Bulletin of Electrical Engineering and Informatics
Vol. 9, No. 5, October 2020, pp. 1990~1997
ISSN: 2302-9285, DOI: 10.11591/eei.v9i5.1978 a 1990

Cloud-based middleware for supporting batch and stream
access over smart healthcare wearable device

Adhitya Bhawiyuga', Satria Adi Kharisma?, Bagus Jati Santoso®, Dany Primanita Kartikasari*, Annisa
Puspa Kirana’
12 4Faculty of Computer Science, Brawijaya University, Indonesia
3Department of Informatics, Institut Teknologi Sepuluh Nopember, Indonesia
>Department of Informatics, State Polytechnic of Malang, Indonesia

Article Info ABSTRACT

Article history: In IoT-based smart healthcare services, the heterogeneity of connected wearable
Received Dec 4. 2019 sensing devices open up a wide opportunity to develop various healthcare services.
. ’ However, it also poses an interoperability challenge since each sensing device and ap-
Revised Feb 18, 2020 . i L . .
plication may have different communication mechanisms. Considering that challenge,
Accepted Mar 22, 2020 web platform can be seen as a promising candidate for providing an interoperability
layer as we can abstract various devices as single representation i.e. web resource.
Keywords: In this paper, we propose the design of middleware for enabling efficient web of things
access over healthcare wearable devices. The proposed middleware consists of three

Batch . components: gateway-to-cloud device, messaging service and data access interface.
Internet of things The gateway-to-cloud device has a role to perform low level sensor data collection
Middleware from various wearable sensing device through bluetooth low energy (BLE) commu-
Stream nication protocol. Collected data are then relayed to the cloud IoT platform using a

lightweight MQTT messaging protocol. In order to provide device abstraction along
with access to the stored data, the system offers two kind of interfaces: the Rest-
ful HTTP identified by unique universal resource locator (URL) for batch access and
MQTT websocket interface identified by unique topic to accommodate access on sens-
ing data in near real time stream manner.

This is an open access article under the CC BY-SA license.

©NoI®

Corresponding Author:

Adhitya Bhawiyuga,

Faculty of Computer Science,

Brawijaya University,

Jalan Veteran No. 8, Malang, East Java, Indonesia.
Email: bhawiyuga@ub.ac.id

1. INTRODUCTION

In recent years, the internet of things (IoT) has been one of the key enabling technology of the Indus-
trial Revolution 4.0. In general, an IoT based system consists of several pervasive and ubiquitous computing
devices equipped with sensing and communication capabilities for performing a continuous environmental
data acquisition [1]. On top of those acquired data, we can possibly develop any smart services ranging from
convenience to life-critical applications.[2, 3].

An IoT based smart healthcare is one of the promising services to be developed due to its important
impact on human life [4, 5]. In this kind of service, a number of wearable sensing devices as mentioned in [6]
including electrocardiograph (ECG) [7], photoplethysmogram (PPG) [8] or pedometer [9] are attached to hu-

Journal homepage: http://beei.org

Bulletin of Electr Eng & Inf ISSN: 2302-9285) 1991

man body for performing a periodic collective biosignal data collection through communication protocols such
as BLE [10], LoRa [11] or Wifi [12]. This mechanism can be then combined with various data analytic meth-
ods to provide either personal health monitoring and assistance [13]. Furthermore, the collected data can be
utilized by doctor to precisely diagnose a disease and decide its correct medication [14].

Despite its promising utilization, an IoT-based smart healthcare poses a challenge regarding to how
the biosignal data are efficiently collected and accessed [15]. On one side, as the wearable sensing devices
becoming more heterogeneous, it may opens a possibility to develop more interesting and useful smart health-
care services. However, on the other side, its heterogeneity may poses additional challenge to the developer
for developing an application since he/she must deal with different device communication mechanism [16].
Furthermore, there is a possibility that the stored data collections are accessed as batch or stream depending
on the application requirement. For instance, the heart rate variability detection service requires that the ECG
measurement data is accessed in a near real-time stream fashion [17]. However, the daily fitness assistance ser-
vice may access the user data collectively each day using batch mode. Therefore, in this case, a middleware is
required to provide an interoperability layer between various wearable sensing devices and applications taking
into account several requirements such as data management and device abstraction [18, 19].

