hijau mulai semenjak generasi M₂ dan dilanjutkan pada generasi M₃.

11. Bobot Biji Per tanaman (g)

Hasil sidik ragam memperlihatkan bahwa tidak ada perbedaan nilai tengah jumlah biji per tanaman antara M_0 , M_2 , dan M_3 (Tabel 11).

Tabel 11. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV bobot biji per tanaman dua mutan kacang hijau dan M_0

(kontrol).

Parameter	Generasi		
	M ₀ (kontrol)	M ₂	M ₃
Rata-rata (g)	12.34 a	11.21 a	13.83 a
Kisaran (g)	1.46-40.34	1.38-53.22	3.08-29.46
Keragaman	110.20	123,90	33.23
Koefisien keragaman (%)	91.76	93.46	44.72
Jumlah individu	199	292	262
F Hitung HOV		55.35*	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel 11. menunjukkan bahwa tanaman kacang hijau hasil mutasi sinar gamma generasi M₂ dan M₃ memiliki bobot biji per tanaman yang relatif sama dengan tanaman M₀. keragaman dan kisaran bobot biji per tanaman pada lebih sempit dibanding generasi M₂ dan Mο vand menuniukkan populasi pada generasi M₃ sudah Berdasarkan mulai seragam.

analisis HOV, terlihat bahwa keragaman tanaman kacang hijau populasi M_0 , M_2 dan M_3 tidak homogen dengan nilai F_{hit} lebih tinggi dari F_{tab} .

12. Bobot 100 Biji (g)

Hasil sidik ragam memperlihatkan bahwa terdapat perbedaan nilai tengah bobot 100 biji antara M_0 , M_2 , dan M_3 (Tabel 12).

Tabel 12. Rata-rata, kisaran, keragaman, koefisien keragaman dan F hitung HOV bobot 100 biji dua mutan kacang hijau dan M₀ (kontrol).

Parameter			
	M ₀ (kontrol)	M_2	M_3
Rata-rata (g)	6.30 b	6.76 a	6,93 a
Kisaran (g)	0.33-12.00	1.25-9.42	3.65-10.98
Keragaman	2.68	0.95	1.20
Koefisien keragaman (%)	26.22	14.62	15.65
Jumlah individu	199	292	262
F Hitung HOV		1.65 ^{ns}	

Keterangan: angka pada baris yang diikuti huruf kecil yang sama berbeda tidak nyata pada P=0.05 menurut uji berganda Duncan, HOV=homogeneity of variance

Tabel 12. menunjukkan bahwa bobot 100 biji tanaman kacang hijau hasil mutasi sinar gamma generasi M₂ dan M₃ lebih tinggi dibanding tanaman kacang hijau M₀ (tetua). Nilai keragaman dan nilai kisaran bobot 100 biji pada generasi M₂ dan M₃ lebih sempit dibandingkan M₀. Koefisien keragaman

menunjukkan bahwa bobot 100 biji tanaman kacang hijau M_0 lebih besar dibanding tanaman generasi M_2 dan M_3 . Hasil uji kehomogenan variance ketiga generasi menunjukkan F_{hit} yang tidak signifikan. Hal ini memberikan implikasi bahwa karakter bobot 100 biji bukanlah merupakan peubah yang dapat

dijadikan sebagai kriteria seleksi dan perbaikan terhadap ukuran biji lebih sulit untuk dilaksanakan pada populasi mutan ini.

12. Korelasi Antar Parameter Tanaman Kacang Hijau

Analisis korelasi memperlihatkan hubungan yang sangat erat antar peubah yang diamati dari tiga populasi kacang hijau yang diteliti (Tabel 13). Tinggi tanaman berkorelasi positif dengan hampir semua peubah, kecuali umur berbunga berkorelasi negatif dan dengan umur panen berkorelasi tidak nvata. Hal ini berarti bahwa pertambahan tinggi tanaman diikuti dengan meningkatnya nilai karakter lain, akan tetapi akan mempercepat umur berbunganya. Hasil ini mempunyai implikasi bahwa tinggi tanaman dapat dijadikan kriteria seleksi untuk meningkatkan peubah lain.

