INDEKS PENCEMARAN AIR DI KAWASAN PERMUKIMAN KOTA PONTIANAK: INDIKATOR FISIK DAN KIMIA

Puteri Ratna Dewi, Dadan Kusnandar, Naomi Nessyana Debataraja

INTISARI

Air merupakan elemen yang sangat penting bagi manusia, salah satunya untuk keperluan higiene sanitasi. Penentuan indeks pencemaran air yang digunakan untuk keperluan higiene sanitasi berdasarkan Keputusan Menteri Lingkungan Hidup Nomor 115 Tahun 2003. Data yang digunakan adalah data primer yang terdiri dari 42 sampel air yang diambil di Kota Pontianak. Terdapat dua indikator yang digunakan antara lain fisik dan kimia. Indikator fisik yang digunakan pada penelitian ini adalah kekeruhan, warna, dan Total Dissolved Solid (TDS). Indikator kimia yang digunakan pada penelitian ini adalah pH, besi, fluorida, kesadahan, nitrat, nitrit, dan deterjen. Indeks pencemaran indikator fisik terdiri dari tiga kelas yaitu, 8 titik lokasi memenuhi baku mutu, 24 titik lokasi tercemar ringan, dan 10 titik lokasi tercemar sedang. Indeks pencemaran indikator kimia terdiri dari dua kelas yaitu, 12 titik lokasi memenuhi baku mutu dan 30 titik lokasi tercemar ringan.

Kata Kunci: pencemaran air, indeks pencemaran. sebaran indeks pencemaran

PENDAHULUAN

Air adalah salah satu elemen yang sangat berfungsi dan berperan bagi kehidupan makhluk hidup di bumi. Manusia harus selalu melestarikan dan menjaga kelestarian air. Salah satu kebutuhan pokok manusia dengan segala macam kegiatannya yaitu air untuk keperluan higiene sanitasi. Air untuk keperluan higiene sanitasi digunakan untuk mandi, sikat gigi, mencuci bahan pangan, peralatan makan, dan pakaian. Semakin meningkatnya pembangunan, semakin meningkat pula pencemaran pada perairan. Oleh sebab itu, untuk mencegah pencemaran dibutuhkan upaya pengendalian pencemaran lingkungan dengan menetapkan baku mutu kesehatan lingkungan.

Standar baku mutu kesehatan lingkungan dan persyaratan kesehatan air untuk keperluan higiene sanitasi diatur berdasarkan Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 [1]. Terdapat dua indikator yang digunakan antara lain fisik dan kimia. Indikator fisik yang digunakan pada penelitian ini adalah kekeruhan, warna, dan *Total Dissolved Solid* (TDS). Indikator kimia yang digunakan pada penelitian ini adalah pH, besi, fluorida, kesadahan, nitrat, nitrit, dan deterjen.

Tujuan penelitian adalah menentukan indeks pencemaran (IP) indikator fisik dan kimia di Kota Pontianak. Data yang digunakan adalah data primer yang terdiri dari 42 sampel yang diambil di Kota Pontianak. Sampel diambil menggunakan metode *stratified random sampling*.

METODE PENELITIAN

Penelitian menggunakan data yang bertempat di Kota Pontianak, Kalimantan Barat. Sampel diambil menggunakan metode *stratified random sampling* [2]. Terpilihlah 42 titik lokasi yang digunakan sebagai sampel melalui metode ini. Setelah lokasi terpilih, sampel air diambil kemudian diolah untuk mendapatkan hasil kandungan air dengan bantuan laboran.

Indeks yang berkaitan dengan senyawa pencemar yang bermakna untuk suatu peruntukan dinyatakan sebagai indeks pencemaran. Indeks pencemaran digunakan untuk menentukan tingkat pencemaran relatif. Indeks ini memiliki konsep yang berlainan dengan indeks kualitas air. Indeks pencemaran (PI) ditentukan untuk suatu peruntukan, kemudian dapat dikembangkan untuk beberapa peruntukan bagi seluruh bagian badan air atau sebagian dari suatu sungai [3].

Pengelolaan kualitas air atas dasar indeks pencemaran (PI) dapat memberi masukan pada pengambil keputusan. Pengambil keputusan dapat menilai kualitas badan air untuk suatu peruntukan serta melakukan tindakan untuk memperbaiki kualitas jika terjadi penurunan kualitas akibat kehadiran senyawa pencemar. Jika C_{ij} menyatakan nilai hasil penelitian pada variabel ke-i lokasi ke-j dan L_{ij} menyatakan nilai baku mutu pada variabel ke-i lokasi ke-j, maka indeks pencemaran pada lokasi ke-j yang merupakan fungsi dari C_{ii}/L_{ij} adalah PI_{i} [3].

$$PI_{j} = \sqrt{\frac{M_{j}^{2} + R_{j}^{2}}{2}} \tag{1}$$

Keterangan:

 PI_{j} = indeks pencemaran pada lokasi ke-j

 R_i = nilai rata-rata rasio C_{ij}/L_{ij} pada lokasi ke-j

 M_i = nilai maksimum rasio C_{ii}/L_{ij} pada lokasi ke-j

Metode ini dapat langsung menghubungkan tingkat ketercemaran dengan dapat atau tidaknya sungai dipakai untuk penggunaan tertentu dan dengan nilai parameter-parameter tertentu. Tabel 1 merupakan tabel kriteria indeks pencemaran.