Considering the stated issues and requirements, the web platform can be seen as a promising candidate
to provide an interoperability layer between various sensing devices and applications thanks to its massive
adoption in the current Internet era [20]. The integration between web platform and IoT technology leads to
a conceptual change from the internet to the Web of things (WoT). In WoT concept, every device, regardless
of its data format or underlying communication protocol is abstracted as web resource [21]. With this kind of
programming abstraction, a developer can have a broaden possibility to make use of available health sensing
data to develop various attractive applications running on almost any kind of platform including web and native
applications [22]. In a broader perspective, the WoT concept also offers a further integration between the
existing medical record data owned by hospital and government agency with a more personal smart healthcare
service supported by various wearable sensing device.

In this paper, we propose the design of cloud-based middleware for enabling the efficient web of things
access over healthcare wearable devices with both batch and stream data access support. The proposed mid-
dleware consists of three components: gateway-to-cloud device, messaging service and data access interface.
The gateway-to-cloud device has an important role to perform low level sensor data collection from various
wearable sensing device through BLE communication protocol. The collected data are then relayed to the cloud
IoT platform using a more lightweight MQTT messaging protocol instead of HTTP [23]. In order to provide
device abstraction along with access to the stored data, the system offers two kind of interfaces : the Restful
HTTP identified by unique universal resource locator (URL) for batch access mode and MQTT websocket
interface identified by unique topic to accommodate access on sensing data in near real time stream manner.

2. RELATED WORK

In literature, there exist several works that deal with the development of WoT based middleware.
In [24] authors proposed the Restful middleware for enabling web of medical things. The proposed middleware
consists of several components including the communication manager, device manager, and Restful web server.
The communication manager handles sensing data transfer from various devices using BLE and Wifi protocol
which is then synced to the cloud data center using standard HTTP protocol. The synced data can be then
accessed by user or other apps through the Restful web server. In previous study, we proposed the design of
IoT-cloud platform for integrating both IoT devices and cloud entity [25]. The proposed platform utilized the
Restful HTTP protocol as device-to-cloud data endpoint interface between cloud systems and IoT devices.

While the previous works offer the implementation of WoT middleware, however, the proposed mid-
dleware do not consider the real-time sensor streaming data as it only provides the Restful HTTP interface
in which the application is required to send a periodic message to the cloud for obtaining the latest sensing
data. In some cases, an application requires a real-time data analytic provided by time-critical wearable sensors
such as electrocardiogram (ECG) or electroencephalogram (EEG). Furthermore, the synchronization between
device manager and the cloud is performed using standard HTTP which causes an additional overhead since
every sync activity requires a TCP handshaking for initializing a connection. Therefore, in this case, we require
a WoT middleware that supports both real-time data access in one side and lightweight data synchronization

Cloud-based middleware for supporting batch and stream access... (Adhitya Bhawiyuga)

1992 a

ISSN: 2302-9285

3. PROPOSED MIDDLEWARE

This section explains the design of the middleware system. Figure 1 shows the general architecture of

middleware with three main actors:

a. Sensor devices e.x. ECG, EEG, blood pressure as a data producer

b. Client application as data consumer

c. Proposed middleware as a communication bridge between data producer and consumer.

Sensor Device

Middleware

Client App.

Heart Rate
Sensor 1

Heart Rate
Sensor 2

ﬂ}ateway

Messaging Service Data Accesslnten‘z@

Database ;

J

Non-Real time
application

L

Slveam'r —

Real time
application

Figure 1. General system archutecture

3.1. System architecture
The proposed middleware itself consists of three components: gateway-to-cloud device, messaging
service and data access interface.