Jumlah cabang primer berkorelasi negatif dengan dan umur panjang ruas berbunga, serta berkorelasi positif dengan semua peubah lainnya, kecuali dengan umur panen berkorelasi tidak nyata. Artinya semakin banyak jumlah cabang tanaman kacang hijau, maka akan semakin pendek panjang ruas dan semakin cepat umur berbunga. Sementara itu semakin banyak jumlah cabang diikuti akan dengan bertambahnya nilai karakter yang bernilai positif. Oleh sebab itu seleksi yang dilakukan untuk iumlah cabang secara tidak langsung akan meningkatkan jumlah polong bernas, jumlah biji per tanaman dan bobot biji per tanaman terpilih.

Panjang ruas menuniukkan korelasi positif dengan panjang polong dan jumlah biji per polong, tetapi tidak berkorelasi nyata dengan umur berbunga, umur panen, jumlah polong bernas, berat 100 biji, jumlah biji per tanaman dan berat biji per tanamaan. **Artinya** semakin panjang ruas tanaman diikuti dengan akan bertambahnya panjang polong dan jumlah biji per polong. Namun berhubungan tidak dengan karakter yang disebutkan belakangan yaitu umur berbunga, panen. iumlah umur polona bernas, berat 100 biji, jumlah biji per tanaman dan berat biji per tanaman.

Umur berbunga berkorelasi positif dengan umur panen dan berkorelasi negatif dengan jumlah polong bernas, berat 100 biji, jumlah biji dan berat biji per tanaman. Hal ini bahwa berarti semakin lama umur berbunga diikuti oleh semakin lamanya umur panen, tetapi semakin berkurang nilai jumlah polong bernas, berat 100 biji, jumlah biji dan bobot biji per tanaman.

Umur panen berkorelasi negatif dengan jumlah polong bernas, berat 100 biii, iumlah biii dan bobot biji per tanaman tapi tak berkorelasi dengan panjang polong dan jumlah biji per polong. Korelasi negatif menunjukkan bahwa semakin lambat umur panen tanaman akan berkurang jumlah polong bernas, bobot 100 biji, jumlah biji per tanaman dan bobot biji per tanaman. Hal ini menunjukkan bahwa dalam melakukan seleksi terhadap umur panen, tanaman yang dipilih

sebaiknya berumur pendek agar komponen hasil bisa bertambah.

Jumlah polong bernas berkorelasi positif dengan panjang polong, jumlah biji per polong, jumlah biji dan berat biji per tanaman. Hal ini berarti bahwa semakin banyak polong tanaman akan semakin panjang polong, dan semakin meningkat jumlah biji per polong, jumlah biji per tanaman dan semakin besar berat biji per tanaman.

Paniana polona berkorelasi positif dengan jumlah biji per polong, bobot 100 biji, jumlah biji dan bobot biji per tanaman. Hal ini menyatakan bahwa semakin panjang polong yang dihasilkan, semakin banyak biji per polong, dan jumlah biji per tanaman dan semakin berat bobot 100 biji dan bobot biji per tanaman. Implikasi dari data ini menunjukkan bahwa untuk meningkatkan jumlah biii per tanaman dapat dilakukan seleksi tanaman yang berpolong lebih panjang.

Jumlah biji per polong berkorelasi positif dengan bobot 100 biji, jumlah biji per tanaman dan bobot biji per tanaman. Hal ini berarti bahwa semakin banyak jumlah biji per polong yang dihasilkan, akan bertambah banyak jumlah biji per tanaman dan semakin berat bobot 100 biji dan bobot biji per tanaman.

