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Abstract 

Control position and reduction of swinging of the payload of a rigid gantry crane system is a challenging work 

because of under-actuated system. This paper addresses challenges by proposing the artificial bee colony (ABC) 

algorithm to optimize the gains of the PD controller to form what the so-called the artificial bee colony (ABC)-PD 

controller. The effectiveness of the proposed control algorithm is tested under constant step functions and compared 

with Ziegler-Nichols (ZN)-PD controller. Simulation results show that the proposed controller produces slower rise 

time and peak time, but faster settling time than the ZN-PD controller as well as no overshoot under the predefined 

trajectories.    

 
Keywords: Gantry crane system, swing angle, PD gains, ABC 

_______________________________________________________________________________________

  

1. Introduction 

1
  Gantry crane system, a non-slewing-luffing 

crane system is most widely used in several work 

places such as ports, factories, construction sites. 

This type of crane is designed for repeat motions 

such as hoisting, transporting which includes 

longitudinal, transverse motion, and lowering 

heavy payload, as well as combination of each 

motion. Schematic of gantry crane system is shown 

in Figure 1. Gantry crane system can be divided 

into two subsystems, namely gantry crane and 

stationary crane framework. Gantry crane 

incorporates interaction among trolley, wire rope 

as hoist cable and payload which is manipulated by 

trolley and hoist mechanism. The payload is 

grabbed using hook system, which is then hoisted 

from trolley by means of cable. 

The function of cable drum is to wind up or 

unwind the cable, raises or lowers the payload 

attached to the hook. The trolley and hoist work 

simultaneously to perform the task of gantry crane.  

In general, the task performed by a gantry crane 

is to pick the payload, raise it, move it to target 

position and lower it down on the crane 

framework.  

Because the traverse motion of trolley during 

transport operations, the payload has the tendency 

to swing naturally due to traverse motion of 

trolley. The swinging motion reduces the speed, 

accuracy and safety requirements of crane 
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operations. It lowers the speed of crane operations 

because the payload swing must be avoided before 

the payload can be safely lowered into specified 

position. 
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Figure 1. Gantry crane system [1] 

The swings make it difficult to perform 

alignment, fine position, or other accuracy driven 

task. Swing effect also causes safety problems to 

the crane framework. That’s why control systems 

are needed to suppress the effects. If the cable and 

stationary crane framework are considered as rigid 

bodies, then the gantry crane system is regarded as 

a rigid system.  

Much attention has been placed on the 

modeling of dynamics and control of gantry crane 

system. Khalid et al. [2] have controlled the bridge 

and gantry cranes by proposing the PD and input 

shaping controllers and succeeded to achieve good 
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positioning accuracy and significant sway 

reduction. Hazriq et al. [3]-[4] have studied 

numerically the dynamic behaviour of a nonlinear 

gantry crane system by varying the input voltage, 

cable length, payload mass and trolley mass and 

controlled the system. They modeled the dynamics 

using Lagrange’s approach and simulated the 

system through the simulink of Matlab. The rest 

can be referred to references [5]-[10]. 

The major contribution of this study is to 

improve the control capacity of the PD controller 

(PDC) from the aforementioned previous works. 

There are several PD tuning methods in the 

literature (e.g. Ziegler-Nichols (ZN), Cohen-Coon, 

lambda tuning. However, they do not always lead 

to an acceptable performance and they may also 

suffer from some from robustness issues [11].  

An optimizer, namely artificial bee colony 

(ABC) algorithm is proposed to optimize the gains 

of PDC. That is because this algorithm is a 

powerful optimization technique, good 

numerical convergence and multi-dimensional 

search space compared to other soft computing 

techniques such as genetic algorithm and particle 

swarm optimization [12] as well as fuzzy logic and 

neural network. The combination between the 

ABC algorithm and PDC is called the artificial bee 

colony (ABC)-PD controller. This proposed 

controller is applied to control the position and to 

reduce the swinging of the payload of rigid gantry 

crane system. Ziegler-Nichols (ZN) based PD 

controller is chosen as a benchmark because of its 

common practice.   

The remainder of this paper is organized as 

follows. Section 2 derives the modeling of rigid 

gantry crane system. Section 3 describes a typical 

structure of a PDC with proposed optimizer. 

Section 4 presents the concept of optimization of 

PDC via ABC algorithm. Section 5 discusses the 

control and optimization. Finally, Section 6 

concludes this paper.       

