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 This paper introduces a fast and accurate object detection algorithm based on 

a convolutional neural network for humanoid marathon robot applications. 

The algorithm is capable of operating on a low-performance CPU without 

relying on the GPU or hardware accelerator. A new region proposal algorithm, 

based on color segmentation, is proposed to extract a region containing a 

potential object. As a classifier, the convolution neural network is used to 

predict object classes from the proposed region. In the training phase, the 

classifier is trained with an Adam optimizer to minimize the loss function, 

using datasets collected from humanoid marathon competitions and diversified 

using image augmentation. An NVIDIA GTX 1070 training machine, with 500 

batch images per epoch and a learning rate of 0.001, required 12 seconds to 

minimize the loss value below 0.0374. In the accuracy evaluation, the 

proposed method successfully recognizes and localizes three classes of marker 

with a training accuracy of 99.929%, validation accuracy of 99.924%, and test 

accuracy of 98.821%. As a real-time benchmark, the algorithm achieves 41.13 

FPS while running on a robot computer with Intel i3-5010U CPU @ 2.10GHz.  
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1. INTRODUCTION  

Object detection is the most common problem for robotic vision. Provided an image, the class and 

position of the object must be predicted. State of the art of Convolutional Neural Network (CNN) based object 

detection successfully addresses the problems in this domain, even though it requires a high computing 

platform. Santos et al. compared the performance of three CNN algorithms to detect tree species using an RGB 

camera on an Unmanned Aerial Vehicle (UAV) [1]. Faster R-CNN [2], YOLOv3 [3], and RetinaNet [4] were 

evaluated using a folding approach and successfully reached over 82.48 % validation accuracy. However, the 

detection process was offline, used an off-board computing platform, and was not performed in real-time. 

In typical humanoid robotics applications, such as soccer-playing, marathon running, and obstacle 

avoidance, both of real-time performance and accuracy are crucial. In such cases, CNN algorithms prove 

challenging as robots require onboard computers capable of running such algorithms. Researchers address this 

by proposing embedded GPU modules or deep learning hardware accelerators. An embedded GPU NVIDIA 

Jetson TX1 on a humanoid robot to run YOLOv2 for ball and goal position detection on the soccer robot is 

introduced in [5]. By applying this approach, the detection process reaches 20 FPS and a training accuracy of 

over 60%. Further, [6] proposes two hardware options for deep learning object detection on a flying robot. 

With these methods, the detection speed reaches 8 FPS using Jetson TX1 with a Single Shot Detector (SSD) 

model and 5 FPS using the SSD Mobile Net model, implemented on Raspberry Pi with an additional Intel 

Neural Compute Stick (NCS) accelerator. 
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Some researchers address the problem through an efficient CNN algorithm, reducing the architecture 

and proposing an optimize region proposal layer. A region proposal layer that consists of efficient on-line 

convolutions and effective off-line optimization, followed by a detection layer using an MPGA-based CNN 

module and a TLD-based multi-frame fusion procedure, is proposed in [7]. The proposed approach results in 

robust and efficient detection without relying on GPU computation. A simplified CNN architecture, called 

FLODNet, which consists of seven convolution and max-pooling layers, followed by three fully connected 

layers, is described in [8]. The proposed architecture requires only 95 MB parameters and can be suitably run 

on a laptop CPU with detection speed around 8.85 FPS.  

Our research focuses on addressing a problem in the humanoid robot marathon competition that 

requires a robot to detect three different markers, each a different symbol in the same dominant color. A marker 

must be identified using the robot camera in real-time, due it is used as feedback for the robot behavior 

controller. In this research, we propose a two-stage detection approach. On the first stage detection, a new 

method of region proposal, using a color segmentation technique, is proposed to extract a region of the object. 

The second is classifying the region using a shallow CNN classifier that consists of 10 layers with 83 MB 

parameters. The proposed approach is fast, accurate, and does not require GPU or hardware accelerator for 

inferencing the algorithm. The GPU only used for training the CNN classifier. 

This paper is organized as follows. Section 2 explains the method for conducting this research, starting 

with an introduction of the research environment, followed by the dataset collection process, then an 

explanation of the novel region proposal algorithm, the proposed CNN architecture, and lastly, the method to 

train and validate the classifier. Section 3 explains in detail the results of our research, starting with the region 

proposal, training and validation, inference on the robot computer, and comparisons with previous work. 