3.1.1. Device-to-cloud gateway

The gateway device runs on a Raspberry Pi, connected to sensors device and cloud. As a device
manager of the middleware, gateway has a role to manage connection and data transmission across different
sensor device to middleware using BLE protocol. To achieve this purpose, the gateway first scan a nearby
sensor devices and make a connection. Once the connention established, the gateway acting as the BLE client
and retrieve sensing data from sensor device. Upon the reception, the gateway send those data as a message to
the cloud using MQTT messaging protocol.

3.1.2. Messaging service

Messaging service run on the cloud. It has a role to receive messages that previously sent from the
gateway, store those messages in a database and provide the stream access to the client using MQTT protocol.
There are two main module inside this component that is MQTT broker and storage subscriber. The MQTT
broker receives the message containing sensing data from gateway device and relay those messages to both
storage subscriber and stream interface client app.

3.1.3. Data access interface

Data access interface runs on the cloud. It has a role to provide an access to the stored data for client
applications. Data access interface has two kind access that is batch access and stream access. Batch interface
is designed as a webservice with Restful HTTP architecture to provide data access in a non-real time manner.
Stream interfaces is designed with the websocket to provide data access in a real-time manner using MQTT
over websocket.

3.2. Data pipeline

Figures 2 and 3 illustrate the sequence of data starting from sensing devices to the non-stream real time
client app using batch and stream data access mechanism respectively. At first, the sensor periodically emits
its measurement to a gateway device which then relays those data to cloud messaging service using MQTT
protocol. Upon reception, the broker component routes the data to subscriber entities depending on the data
access mechanism.

For batch case, sensing data are relayed to a cloud based storage subscriber which then store those
data to a database service. The stored data can be then accessed by non-real time client apps through HTTP
request-response methodology. On the other hand, for stream case, sensing data can be directly routed to real
time client apps through an MQTT topic subscription mechanism without passing a database service.

Bulletin of Electr Eng & Inf, Vol. 9, No. 5, October 2020 : 1990 — 1997

Bulletin of Electr Eng & Inf ISSN: 2302-9285

m)

1993

Non-real

Storage time

Sensor "
‘ Service MQTT Subscriber

Device

Messaging ‘

‘ Database Access

Batch ‘

‘ [Gateway ‘

Req_Data :
: {characteristics) :
Data
(value)

quker Interface

readData
(value) mgqttSubscribe

(topic) insert

topic,value) :
mqttPublish M

(topic,value)

findbyUrl
notify)

(topic,value)
—

get(url) :

send

(value)
—_—

respond
(value)

Figure 2. Batch data access pipeline

Client App.

Sensor
Device

‘ ‘ Gateway ‘

Messaging
Service MQTT

Stream
Access

Real time
Client App.

Broker Interface

; Req_Data :
: (characteristics) ,
Data

value) readData
() (value) "
ibe

: B (topic)

q ibe
mqttPublish (topic)

(topic,value) notify

(topic,value) notify

(topic,value)

Figure 3. Stream data access interface

3.3. Device abstraction and data structure

In order to provide an unified abstraction of various devices, we represent a gateway, device together
with its attached sensor in an hierarchical manner as presented in Figure 4. For batch case, each device is
represented as unique HTTP URL while for stream case, every single device is represented as a distinct MQTT
topic. Notice that, if a sensor is directly attached to a single device or gateway, it can be represented using the
’root” name for both URL and topic. For storing various sensing data value, we utilize a key-value pair data
structure represented in JSON format. The “’key” part represents the sensor unique name, while the “’value”
part represents the sensing data measurement result.

Sensor

Device

blood_pressure

blood_pressure

O

e @
J device_11

(@

heart_rate

single_device/
gateway_devic

@

heart_rate

Gateway

Gateway 1

Device
Abstraction

Payload

Stream
represented as topic

r /gw_1/device_1/

http://middleware
¥ .hayolo.tech
/gw_1/device_1/
Batch
represented as URL

bp1 : 140,
bp1: 154,
hr1 : 160,

bp1 : 140,

bp1: 154,

hr1 : 160,
}

Figure 4. Batch and stream device abstraction and data structure

Cloud-based middleware for supporting batch and stream access... (Adhitya Bhawiyuga)

1994 a ISSN: 2302-9285

4. RESULT AND ANALYSIS
In this section we present the result and analysis of proposed system in term performance testing.