Bobot 100 biji berkorelasi positif dengan semua peubah kecuali peubah umur berbunga dan umur panen menunjukkan korelasi negatif serta dengan peubah panjang ruas, jumlah polong bernas dan jumlah biji per tanaman berkorlasi tidak nyata. Hasil penelitian Jumlah biji per berkorelasi tanaman positif dengan bobot biji per tanaman yang berarti bahwa tanaman yang mempunya biji yang banyak cenderung mempunyai bobot biji per tanaman yang lebih besar. Zare et al. (2012) melaporkan potensi hasil adalah bahwa karakter yang kompleks yang dapat ditentukan melalui beberapa komponen vang menggambarkan pengaruh positif atau negatif terhadap karakter tersebut. Oleh karena kontribusi setiap komponen perlu dipelajari sehingga dapat diketahui karakter yang benarbenar memberikan kontribusi paling besar terhadap potensi hasil.

Bobot biji per tanaman berkorelasi positif dengan semua peubah kecuali dengan peubah umur berbunga dan umur panen berkorelasi negatif serta dengan peubah panjang ruas berkorelasi tidak nyata. Hakim (2007)melaporkan bahwa galur mutan M₄ kacang hijau menunjukkan korelasi positif yang sangat nyata antara hasil biji per tanaman dengan iumlah polona per Kontribusi jumlah tanaman. polong terhadap hasil kacang hijau sangat besar. Hasil (2014)penelitian Hapsari menuniukkan korelasi positif antara bobot biji kacang hijau dengan karakter bobot 100 biji.

Tabel 13. Korelasi antar parameter pengamatan

	JCP	PR	UB	UP	JPB	PP	JBP	B100	JBPT	BBP
TT	0.67**	0.39**	-0.30**	-0.07	0.53**	0.46**	0.54**	0.22**	0.58**	0.59**
JCP		-0.13*	-0.33**	-0.05	0.63**	0.20**	0.47**	0.21**	0.67**	0.67**
PR			0.08	0.08	-005	0.34**	0.23*	0.01	-0.02	-0.01
UB				0.82**	-0.43**	-0.14**	-0.21**	-0.20**	-0.42**	-0.44**
UP					-0.27**	0.04	0.07	-0.16**	-0.24**	-0.26**
JPB						0.15*	0.26**	0.06	0.98**	0.96**
PP							0.65**	0.27**	0.25**	0.30**
JBP								0.28**	0.39**	0.42**
B100									0.09	0.22**
JBPT										0.98**

Keterangan :TT = tinggi tanaman, JBB = jumlah buku batang, JCP = jumlah cabang primer, PR = panjang ruas, UB = umur berbunga, UP = umur panen, JPB = jumlah polong bernas, PP = panjang polong, JBP = jumlah biji per polong, B100 = bobot 100 biji, JBPT = jumlah biji per tanaman, BBP = bobot biji per tanaman.

SIMPULAN

Berdasarkan hasil penelitian yang dilakukan, dapat disimpulkan bahwa:

- Radiasi sinar gamma menghasilkan tanaman kacang hijau dengan umur panen serentak.
- 2. Kacang hijau generasi M₂ dan M₃ memiliki ukuran biji yang besar dan berkualitas dengan bobot diatas 6,5 g per 100 biji.
- 3. Varian yang homogen dari semua parameter yang diamati adalah tinggi tanaman, jumlah buku batang dan bobot 100 biji.

DAFTAR PUSTAKA

- Balai Penelitian Tanaman Kacang dan Umbi., 2016. Deskripsi Varietas Unggul Kacang Hijau 1945-2014. http://balitkabi.litbang.pertanian.go.id/wp-content/uploads/2016/09/kacang hijau.pdf. Diakses pada tanggal 07 November 2019.
- Desnilia, Herman, dan D.I.
 Roslim. 2014. Polong
 Paling Sedikit Pada Galur
 Kacang Hijau (Vigna
 radiata (L.) Wilczek) Lokal
 Kampar. JOM FMIPA, 1(2)
 : 1-5.
- Farisa. D. 2015. Pengujian Potensi Dosis Radiasi Gamma terhadap Sinar Terjadinya Mutan Padi (Oryza sativa L.) Varietas Lokal Mentik Susu dan Umbul. Tesis. Program Pascasariana Program Studi Agronomi Universitas Sebelas Maret Surakarta. 40 hal.