2. Modeling of Rigid Gantry Crane System 

For simplicity of the characteristics of the 
physical gantry crane system, several assumptions 

are put forward to the dynamical model. Mass of 

trolley Tm  and payload Pm  are modeled as 

lumped mass which is connected by inextensible 

hoist cable P . Payload and its cable behave as 

pendulum model as depicted in Fig. 2.  
The payload has one swing angle with respect 

to the inference frame:   is denoted as angle 

between the Tx -axis and TT yx -plane. The payload 

swings either small or large swing angles. Friction 

between trolley and the top beam of crane 

framework and dynamics of hoist cable and drum 

in hoist system and hoist drive mechanism are not 

considered. The structure is treated as a rigid body. 
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Figure 2. Model of rigid gantry crane system 

 The equations of motion of rigid gantry crane 

system can be derived by Lagrange’s equations, 

with the following form, 
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All terms of  ,xq T  are defined as the 

generalized coordinates to describe the trolley and 

payload motion. General velocity of the system is 

 .,xq T    The Lagrangian L  is defined as 

,PKL   where K  is kinetics energy and P  is 

potential energy of system. Generalized force is 

denoted as if , where they are yx f,f and zf  applied 

input force for the x, y and z motions respectively. 

 Total kinetics energy of the system K in terms 

of generalized coordinates and velocities are the 

kinetics energy of the trolley and payload, 
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Total potential energy of the system is the potential 

energy of the trolley and the potential energy of the 

payload, 

.cosgmPP PpP                                   (3) 

The energy of damping is expressed as, 

.xcF Tx


2

1
                                                     (5) 

By differentiating the Lagrangian operator L  

and F  with respect to the generalized coordinates 

q and q ,  
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    The nonlinear equation of motion of gantry 

crane system can be written in Eqs. (8)-(9),                                                                                       

    ,fsincosmxcxmm xPpTxTpT   2   (8) 
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Equations (8)-(9) are dynamics of gantry crane 

coupled with dynamics of crane framework and 

call for some remarks. 

1. Equation (8) presents dynamics of trolley 

motion with the input force, while Eq. (9) is 

dynamics of payload. 

2. Term xf  is input force or driving force for the 

trolley motion while  PT mm   is mass total 

from trolley and payload.  

3. Term Tx is the acceleration of trolley which 

appears as the forcing term in the payload 

dynamics if the input force for gantry crane is 

set up to be zero.  

The input force xf is generated from the torque of 

trolley motor. Dynamic of trolley motor can be 

written as, 
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Equations (8) and (10) are combined to yield, 
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Terms in Eq. (11) can be explained as: TTT u,R,K  

are torque constant, motor resistance and input 

voltage, respectively while pr,z  are gear ratio and 

radius of motor pulley.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Closed-Loop Control System with PD 

Controller (PDC)  

A typical structure of a PDC for controlling the 

rigid gantry crane system is shown in Fig. 3. It is 

seen that the system is classified as a double input 

single output system (under-actuated system). The 

first input for the PDC is error and error derivative 

 )n(e),n(e TT  of trolley position while the second 

input is error and error derivative  )n(e),n(e   of 

payload swing. The errors and error derivatives are 

multiplied by the gains of PDC, namely 

proportional  pK  and derivative  dK and then 

combined to form the control signal of PDC as 

follows,       

      .)n(e)n(eK)n(e)n(eKnu PTdPTp  
 
(12) 

Terms in Eq. (12) are as follows: 

)n(e),n(e),n(e),n(e PTPT   are errors of trolley 

position and payload swing as well as their 

error derivatives, respectively. The value of 
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Figure 3. Diagram block of PD controller for rigid gantry crane system system             
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 nu   is limited by using saturation function before 

it is sent to the motor. The control action  nu  is 

then applied to the gantry crane system.  
Under any types of system input, the gains 

in Eq. (12) significantly affect the closed-loop 

response. Suboptimal gains lead to the system 

becomes unstable, high overshoot and large 

steady-state error. The gains must be designed to 

match the system input (set-point) and the system 

output by giving the corrective action in terms of 

control action. Hence, ABC algorithm is 

employed to optimize those gains. In addition, 

Eq. (12) also reflects that gain for the errors of 

trolley position and swinging of the payload 

are set up similarly and so do the gain of error 

derivatives. Both gains can be set up 

separately, but this is intended to make the 

optimization process efficient.         
It is worthy to note that integral action is not 

required due to the presence of integral (reset) 

windup leading to significant amount of 

overshoots. Hence, PD controller is an appropriate 

choice for controlling the system.                