4.1. Testing environment

System design and implementation are tested in an environment depicted by Figure 5. Based on
Figure 5, testing environment consists of three sections, they are sensing devices, middleware, and client appli-
cation. There are two sensing devices called ESP32 which have a Bluetooth interface with a physical address
as 3C:71:BF:9C:FF:1A and 30:AE:A4:42:2C:A2, and play a role as a BLE server. Then as for the middleware
section, the section is divided into two parts which are called gateway and cloud. The gateway itself is imple-
mented in Raspberry Pi which consists of a Bluetooth interface with the address as B8:27:EB:2A:A2:54. Along
with that, the gateway also consists of a wireless network interface with a dynamic public IP address. While
the testing is conducted, the gateway obtains a public IP address as 140.213.56.50. Beside of the gateway part,
the cloud part of middleware is implemented in the virtual instance in Google Cloud Platform, addressed by
a domain name as middleware.hayolo.tech and the IP address 35.188.201.80. The virtual instance is located
in us-centrall-a zone in Council Bluffs city, US. Finally the last section is client app which is used to conduct
some tests. It has the same IP address as the gateway.

Sensing Device Middleware Client App

ble:3C:71BFOCFF1A

GET Request

F— T
o get data! ! Publisher I I
i 2
Stream Subscribe Li

aptop
public ip: 140.213.56.50

! publicip: 140.21356.50 : middleware hayolotech |
ble: 30:AEA4:422C:A2 ! ble:B827'-EB2A'/A254 | vpc:35.188.201.80 !

Figure 5. Testing environment

4.2. Performance testing
We test the middleware in three performance metrics including batch data access latency, concurrent
connection throughput, and end-to-end stream data delay.

4.2.1. Batch data access latency

The purpose of this test is to measure the performance of proposed middleware in term of batch
historical data access latency for various requested data size i.e. 0.5MB, IMB, 5SMB and 10MB. In order to
perform this test, we generate 50 concurrent HTTP connections using JMeter tool. From Figure 6, we obtain
that as the response time rises significantly as size of requested data increases. However, the result still shows
a decent performance since with the 10MB data size, the middleware can serve the request with latency around
100ms which is still satisfy most of historical data processing requirement.

4.2.2. End-to-end stream data delay

This test is performed to compare the delay of stream data delivery and access on two different
approach : using MQTT protocol as proposed in this paper as well as using HTTP as mentioned in [24].
In order to perform this test, we develop an application that retrieves the sensing data using both MQTT and
HTTP protocols with various data retrieval periods i.e. 1s, 1.25s, 1.5s, 1.75s and 2s. From result presented in
Figure 7, we obtain that proposed MQTT implementation can significantly reduce the retrieval delay up to 52
percent on average of all scenarios.

4.2.3. Concurrent connection throughput

The goal of this test is to measure the number of concurrent requests than can be handled by the
proposed middleware for each second. In order to perform this test, we generate various amount of concurrent
connections i.e. 500, 1000, 1500 and 2000 for both batch and stream functionality. From Figure 8 we obtain
that the proposed stream data access mechanism can still handle up to 172 requests/second which outperforms
the existing batch only mechanism in 2000 concurrent connections scenario.

Bulletin of Electr Eng & Inf, Vol. 9, No. 5, October 2020 : 1990 — 1997

Bulletin of Electr Eng & Inf ISSN: 2302-9285

m)

1995

Latency(s)

Figure 6.

Delay(s)

Figure 7.