- Fiatin. L., 2014. Penentuan LD50 untuk Radiasi Sinar Gamma pada Biji Kacang Hijau (*Vigna radiata* L.) Generasi F3. Skripsi. Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau. 53 hal.
- Garg, G.K., P.K Verma dan H. Kesh., 2017. Genetic Variability, Correlation and Path Analysis in Mungbean [Vigna radiata (L.) Wilczek]. International Journal of Current Microbiology and Applied Sciences, 6 (11): 2166-2173.
- Hakim, L., 2007. Analisis Korelasi dan Regresi pada Populasi Galur Mutan Kacang Hijau dan Implikasinya dalam Seleksi. Jurnal Penelitian Pertanian Tanaman Pangan, 2 (2): 114-119.
- P., Sagiarti Heriansyah, Rover. (2014). Pengaruh Pemberian Myoinositol Aktif Pada Dan Arang Media Sub Kultur Jaringan Tanaman Anggrek (Dendrobium SP) Jurnal Agroteknologi 5 (1), 9-16. http://dx.doi.org/10.24014/j a.v5i1.1142
- Hapsari, R.T., 2014. Pendugaan Keragaman Genetik dan Korelasi Antara Komponen Hasil Kacang Hijau Berumur Genjah. Buletin Plasma Nutfah, 20 (2): 51-58.
- Nasution, A.S., 2015. Pengaruh
 Pemberian Berbagai Jenis
 Pupuk Organik terhadap
 Pertumbuhan dan
 Produksi Tanaman Kacang
 Hijau (*Vigna radiata* L.).

- *Jurnal Agrium,* 19(2): 89-95.
- Nuzila, O., Herman dan Fitmawati. 2013 Kestabilan Karakteristik Agronomi Kacang Hijau (*Phaseolus radiatus* L.) Mutan 1 dan 2 Hasil Perlakuan Kolkisin. http://repository.unri.ac.id/handle/123456789/4122. Diakses pada tanggal 12 Desember 2016.
- R. (2019).Oktavianti, The Application PCR Of (Polymerase Chain Reaction) Using Specific Primer To Detect Chillies Drought Tolerant. JURNAL **AGRONOMI TANAMAN** TROPIKA (JUATIKA), 1(2), 49-66. doi:10.36378/juatika.v1i2.1 76
- Putri, R.F., 2015. Analisis Segregasi Karakter Kilap Biji, Bentuk Biji, dan Warna Kulit Polong Kacang Hijau (Vigna radiata L.) Generasi F3. Skripsi. Jurusan Biologi. Fakultas Matematika dan llmu Pengetahuan Alam

- Universitas Riau. Pekanbaru.45 hal.
- Roslim, D.I., Herman, and I. Fiatin., 2015. Lethal Dose 50 (LD₅₀) Of Mungbean (*Vigna radiata* L. Wilczek) Cultivar Kampar. SABRAO Journal of Breeding and Genetics, 47 (4): 510-516.
- Sulistyo, A. dan Yuliasti., 2013. Daya Hasil Galur-Galur Mutan Kacang Hijau. Prosidina Seminar Nasional 3 in ONE Malang. Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian. Hal 298-302.
- Trustinah, R. Iswanto, dan R.T. Hapsari., 2017. Seleksi Galur Kacang Hijau Berbiji Kecil. Buletin Palawija, 15 (1): 24-31.
- Zare, M., dan S. Sharafzadeh., 2012. Genetic variability of some rapeseed (*Brassica napus* L.) cultivars in Southern Iran. African Journal of Agricultural Research, 7 (2): 224-229.