Tabel 1 Kriteria Indeks Pencemaran

Kelas Indeks Pencemaran	Keterangan
$0 \le PI \le 1,0$	Memenuhi baku mutu
$1,0 < PI \le 5,0$	Tercemar ringan
$5,0 < PI \le 10$	Tercemar sedang
PI > 10	Tercemar berat

Sumber: Keputusan Menteri Negara Lingkungan Hidup Nomor 115 Tahun 2003

Harga PI_i ini dapat ditentukan dengan cara:

- 1. Perhitungan harga C_{ij}/L_{ij} untuk tiap variabel pada setiap lokasi pengambilan sampel.
- 2. Jika nilai baku L_{ii} memiliki rentang
 - a. Untuk $C_{ii} \leq L_{ii}$ rata-rata

$$(C_{ij}/L_{ij})_{baru} = \frac{[C_{ij} - (L_{ij})_{rata-rata}]}{\{(L_{ij})_{minimum} - (L_{ij})_{rata-rata}\}}$$

b. Untuk $C_{ij} > L_{ij}$ rata-rata

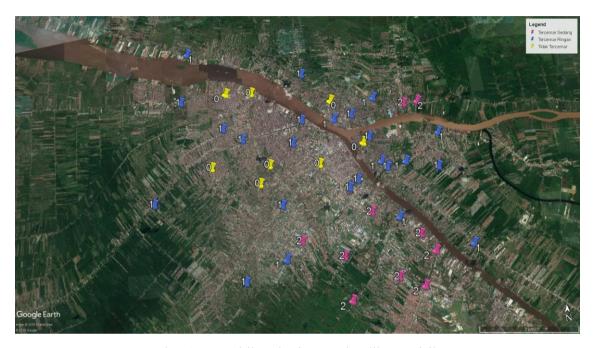
$$\left(C_{ij}/L_{ij}\right)_{baru} = \frac{\left[C_{ij} - (L_{ij})_{rata-rata}\right]}{\left\{(L_{ij})_{maksimum} - (L_{ii})_{rata-rata}\right\}}$$

- 3. Nilai $\left(C_{ij}/L_{ij}\right)$ digunakan sebagai hasil pengukuran apabila nilainya lebih kecil dari 1 dan penggunaan nilai $\left(C_{ij}/L_{ij}\right)$ baru apabila nilai $\left(C_{ij}/L_{ij}\right)$ hasil pengukuran lebih besar dari 1. Nilai $\left(C_{ij}/L_{ij}\right)$ baru =1,0+P.log $\left(C_{ij}/L_{ij}\right)$ hasil pengukuran, P adalah konstanta dan nilainya ditentukan dengan bebas (biasanya digunakan 5).
- 4. Penentuan nilai rata-rata dan nilai maksimum dari keseluruhan C_{ij}/L_{ij} .
- 5. Penentuan harga PI_i dalam persamaan (1).

HASIL DAN PEMBAHASAN

Standar baku mutu air yang digunakan adalah standar baku mutu kesehatan lingkungan dan persyaratan kesehatan air untuk keperluan higiene sanitasi, yang diatur dalam Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 [1]. Tabel 2 adalah perhitungan nilai indeks pencemaran untuk indikator fisik.

Tabel 2 Nilai Indeks Pencemaran Indikator Fisik Sampel Pertama
--


Variabel	C_{ij}	L_{ij}	$\left(C_{ij}/L_{ij} ight)$	$\left(C_{ij}/L_{ij} ight)$ baru
Kekeruhan	55,1	25	2,204	2,71606
Warna	785	50	15,7	6,9795
TDS	17,2	1000	0,0172	0,0172
R_j^2				10,4819593
M_j^2				48,7134
PI_j				5,440375

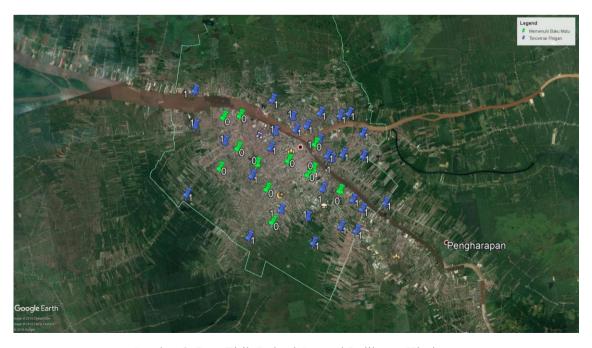
Pada Tabel 2 didapat hasil indeks pencemaran sebesar 5,440375 menurut tabel kriteria indeks pencemaran sampel pertama termasuk dalam kategori tercemar sedang. Hasil perhitungan seluruh sampel indikator fisik dapat dilihat pada Tabel 3 di bawah ini.