4. Optimization of PD Controller via ABC 

Algorithm 

 Parameters  dP K,K  are modeled as foods 

in artificial bee colony (ABC) algorithm. For the 

sake of clarity, optimizer for the parameters of 

PDC using ABC algorithm is called ABC-PD. 

PDC parameters recalled as  dP K,K are 

initialized randomly in ABC-PD controller. The 

major phases of this algorithm has been outlined 

[12], but it is revisited here for a new cost function,  

1. Initialization 

The initial candidate solutions for x  are 

produced for employed bees by using Eq. (12), 

  .D,,j,S,,i,xxxx min
j
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j

min
jj,i  11   (12)                                                                           

Terms in Eq. (812 can be explained as 

follows: j,ix  is j-th dimension of i-th 

employed bee, min
j

x and max
j

x  are lower and 

upper bounds of j-th parameters, respectively, 

  is a random number in range of  1,0 , S  is 

the number of food sources and D  is the 

number of gains of PDC. The cost function 

values of i-th the initial solution are calculated 

using Eq. (13), 
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Terms in Eq. (13) are as follows: N
 
is the 

number of data,  nxT  
is the actual trolley 

position while  nx T
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is the calculated trolley 

position. The fitness value of Eq. (13) is 

calculated by using following formula,  

 .

otherwiseCF1

0fif
CF1

1

f

i

i
ii












                    (14) 

2. Employed bee phase 

In this phase, employed bees update the initial 

candidate solutions using Eq. (15), 
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Terms in Eq. (15) can be explained as follows: 

j,ig  is j-th dimension of i-th updated candidate 

solution, j,ix  is j-th dimension of i-th 

employed bee, j,kx  is j-th dimension of k-th 

employed bee, term   is a random number in 

range of  1,1 . Also, j and k  indices are 

randomly selected among initial solutions so 

that ki   to assure that the initial candidate 

solutions can be updated. After the solutions 

are updated, the cost function and fitness 

values of i-th updated candidate solutions are 

calculated using Eqs. (14)-(15). If the fitness 

value of updated candidate solutions is better 

than fitness value of initial candidate 

solutions, then the initial candidate solutions 

are replaced with updated candidate solutions. 

3. Onlooker bee phase 

In this phase, the employed bees communicate 

with the onlooker bees by calculating the 

probability of each fitness value as follows,  

.
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1

                                             (16)                                                                                                      

Based on the probability value, the onlooker 

bees also randomly improve the candidate 

solutions in the employed bee phase by using 

Eq. (16), as well as calculate the cost function 

and fitness values of i-th updated candidate 

solutions using Eqs. (15)-(16). If the fitness 

value of the updated candidate solutions found 

in the onlooker bee phase is better than fitness 

value of the solutions in the employed bee 

phase, the onlooker bee is replaced with the 

employed bee.     
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4. Scout bee phase 

If the candidate solutions during the employed 

bee phase cannot be updated until a predefined 

number of iterations reaches to the limit, the 

employed bee becomes scout bee and new 

candidate solutions are produced by using Eq. 

(12).   

Step by step of optimization process above is 

depicted in Fig. 4.  

 

 

 

   

  

 

 

 

 

5. Results and Discussions 

In this section, performance of proposed controller 

is investigated under constant step function. Other 

functions such as varying step function and 

sinusoidal functions are not elaborated in this 

study. Basic parameters of gantry crane system and 

parameters of ABC algorithm are shown in Table 1 

and Table 2, respectively. Interval for the 

searching space is 100x0   for DP K,K . Since 

this paper works on model based control, then Eqs. 

(9) and (11) are solved using fourth-order Rung-

Kutta with sampling time of 0.01 s. Control and 

optimization processes are performed 

simultaneously using Matlab.  

Table 1. Gantry crane parameters 

Parameters 

Trolley mass, Tm   50 kg 

Payload mass, pm   200 kg 

Cable length, P  

Gravitational acceleration, g  

 1 m 
2s/m81.9  

Initial conditions, 00o ,,     0,0,0o
 

 

Table 2. Parameters of ABC algorithm 

ABC    

Number of iterations 550 Onlooker number   50% 

Number of foods 550 Employed bee number   50% 

Number of optimized 

parameters 

  2 Scout number    1 

Time domain responses obtained from ZN-PD 

and ABC-PD controllers are compared one to 

another. Control performances in time domain are 

then assessed in terms of rise time, settling time, 

overshoot and peak time.  