Section 4 outlines the main conclusions and an avenue for further research. 

 

2. RESEARCH METHOD  

This research was conducted beginning with dataset collection, followed by designing a region 

proposal algorithm and developing a CNN classifier architecture. The performance evaluation was then applied 

to measure the classification accuracy and detection speed of the proposed method. 

 

2.1.  Research Environment 

The Federation of International Robot-soccer Association (FIRA) humanoid marathon competition 

was selected as a research benchmark for our object detection algorithm. In the marathon competition, a 

humanoid robot must able to recognize a line and a series of markers. A marker is a 10 cm x 10 cm sign for 

the robot to navigate in following the right track, consisting of three different directions (forward, left, and 

right). The robot must be able to recognize these markers and localize the position in the camera frame. Figure 

1 illustrates an example of a marathon competition. 

We used a modified version of the Darwin OP robot, which has 22 degrees of freedom [9]. A 

modification was applied by adding two grippers to the end effector of the robot arm, changing the default 

camera to the high-resolution web camera (Logitech C920), and changing the processing unit into a mini-

computer with an Intel Core i3 processor. The robot architecture and specifications are shown in Figure 2 and 

Table 1. 

 

 

 
Figure 1. Humanoid robot in the FIRA marathon competition. 
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(a) (b) 

Figure 2. (a) Mechanical design of the robot (b) real view of the robot. 

 

Table 1. Humanoid robot specification. 
Specification Value 

Height 450 mm 

Weight 3 Kg 

Battery 4-cell LiPo (14.8V, 2200mAh) 
Main Controller Intel NUC i3-5010U CPU @ 2.10GHz,  

RAM 4GB, SSD 250GB 

Sub Controller CM730, ARM Cortex M3 @ 72MHz 
IMU Sensor Gyro L3G4200D, Accelerometer LIS331DLH 

Vision Sensor Logitech C922 Pro 

Actuator 22 x Robotics MX-28 Servo 

 

2.2.  Dataset Collection 

The image dataset was collected from two different sources containing a total of 3,486 images. The 

first dataset was collected from the marathon field in our lab (Educational Robotics Centre, National Taiwan 

Normal University) using the robot camera and contains 660 images. The second dataset, containing 2,826 

images, was collected from the marathon track of the Taiwan Humanoid 2019 robot competition and captured 

using a phone camera across different distances and perspectives. The image datasets were manually cropped 

by picture editor software to contain only the markers. These images were used as training data for our classifier 

model.  

In order to increase the variation of the dataset, we created synthetic image data from the original 

images using an image augmentation method [10] by applying image transformations, diversifying brightness, 

changing contrast value, and placing random black rectangles on the images. Figure 3(a) shows an example of 

an image from the robot camera, Figure 3(b) a cropped image, and Figure 3(c) a synthetic image from the data 

augmentation. 

Overall, the dataset contains 55,776 images from both of the original datasets and image augmentation 

results. The dataset distribution of each class is 17,696 images (31.727%) of forward markers, 18,000 images 

(32.272%) of right markers, and 20,080 images (36.001%) of left markers.  

 

 

    

  
  

(a) (b) (c) 

Figure 3. (a) Raw image (b) cropped images (c) synthetic images. 
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2.3.  Color-Based Region Proposal 

Region proposal is commonly used to propose a region that contains a potential object for the two-

stages of the object detection algorithm. Prior work in [11] proposed a selective search algorithm for generating 

possible object locations, and it has been used with the state of the art R-CNN algorithm [12]. In contrast, a 

selective search algorithm creates a bottleneck, extracting 2,000 candidate regions and classifying each. In this 

work, we proposed a simple region proposal algorithm by using color segmentation. We assume that each 

image frame contains a single object with a dominant color that can be identified by classifying color. For 

marker detection, the marker has a dominant color, black or white. The black color is chosen as a reference 

color to propose a region of interest (ROI) of the object. A pipeline for color-based region proposal is shown 

in Figure 4.  

 

 
Figure 4. Region proposal pipeline. 