Throughput(req/s)

Batch Data Access Latency
100

75
50

25

0.5MB 1MB 5MB 10MB

Data size(MB)

Batch data access response time for various requested data size

End-to-end delay stream data delay
== HTTP == MQTT
1.25

0.75

0.5

0.25

1 1.25 15 1.75 2

Data retrieval period(s)

End-to-end stream data delay for various data retrieval periods

Throughput on concurrent user connection
== Batch == Stream
200
150

100

50

0
500 1000 1500 2000

Concurrent user

Figure 8. Throughput for various concurrent connections

5. CONCLUSION

In this paper we proposed the design of cloud based middleware for enabling the efficient web of
things access over healthcare wearable devices with both batch and stream data access support. The proposed
middleware consists of three components: gateway-to-cloud device, messaging service, and data access in-
terface. The gateway-to-cloud device has an important role to perform low level sensor data collection from
various wearable sensing device through BLE communication protocol. The collected data are then relayed
to the cloud IoT platform using a more lightweight MQTT messaging protocol instead of HTTP. In order to
provide device abstraction along with access to the stored data, the system offers two kind of interfaces : the

Cloud-based middleware for supporting batch and stream access... (Adhitya Bhawiyuga)

1996 a ISSN: 2302-9285

Restful HTTP identified by a unique URL for batch access mode and MQTT websocket interface identified by
unique topic to accommodate access on sensing data in a near real time stream manner. From the testing result,
we can conclude that the proposed middleware is able to provide an interoperability layer between devices and
application in both stream and batch manners with reasonable performance.

ACKNOWLEDGEMENT
The acknowledgment section is optional. The funding source of the research can be put here.

REFERENCES

[1] Atzori, L., Iera, A., and Morabito, G., “The Internet of Things: A survey,” Computer Networks, vol. 54,
no. 15, pp. 2787-2805, 2010.

[2] Rahman, L.F., Ozcelebi, T., and Lukkien, J., "Understanding IoT Systems: A Life Cycle Approch,”
Procedia Computing Science, vol. 130, pp. 1057-1062, 2018.

[3]1 Nguyen Gia, T., Sarker, V.K., Tcarenko, I., Rahmani, A.M., Westerlund, T., Liljeberg, I., and Tenhunen,
H., ”Energy efficient wearable sensor node for IoT-based fall detection systems,” Microprocessor Mi-
crosystem, vol. 56, pp. 34-46, 2018.

[4] Baker, S. B., Xiang, W., and Atkinson, 1., ”Internet of Things for Smart Healthcare: Technologies, Chal-
lenges, and Opportunities,” IEEE Access, vol. 5, pp. 26521-26544, 2017.

[51 Pasha, M., and Shah, S. M. W., "Framework for E-health Systems in IoT-Based Environment,” Wireless
Communications and Mobile Computing, pp. 1-11, 2018.

[6] Dias, D., and Paulo Silva Cunha, J., ”"Wearable Health Devices-Vital Sign Monitoring, Systems and Tech-
nolgogies,” Sensors, vol. 18, no. 8, 2018.

[7] Chi, Y.M., and Cauwenberghs, G., "Wireless Non-contact EEG/ECG Electrodes for Body Sensor Net-
works,” International Conference on Body Sensor networks, 2010.

[8] Mouradian, V., Poghosyan, A., and Hovhannisyan, L., “PPG Sensor and Device for Continuous Mobile
Human Vital Signs Monitoring,” 11th Int., Conference on Mobile Ad Hoc and Sensor Systems, 2014.

[9] Sheng Zhong, Li Wang, Bernardos, A.M., and Mei Song., ”An accurate and adaptive pedometer integrated
in mobile health application,” IET International Conference on Wireless Sensor Network, 2010.

[10] Hasan, M. K., et al., “Real-Time Healthcare Data Transmission for Remote Patient Monitoring in Patch-
Based Hybrid OCC/BLE Networks,” Sensors, vol. 19, no. 5, 2019.

[11] Buyukakkaslar, M. T., et al., “LoRaWAN as an e-Health Communication Technology,” IEEE 41st Annual
Computer Software and Application Conference, vol. 2017, no. 2, 2017.

[12] Petrelis, N., Birbas, M., and Gioulekas, F., “On the Design of Low-Cost IoT Sensor Node for e-Health
Environments,” Electronics, vol. 8, no. 2, 2019.