 

 

 

 

 

 

 

 

 

 

 

 

Crane is commanded to track a position in 

mx 12  by giving a constant step function. The 

system response for duration 180 s is shown in Fig. 

5. The figure depicts that the crane is able to track 

the commanded position and both controllers have 

successfully stabilized it with respect to time. This 

is confirmed by Fig. 6 where the error of both 

controllers decays to zero.  

However, each controller has different 

performances during the tracking process. ZN-PD 

controller has faster rise time and peak time than 

the ABC-PD controller. However, fast rise time 

and peak time lead to overshoot until it reaches its 

settling time. In the other side, slow rise time and 

peak time of ABC-PD controller lead to no 

overshoot so that settling time can be achieved 

faster than ZN-PD controller. Details are 

elaborated in Table 3.   
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Figure 4. Gains optimization process in ABC-PD controller 

system             
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Figure 5. Trolley position under step function  

 

Figure 6. Error of trolley position under step function 

Table 3. Controller’s performances under step function 

Performance ZN-PD ABC-PD 

Rise time
 

8.31 26.23 

Settling time 58.44 46.85 

Overshoot 4.58 0 

Peak time 24.3 177.2 

Optimal gains of PD controller are tabulated in 

Table 4. It is worthy to note that the initial gains 

are set randomly and it will lead to the change of 

the optimized gains accordingly. After 50 

realizations, it is found that the optimized PK  and 

dK  
of ABC-PD controller are lower than the 

optimized gains of ZN-PD controller. It explains 

why the ABC-PD controller has the slow rise time 

and peak time, fast settling time as well as no 

overshoot as the function of gain PK  is to increase 

the rise time of the system response and the 

function of dK is to reduce the oscillation.   

 

Table 4. Optimal gains of PD controller under step 

function 

Gains 
   ZN-PD             ABC-PD 

       Optimized Optimized 

pK     1.36  0.01 

dK
 

 56.85 20.92 

 

 

(a) 

 

(b) 

Figure 7. Payload swing angle under for step function           

(a) time window 0-180 s (b) time window 0-25 s 

Control performance in Figs. 5-6 is elaborated 

by Fig. 7. The figure shows the consequent of fast 

rise time and peak time of ZN-PD controller. 

Faster the crane reaches the target position, bigger 

the swing angle of payload occurs. Large swing 

angle of payload of ZN-PD controller in Fig. 7 is 

the consequent of using full nonlinear dynamic 

model in Eq. 9 and Eq. 11. At this point, control 

designer can choose whether the trolley moves fast 

with large swing angle as expense or reasonable 

speed of trolley with no overshoot. The latter is 

favorable since it is required for safety in crane 

operation. Hence, all results confirm that the ABC-

PD controller outperforms the ZN-PD controller.           
In optimizing the gains, PD controller 

optimized by ABC algorithm produces cost 

function as shown in Fig. 8. It displays the cost 
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function with respect to the number of iterations. 

As observed, the cost exhibits a gradual 

convergence and seems like a ladder function as 

the number of iteration increases. However, the 

cost function starts to converge after the-31
st
 

iteration and is steady to a certain value.  

 

Figure 8. Cost function for step function with 

respect to number of iterations  

 
Figure 9. Trolley position under payload mass variation  

To test the effectiveness the proposed controller 

for a more challenging condition, payload mass is 

varied from 200 kg to 400 kg. Under this 

condition, the commanded position 4 is fixed and 

the result is shown in Fig. 9. The crane, as 

expected, is still able to track the commanded 

position. However, the figure shows that as the 

payload mass increases, the rise time and settling 

time also increases with respect to time. With 

increased payload mass, performance of ABC-PD 

controller will deteriorates further.       

6. Conclusions 

 In this paper, a controller namely the ABC-PD 

is proposed for controlling the rigid gantry crane 

system. Simulation results show that the proposed 

controller can improve the performance of closed-

loop control system under constant step function. 

Important conclusions and suggestions from this 

work are derived below. 

- The ABC-PD controller outperforms the ZN-

PD controller in terms of fast settling time and 

no overshoot.  

- Control and optimization are still performed 

under simulation since the ABC-PD controller 

is computationally expensive for real-time 

implementation.   

- The generated cost function seems like a 

ladder function. 

- The proposed controllers can easily be applied 

to PID controller, where the gain iK is 

included.  

- The proposed controllers can be applied to 

control other dynamic systems. 
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