 

A raw image is captured from the robot camera in red, green, blue (RGB) color space and converted 

to hue, saturation, and value (HSV) color space. HSV color conversion is started by normalizing the R, G, and 

B color channels as follows: 

 

𝑅′ =
𝑅

255
          (1) 

 

𝐺′ =
𝐺

255
          (2) 

 

𝐵′ =
𝐵

255
          (3) 

 

𝑅, 𝐺, and 𝐵 are the red, green, and blue color intensities, respectively, in RGB color space in the range 

of 0–255 and 𝑅′, 𝐺′, and 𝐵′ are normalized red, green, and blue color intensities, respectively, in the range of 

0–1. From the normalized RGB color space, a range of minimum and maximum value (∆) can be calculated as 

follows: 

  

𝐶𝑚𝑖𝑛 = min(𝑅′, 𝐺′, 𝐵′)        (4) 

 

𝐶𝑚𝑎𝑥 = max(𝑅′, 𝐺′, 𝐵′)        (5) 

 

∆= 𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛         (6) 

 

𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 represent the minimum and maximum value of the normalized RGB color space. Hue 

(𝐻), saturation (𝑆), and value (𝑉) of HSV color space are defined in (7), (8), and (9). 

 

𝐻 =

{
 
 

 
 

0𝑜 , ∆= 0

60𝑜 (
𝐺′−𝐵′

∆
𝑚𝑜𝑑(6)) , 𝐶𝑚𝑎𝑥 = 𝑅′

60𝑜 (
𝐵′−𝑅′

∆
+ 2) , 𝐶𝑚𝑎𝑥 = 𝐺′

60𝑜 (
𝑅′−𝐺′

∆
+ 4) , 𝐶𝑚𝑎𝑥 = 𝐵′

      (7) 

 

𝑆 = {
0, 𝐶𝑚𝑎𝑥 = 0

∆

𝐶𝑚𝑎𝑥
, 𝐶𝑚𝑎𝑥 ≠ 0

        (8) 

 

𝑉 = 𝐶𝑚𝑎𝑥          (9) 

 

In order to apply color classification, an HSV color space image is converted into a binary image by 

applying a color thresholding function in (10). 

 

𝑓(𝑥, 𝑦) = {
255, 𝐻𝑚𝑖𝑛 < 𝐻 ≤ 𝐻𝑚𝑎𝑥  𝐴𝑁𝐷 𝑆𝑚𝑖𝑛 < 𝑆 ≤ 𝑆𝑚𝑎𝑥  𝐴𝑁𝐷 𝑉𝑚𝑖𝑛 < 𝑉 ≤ 𝑉𝑚𝑎𝑥
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 
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𝐻𝑚𝑖𝑛, 𝑆𝑚𝑖𝑛 , and 𝑉𝑚𝑖𝑛  are minimum threshold parameters and 𝐻𝑚𝑎𝑥, 𝑆𝑚𝑎𝑥, and 𝑆𝑚𝑎𝑥  are maximum 

threshold parameters for each 𝐻, 𝑆, and 𝑉 value in pixel coordinates 𝑥 and 𝑦. The color thresholding process 

will result in either 0 or 255, where 0 indicates a black pixel and 255 a white pixel. A group of white pixels on 

a binary image (contour) is selected based on the area and ratio of the width and height to get an ROI of the 

potential object. The parameters of the area and the ratio of width and height are predefined and adjusted 

manually. The contour that matches the predefined parameter is cropped from the raw RGB image, resize to 

100 x 100 pixels, then converted into grayscale color space to reduce the number of color channels. The gray 

color intensity (𝑌) is defined as follows: 

 

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵       (11) 

 

This grayscale image is the output of the region proposal algorithm and becomes the input for the 

CNN classifier to predict the class of an object. 

 

2.4.  Convolutional Neural Network Classifier 

   

 
Figure 5. CNN classifier architecture. 

 

A CNN classifier is used to predict the class of the proposed region by the color-based region proposer 

in Section 2.3. Generally, a CNN classifier consists of a convolution layer, a subsampling/polling layer, and a 

dense/fully connected layer. Our CNN architecture is adopted from classical CNN architecture LeNet-5  [13] 

and adds an extra dropout layer to the dense layer. The CNN architecture is detailed in Figure 5. 

