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Abstract 

This mini-review gives the development of computational drug repositioning using big data from perspective of genetic study. The 

reverse profile principle is utilized to reposition drug hits by investigating gene expression, genotyping and GWAS data. Several 

big data sets are introduced, which are remarkable references that utilized for the genetic studies. Relevant computational genetics 

methods and the developments are briefly described as well. This review aims to give insights into this area so as to raise more 

ideas as well as to attract more attentions for this ascendant field. With the development of information technology and 

engineering applications, prosperous results are highly expected.  
 

© 2019 Author(s). Published by AHMAR Institute. All rights reserved. 

Keywords: Computational drug repositioning, big data, GWAS, genetic study. 
 

 

 

 

1. Introduction
*
 

In the past two decades, computational genetics and bioinformatics technology developed super fast. Investigators 

could study gene expression, genotypes, and the correlations between genotyping and transcriptome through big data 

so as to reveal potential pharmacological targets. To date, there are many public data sets that researches could apply, 

for instance, CMap [1] is the largest genetic medicine database that researchers could refer to. CMap was initiated and 

organized by Broad Institute, which utilized L1000 technology to generate RNA-seq data. There were more than 3000 

samples that involved, and the data included more than 70 cell lines as well as information about more than 12000 

genes. Figure 1 gives the flowchart of CMap database, briefly introducing the data in different levels. In the 

genotyping and gene expression perspective, the updated GTEx data [2] contained information about more than 630 

samples. The CommonMind Consortium (CMC) [3], which was proposed by Mount Sinai, Pittsburgh University and 

University of Pennsylvania, generated genetic data for more than 570 samples. Based upon CMC and GTEx brain 

tissue data, PsychENCODE consortium integrated one of the biggest human brain data sets so far [4], which could 

benefit the community for neuropsychiatry disease studies. STARNET
 
[5] is another human DNA and RNA-seq data 

set, which contains information about more than 600 coronary artery disease patients. In addition, TCGA database [6] 

has genetic data of multiple cancers such as breast cancer, lung cancer etc. However, from perspective of biological 
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technology and computational genetics or bioinformatics, people could not fully explain the relationship between 

genotypes and gene expressions as well as the correlation between them, which could potentially reveal medical 

mechanisms for human traits and medication treatments. This mini-review aims to include gene expression, 

genotyping and the drug repositioning that related to the big data so as to look forward to the frontier issues in this 

field from the perspectives of computational genetics and bioinformatics.  

 

 

Figure 1. CMap data in each level (figure resource：https://clue.io/).  A profile (also referred to as an experiment or an example) represents a data 

point for the generation of interference for a particular cell type at a particular therapeutic dose and for a particular duration of treatment. The 

numbers in the profile represent raw fluorescence intensity values (level 1 or raw data) or deconvolution (level 2 data) or post normalization (e.g., 
quantile normalization) to generate level 3 data. Finally, the configuration file is compared to the appropriate controls to generate a list of features 

that are differentially expressed (level 4 data). Each experiment is usually repeated for three times, which is then averaged into a vector of 

differential expression to create a signature (5 levels of data). 

 

2. Method review 

The genome-wide association studies (GWASs) have been widely leveraged to successfully identify and indicate a 

good amount of genetic variants or genes that associated with complex human diseases [7]. When investigators study 

genetic or bioinformatics problems, GWAS and relevant summary statistics could provide references for gene-level 

associations. S-PrediXcan [8] is one efficient computational method that based on GWAS analysis to predict gene 

expression profiles. This method benefits the community a lot since researchers could computationally obtain gene 

expression profiles from GWAS genotyping data using the available reference panels. The large-scale reference 

datasets as well as the related predictors are the fundamental basis of this method [9]. In high-throughput data, this 

approach could save a lot of costs, which is broadly employed. One specific application is in drug repositioning [10]. 

In [10], authors calculated gene expression profile from GWAS data, and repositioned candidate drug hits for diseases 

through comparisons with genetic medicine databases. The method belonged to the reverse profile principle category 

for drug repositioning. A series of efficient statistics were employed for the drug repositioning. That method could 

help reduce drug developing expenses and offer reference values for real clinical drug repositioning.   

 

Nevertheless, the method has somehow limitations. First of all, the method depends on the predicted or imputed gene 

expressions. S-PrediXcan was embedded in the computations to predict the transcriptome profile. Therefore the 

method requires very high accuracy. Though the reference panels and the predictive method are of high efficiency [8-

10], there is a long way to go to make the method better. For instance, the prediction process employs the elastic net 

method [9], which treats each SNP equally. From epigenomic study, we know that SNPs actually have different 

priorities, i.e., the association between every SNP and the trait varies. If we take this aspect into consideration, the 

prediction precision could be furthermore improved. Second, the powers of GWASs are different. The more samples 

that involved in the GWAS, the more powerful the GWAS. And the results of more powerful GWASs make more 

sense. Certainly, improved statistical methods are demanded in detecting drug-induced gene expressions. Traditional 

statistical methods are Spearman, Pearson or KS approaches. In [10], the combined statistics were utilized and 

different cut-offs were determined to provide good accuracy. Last but not the least, drug repositioning results need 

experimental or clinical validations. For some diseases such as psychiatry traits, the mouse model culture and 

verification are extremely time-consuming. There is no standard for validation of computational drug repositioning, 

which makes the approaches lack of real practice.  

https://clue.io/
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3. Discussions 

Researches of computational drug repositioning are ascendant in recent decades. There are many issues that need to 

be addressed to further study how genetic variants affect gene expressions. Downstream analyses in this field are 

urgent to push forward the study. The purpose of this mini-review is to attract more attentions in this area so as to 

raise more ideas. With the development of information technology, experimental techniques and their engineering 

applications, prosperous results are highly expected.  
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