Tabel 3 Nilai Indeks Pencemaran Indikator Fisik

Sampel PI _j		Kriteria Indeks	Commol	DI	Kriteria Indeks
Sampel PI_j	Pencemaran	Sampel	PI_{j}	Pencemaran	
1	5,440375	Tercemar sedang	22	4,463715	Tercemar ringan
2	5,41935	Tercemar sedang	23	4,255671	Tercemar ringan
3	5,825755	Tercemar sedang	24	4,961251	Tercemar ringan
4	5,412943	Tercemar sedang	25	4,466458	Tercemar ringan
5	5,509195	Tercemar sedang	26	0,788546	Memenuhi Baku Mutu
6	4,484888	Tercemar ringan	27	4,999726	Tercemar ringan
7	5,407533	Tercemar sedang	28	2,129691	Tercemar ringan
8	5,630898	Tercemar sedang	29	4,917998	Tercemar ringan
9	4,839126	Tercemar ringan	30	5,1099	Tercemar sedang
10	0,683873	Memenuhi Baku Mutu	31	5,228082	Tercemar sedang
11	2,763823	Tercemar ringan	32	2,800144	Tercemar ringan
12	2,82216	Tercemar ringan	33	0,516578	Memenuhi Baku Mutu
13	0,738324	Memenuhi Baku Mutu	34	1,772955	Tercemar ringan
14	5,405725	Tercemar sedang	35	2,788535	Tercemar ringan
15	1,410339	Tercemar ringan	36	1,84262	Tercemar ringan
16	0,946004	Memenuhi Baku Mutu	37	1,709521	Tercemar ringan
17	1,441701	Tercemar ringan	38	3,230933	Tercemar ringan
18	0,528815	Memenuhi Baku Mutu	39	3,677802	Tercemar ringan
19	1,872464	Tercemar ringan	40	2,872906	Tercemar ringan
20	0,489871	Memenuhi Baku Mutu	41	2,464229	Tercemar ringan
21	0,381449	Memenuhi Baku Mutu	42	1,686999	Tercemar ringan

Indeks pencemaran yang didapat pada indikator fisik yaitu memenuhi baku mutu, tercemar ringan, dan tercemar sedang. Kelas indeks pencemaran $0 \le PI \le 1,0$ yang termasuk memenuhi baku mutu terdiri dari 8 titik lokasi. Kelas indeks pencemaran $1,0 < PI \le 5,0$ yang termasuk tercemar ringan terdiri dari 24 titik lokasi. Kelas indeks pencemaran $5,0 < PI \le 10$ yang termasuk tercemar sedang terdiri dari 10 titik lokasi. Dapat dilihat pada Gambar 1.

Gambar 1. Peta Titik Lokasi Sampel Indikator Fisik


Variabel	C_{ij}	L_{ij}	$\left(C_{ij}/L_{ij} ight)$	$\left(C_{ij}/L_{ij} ight)$ baru
pН	5,08	6,5-8,5	2,42	2,42
Besi	1,72	1	1,72	2,17764
Fluorida	0,38	1,5	0,25333	0,25333
Kesadahan	38	500	0,076	0,076
Nitrat	1,4	10	0,14	0,14
Nitrit	0	1	0	0
Detergen	0,001	0,05	0,02	0,02
R_j^2				0,52811
M_j^2				5,8564
PI_{j}				1,78669

Pada Tabel 4 didapat hasil indeks pencemaran sebesar 1,78669 menurut tabel kriteria indeks pencemaran sampel pertama termasuk dalam kategori tercemar ringan. Hasil perhitungan seluruh sampel indikator kimia dapat dilihat pada Tabel 5

Tabel 5 N	ilai Indeks	Pencemaran	Indikator	Kimia
-----------	-------------	------------	-----------	-------