Here, 𝑙 is the layer number in the CNN architecture, 𝑎[𝑙−1] the previous input layer, 𝑊 [𝑙] the 

convolution filter or weight, and 𝑏[𝑙] the bias. The output of the convolution layer 𝑎[𝑙] can be formulated as: 

 

𝑧[𝑙] = 𝑊[𝑙] ∗ 𝑎[𝑙−1] + 𝑏[𝑙]        (12) 

 

𝑔(𝑧[𝑙]) = max(0, 𝑧[𝑙])        (13) 

 

𝑎[𝑙] = 𝑔(𝑧[𝑙])         (14) 

 

Where 𝑧[𝑙] is the result of the convolution operation previous layer with weight and added bias 

parameter. 𝑧[𝑙] is mapped onto the next layer 𝑎[𝑙] by applying the non-linear activation function ReLU 𝑔(𝑧[𝑙]). 

The dimension of the convolution layer output is represented as (𝑛ℎ
[𝑙]
× 𝑛𝑤

[𝑙]
× 𝑛𝑐

[𝑙]
) tensor, where 𝑛𝑐

[𝑙]
 is the 

number of the convolution filter, 𝑛ℎ
[𝑙]

 and 𝑛𝑤
[𝑙]

 are height and width of output tensor, that defined as: 

 

𝑛ℎ
[𝑙]
=

𝑛ℎ
[𝑙−1]

+2𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙]
+ 1        (15) 

 

𝑛𝑤
[𝑙]
=

𝑛𝑤
[𝑙−1]

+2𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙]
+ 1        (16) 
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Where 𝑓[𝑙] is filter size, 𝑝[𝑙] padding size, and 𝑠[𝑙] the stride of the convolution filter. The convolution 

layer is followed by a max-pooling layer that selects a maximum value from the previous layer with specific 

window size and stride. The dimension of the max-pooling output is represented as (𝑛ℎ
[𝑙]
× 𝑛𝑤

[𝑙]
× 𝑛𝑐

[𝑙]
) tensor, 

where 𝑛𝑐
[𝑙]

 is same as 𝑛𝑐
[𝑙−1]

, 𝑛ℎ
[𝑙]

 and 𝑛𝑤
[𝑙]

  are: 

 

𝑛ℎ
[𝑙]
=

𝑛ℎ
[𝑙−1]

−𝑓[𝑙]

𝑠[𝑙]
+ 1        (17) 

 

𝑛𝑤
[𝑙]
=

𝑛𝑤
[𝑙−1]

−𝑓[𝑙]

𝑠[𝑙]
+ 1        (18) 

 

The output tensor of the last max-pooling layer is flattened into a 1D vector to be an input neuron in 

the dense layer. We added a dropout layer before the output layer to reduce overfitting in the training process 

[14]. The dropout layer discards neurons with probability less than the rate (𝑟). In the output layer, a softmax 

activation function is used to predict the class of input images, defined as follows: 

 

𝑔(𝑧[𝑙]) =
𝑒𝑧
[𝑙]

∑ 𝑒𝑧
[𝑙]𝑐

𝑗=1

        (19) 

 

Where 𝑒 is the exponential number and 𝑐 the number of classes. The predicted output of the CNN 

classifier (�̂�) is taken from the output of the softmax activation function. The loss function between predicted 

output and truth label is calculated using categorical cross-entropy loss in (20). 

 

𝐿(𝑦, �̂�) = −∑ 𝑦𝑗 log (�̂�𝑗)
𝑐
𝑗=1        (20) 

 

The cost function 𝐽 in (21) is used to measure the performance of the CNN classifier, provided weight 

parameter (𝑊), bias parameter (𝑏), and the number of training examples (𝑚). For better performance, 𝑊 and 

𝑏 parameters are updated in several numbers of iteration using a stochastic optimization algorithm to get the 

minimum value of 𝐽. This process usually called the learning phase or backpropagation step. 