[13] Ristevski, B., and Chen, M., “Big Data Analytics in Medicine and Healthcare,” Journal Integr. Biofarma,
vol. 15, no3, 2018.

[14] Hansen, B., et al., “Use of Electronic Health and Its Impact on Doctor-Visiting Decisions Among People
With Diabetes: Cross-Sectional Study,” Journal Med.Internet Res., vol. 21, no. 4, 2018.

[15] Sarker, V. K., et al., “Portable multipurpose bio-signal acquisition and wireless streaming device for
wearables,” IEEE Sensors Applications Symposium, 2017.

[16] Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., and Kwak, K. S., ”’The internet of things for health
care: A comprehensive survey,” IEEE Access, vol. 3, pp. 678-708, 2015.

[17] Wang, Y., Liu, Z., and Dong, B., “Heart rate monitoring from wrist-type PPG based on singular spec-
trum analysis with motion decision,” 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 3511-3514, 2016.

[18] Al-fugaha, A., Member, S., Guizani, M., Mohammadi, M., and Member, S., “Internet of Things : A
Survey on Enabling,” IEEE communications surveys tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

[19] Preuveneers, D., Berbers, Y., and Joosen, W, “SAMURALI: A batch and streaming context architecture for
large-scale intelligent applications and environments,” Journal Ambient Intelligence Smart Environment,
vol. 8, no. 1, pp. 63-78, 2016.

[20] Heuer, J., Hund, J., and Pfaft, O., "Toward the web of things: Applying web technologies to the physical
world,” Computer, vol. 48, no. 5, pp. 34-42, 2015.

[21] Ragget, D., “The Web of Things: Challenges and Opportunities,” Comp., vol. 48, no. 5, pp. 34-42, 2015.

Bulletin of Electr Eng & Inf, Vol. 9, No. 5, October 2020 : 1990 — 1997

Bulletin of Electr Eng & Inf ISSN: 2302-9285) 1997

[22] Bhawiyuga, A., Kartikasari, D. P., and Pramukantoro, E. S., ”A publish subscribe based middleware
for enabling real time web access on constrained device,” 9th International Conference on Information
Technology and Electrical Engineering, pp. 1-5, 2017.

[23] Banks, A., and Rahul G., "MQTT Version 3.1. 1,” OASIS standard, vol. 29, 2014.

[24] Philip, N, et al. ”Design of a RESTful middleware to enable a web of medical things,” 4th International
Conterence on.Wireless Mobile Communication and Healthcare (Mobihealth), 2014.

[25] Bhawiyuga, Adhitya, et al. ”Architectural design of IoT-cloud computing integration platform,” Telkom-
nika Telecommunication, Computing, Electronics and Control, vol. 17, no. 3, pp. 1399-1408, 2019.

BIOGRAPHIES OF AUTHORS

Adhitya Bhawiyuga received the M. Sc. degree in computer science from Pusan National University,
Republic of Korea (2013). He is now affiliated with Brawijaya University as lecturer and researcher.
His current research interests include internet of things, distributed systems, cloud computing, and
information security.

Satria Adi Kharisma received the B.S. degree in computer science from Faculty of Computer Sci-
ence, Brawijaya University. His current research interests include internet of things and open source
software.

Bagus Jati Santoso received the PhD degree in computer science from National Taiwan Univer-
sity Of Science And Technology (2016). He is now affiliated with Sepuluh Nopember Institute of
Technology (ITS) as lecturer and researcher. His current research interests include data engineering,
knowledge discovery and mobile computing.

Dany Primanita Kartikasari received the M.Sc. degree in computer science from Sepuluh Nopem-
ber Institute of Technology (ITS). She is now affiliated with Brawijaya University as lecturer and
researcher. Her current research interests include internet of things and cloud computing.

Annisa Puspa Kirana received the M.Sc. degree in computer science from Bogor Agricultural
University, Indonesia. She is now affiliated with Department of Informatics, State Polytechnic of
Malang as lecturer and researcher. Her current research interests include geographical information
system (GIS) and database.

Cloud-based middleware for supporting batch and stream access... (Adhitya Bhawiyuga)