Sampel	PI_i	Kriteria Indeks	Sampel	PI_{j}	Kriteria Indeks
	,	Pencemaran		,	Pencemaran
1	1,786688	Tercemar ringan	22	0,631958	Memenuhi Baku Mutu
2	1,767792	Tercemar ringan	23	0,750934	Memenuhi Baku Mutu
3	2,395329	Tercemar Ringan	24	2,805444	Tercemar Ringan
4	1,303215	Tercemar Ringan	25	2,008437	Tercemar Ringan
5	1,514015	Tercemar Ringan	26	1,926083	Tercemar Ringan
6	0,385907	Memenuhi Baku Mutu	27	2,407335	Tercemar Ringan
7	1,400871	Tercemar Ringan	28	2,069797	Tercemar Ringan
8	1,449119	Tercemar Ringan	29	2,080839	Tercemar Ringan
9	0,725516	Memenuhi Baku Mutu	30	2,617623	Tercemar Ringan
10	0,437054	Memenuhi Baku Mutu	31	2,574267	Tercemar Ringan
11	2,197224	Tercemar Ringan	32	2,328835	Tercemar Ringan
12	1,905120	Tercemar Ringan	33	0,595594	Memenuhi Baku Mutu
13	0,805405	Memenuhi Baku Mutu	34	2,264723	Tercemar Ringan
14	1,373411	Tercemar Ringan	35	2,100950	Tercemar Ringan
15	0,958799	Memenuhi Baku Mutu	36	2,517070	Tercemar Ringan
16	1,321450	Tercemar Ringan	37	2,210400	Tercemar Ringan
17	0,612488	Memenuhi Baku Mutu	38	3,571186	Tercemar Ringan
18	0,491048	Memenuhi Baku Mutu	39	3,548021	Tercemar Ringan
19	1,035280	Tercemar Ringan	40	2,815619	Tercemar Ringan
20	0,197823	Memenuhi Baku Mutu	41	2,009002	Tercemar Ringan
21	0,414510	Memenuhi Baku Mutu	42	1,909308	Tercemar Ringan

Indeks pencemaran yang didapat pada indikator kimia yaitu memenuhi baku mutu dan tercemar ringan. Kelas indeks pencemaran $0 \le PI \le 1,0$ yang termasuk memenuhi baku mutu terdiri dari 12 titik lokasi. Kelas indeks pencemaran $1,0 < PI \le 5,0$ yang termasuk tercemar ringan terdiri dari 30 titik lokasi. Dapat dilihat pada Gambar 2.

Gambar 2. Peta Titik Lokasi Sampel Indikator Kimia

KESIMPULAN

Indeks pencemaran indikator fisik terdiri dari tiga kelas yaitu, 8 titik lokasi memenuhi baku mutu, 24 titik lokasi tercemar ringan, dan 10 titik lokasi tercemar sedang. Indeks pencemaran indikator kimia terdiri dari dua kelas yaitu, 12 titik lokasi memenuhi baku mutu dan 30 titik lokasi tercemar ringan.

UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada Kementerian Riset, Teknologi, dan Pendidikan Tinggi atas dukungan dana bagi penelitian ini yang diberikan kepada Dadan Kusnandar, Naomi Nessyana Debataraja, dan Rossi Widya Nusantara. Makalah ini merupakan bagian dari hasil penelitian tersebut. Analisis diskriminan terhadap data dalam penelitian ini dipublikasikan dalam jurnal *Applied Mathematical Sciences* (Kusnandar, Debataraja dan Dewi (inpress)).

DAFTAR PUSTAKA

- [1]. Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 Tentang Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus per Aqua dan Pemandian Umum. Sekretariat Negara. Jakarta; 2017.
- [2]. Debataraja, N. N., Kusnandar, D., dan Nusantara, R. W. Identifikasi Lokasi Sebaran Pencemaran Air di Kawasan Permukiman Kota Pontianak. *Jurnal Matematika, Statistika, dan Komputasi*. 2018; 15(1); 37–41.
- [3]. Republik Indonesia. Peraturan Menteri Lingkungan Hidup Nomor 115 Tahun 2003 Tentang Pedoman Penentuan Status Mutu Air. Jakarta; 2003.
- [4]. Andara, D. R., Haeruddin, dan Suryoanto, A. Kandungan Total Padatan Tersuspensi, Biochemical Oxygen Demand dan Chemical Oxygen Demand serta Indeks Pencemaran Sungai Klampisan di Kawasan Industri Candi, Semarang. Diponegoro Journal of Maquares. 3(3): 177–187; 2014.

PUTERI RATNA DEWI : Jurusan Matematika FMIPA UNTAN, Pontianak

puteriratnadewi@gmail.com

DADAN KUSNANDAR : Jurusan Matematika FMIPA UNTAN, Pontianak

dkusnand@untan.ac.id

NAOMI NESSYANA DEBATARAJA : Jurusan Matematika FMIPA UNTAN, Pontianak

naominessyana@math.untan.ac.id