 

𝐽 =
1

𝑚
∑ 𝐿(�̂�𝑗, 𝑦𝑗)
𝑚
𝑗=1         (21) 

 

In this research, Adam [15] is used as the optimization algorithm. Adam has a parameter learning rate 

(𝛼), decay rate for first moment estimates (𝛽1), decay rate for second-moment estimates (𝛽2), and a small 

number (𝜖) to prevent division error. The learning parameter is adjusted manually for a faster training process 

and better performance of the CNN classifier. 

 

2.5.  Training and Validation 

K-fold cross-validation [16] is used to evaluate the performance of the CNN classifier in the training 

stage. First, the dataset is split—90% training data and 10% testing data. In the training stage, training data is 

split into five-folds (Figure 6). We used five classifiers with the same architecture, and each classifier uses 

four-folds for training and one-fold for validation. We also varied the learning rate parameter to expedite the 

training process and performance. The performance of the classifier was measured by averaging the training 

accuracy and validation accuracy from those classifiers. In the testing stage, the final performance of the 

classifier was evaluated by picking the ideal classifier and testing it with a dataset that was never used in the 

learning phase. The training stage used a computer with GPU with detail specification is listed in Table 2. In 

the inference stage, the ideal classifier was used on the robot computer with an input image from the robot 

camera to evaluate the performance of the classifier’s processing time. 

 

Table 2. Computer specification for training CNN. 
Hardware Specification 

Processor Intel(R) Core(TM) i7-8750H CPU@2.20GHz, 6 CPU Cores 
RAM 16 GB 

Hard disk SSD 234 GB 

GPU GeForce GTX 1070, 1920 CUDA Cores 
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Figure 6. Dataset for training and testing process.  

 

3. RESULTS AND DISCUSSION  

3.1.  Region Proposal Results 

Figure 7 illustrates the result of the color-based region proposal algorithm with parameters 𝐻𝑚𝑖𝑛  = 26, 

𝑆𝑚𝑖𝑛  = 29, 𝑉𝑚𝑖𝑛 = 55, 𝐻𝑚𝑎𝑥 = 121, 𝑆𝑚𝑎𝑥  = 255, 𝑉𝑚𝑎𝑥 = 121, 𝐴𝑟𝑒𝑎𝑚𝑖𝑛  = 4,651, and 𝐴𝑟𝑒𝑎𝑚𝑎𝑥  = 37,500. Figure 

7(a) shows the color thresholding process that results in a binary image. Figure 7(b) is a proposed region 

successfully cropped from the raw image and containing a potential object. In this case, the region proposal 

parameter depends on environmental lighting conditions and must be adjusted manually for a proper region. 

Some slight noise remains from the color thresholding process (Figure 7(a)) and can be removed by adjusting 

the parameters 𝐴𝑟𝑒𝑎𝑚𝑖𝑛  and 𝐴𝑟𝑒𝑎𝑚𝑎𝑥. 

 

  

  

  
(a) (b) 

Figure 7. (a) Binary thresholding result (b) a proposed region of the potential object. 
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3.2.  Training and Evaluation Results 

Figure 8 illustrates the result of the loss function (21) during the training phase using an Adam 

optimization algorithm with learning parameters 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 0.1, and varying learning rate (𝛼). 

Figure 8(a) demonstrates that training loss drops significantly after several epochs, where 𝛼 = 0.001 is the 

proper learning rate and can decrease to less than 0.2 after two epochs. On the other hand, a small 𝛼 requires 

the training algorithm more epoch to converge, as shown in Figure 8(c) where 𝛼 = 0.00001—the algorithm 

takes more epochs to reduce loss function compared to Figures 8(a) and 8(b). In this research, the time to learn 

per 1 epoch is 6 seconds using batch size = 500 images while training. By choosing the proper parameters, as 

in Figure 8(a), the learning phase takes 12 seconds to generate a proper classifier model using a training 

computer, as described in Table 2. 

Table 3 shows an evaluation of the accuracy of CNN classifier during the training process. Overall, 

the training and validation accuracy increase above 98.652% during training and above 99.550% during 

validation. By using 𝛼 = 0.001, the accuracy increases the most, at 99.929% in training and 99.924% in the 

validation. This result suggests that learning rate 𝛼 = 0.001 is the ideal parameter in the training phase, resulting 

in a faster training process and a more accurate classifier. 

The confusion matrix from the classification result is illustrated in Figure 9, where the ideal classifier 

with 𝛼 = 0.001 is used to predict a test dataset. Overall, test accuracy is 99.821% in the test set, which generated 

ten misclassified results: a forward marker predicted as a right marker, four right markers predicted as a left 

marker, and five left markers predicted as a right marker. This result shows that the classifier fits with the 

model as both validation and test accuracy result in values above 99%. 

 

  
(a) (b) 

 
(c) 

Figure 8. Loss value during the training phase. 
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Table 3. Training and validation accuracy. 
Learning Parameter Training Acc. Validation Acc. 

𝛼 = 0.001 99.929 % 99.924 % 

𝛼 = 0.0001 99.889 % 99.888 % 

𝛼 = 0.00001 98.652 % 99.550 % 

 

 
Figure 9. Confusion matrix of classification on the test dataset. 

 

3.3.  Inference Results 

The inference results for our object detection approach were evaluated on robot computing hardware 

(Figure 10) for each marker: left, right, and forward. The marker object is identified and delimited by the green 

bounding box, while text at the top left corner of the image shows the predicted label from the CNN classifier. 

Based on the experimental results, the algorithm is capable of recognizing a marker object on different 

backgrounds. To evaluate the processing speed, we used a statistical approach with ten sampling measurements 

to determine the average processing time of our algorithm. Based on the measurement, it takes an average of 

24.313 ms or 41.13 FPS to process one frame image, excluding the process of acquiring the image from the 

camera device. 

 

   

   
(a) (b) (c) 

Figure 10. (a) Left marker, (b) right marker, and (c) forward marker.  
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3.4.  Comparison Benchmark 

Table 4 shown a comparison benchmark of our approach to prior work by researchers. Based on the 

comparison, our approach is the fastest algorithm, reaching 41.13 FPS compares to previous approaches, even 

while runs on an Intel Core i3 CPU. Moreover, the validation accuracy is the highest compared to other 

approaches. 

 

Table 4. Comparison benchmark with the prior work. 

Method Object Classes Inference Hardware CNN Model 
Detection 

Speed 

Validation 

Accuracy 

Santos et al. [1] Tree species Intel Xeon CPU 
E3-1270@3.80GHz,  

NVIDIA Titan V 

Faster R-CNN 6.13 FPS 82.48 % 
YOLOv3 38.46 FPS 85.88 % 

RetinaNet 14.93 FPS 92.64 % 

Susanto et al. [5] Ball and goal NVIDIA Jetson TX1 YOLOv2 20 FPS 60.00 % 
Hossain and Lee 

[6] 

Multiple objects NVIDIA Jetson TX2 YOLOv2 7 FPS - 

YOLOv2 Tiny 15 FPS - 

YOLOv3 3 FPS - 

YOLOv3 Tiny 12 FPS - 

SSD 11 FPS - 

Raspberry Pi + Movidius NCS YOLO 1 FPS - 
SSD MobileNet 5 FPS - 

Oliveira et al. [8] Foods Intel Core i7-3610QM CPU FLODNet +  

Sliding Window 

0.16 FPS - 

FLODNet +  

Conv. Feature 

Map 

8.85 FPS - 

Proposed 

Method 

Marathon 

marker 

Intel NUC i3-5010U 

CPU@2.10GHz 

Color-based  

region proposal 

+  

CNN Classifier 

41.13 FPS 99.92 % 

 

4. CONCLUSION  

In this paper, two stages of a CNN-based object detection algorithm are introduced to solve an object 

detection problem within a typical humanoid marathon robot competition. The detection algorithm consists of 

a color-based region proposal, and CNN classifier with six convolution and max-pooling layers, followed by 

four dense layers. An Adam optimizer is used to optimize the classifier model with a dataset that was collected 

and augmented. In the experimental results, the proposed algorithm was able to detect three categories of 

markers with a training accuracy of 99.929%, validation accuracy of 99.924%, and test accuracy of 99.821%. 

The algorithm can be implemented on an onboard robot computer with an Intel i3-5010U CPU @ 2.10GHz 

with a maximum detection speed of 41.13 FPS. However, setting up the color segmentation parameters should 

be further considered and is an area for future work. 
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