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 In this paper, a technical approach to particle swarm optimization method is 
presented. The main idea of the paper is based on local extremum escape. A 
new definition has been called the worst position. With this definition, 
convergence and trapping in extremumlocal be prevented and more space 
will be searched. In many cases of optimization problems, we do not know 
the range that answer is that.In the results of examine on the benchmark 
functions have been observed that when initialization is not in the range of 
the answer, the other known methods are trapped in local extremum. cThe 
method presented is capable of running through it and the results have been 
achieved with higher accuracy. (9 pt). 
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1. INTRODUCTION 

The PSO algorithm is one of the modern evolutionary algorithms. Kennedy and Eberhart first 
proposed this algorithm. PSO was developed through simulation of a simplified social system, and has been 
found to be robust in solving continuous non-linear optimization problems [1–3]. 

The PSO algorithm can produce high-quality solutions within shorter calculation time and more 
stable convergence characteristics than other stochastic methods [1–3]. 

Several other researchers have proposed alterations to the particle swarm algorithm to allow it to 
operate on binary spaces. Agrafiotis and Cedeño [4] used the locations of the particles as probabilities to 
select features in a pattern-matching task. Each feature was assigned a slice of a roulette wheel based on its 
floating-point value, which was then discretized to {0, 1}, indicating whether the feature was selected or not. 
Mohan and Al-Kazemi [5] suggested several ways that the particle swarm could be implemented on binary 
spaces. One version, which he calls the “regulated discrete particle swarm,” performed very well on a suite of 
test problems. In Pamparä et al. [6], instead of directly encoding bit strings in the particles, each particle 
stored the small number of coefficients of a trigonometric model (angle modulation), which was then run to 
generate bit strings. 

Extending PSO to more complex combinatorial search spaces is also of great interest. The difficulty 
there is that notions of velocity and direction have no natural extensions for TSP tours, permutations, 
schedules, etc. Nonetheless, progress has recently been made [Clerc 7, 8;Moraglio et al. 9]but it is too early 
to say if PSO can be competitive in these spaces. 

Dynamic problems are challenging for PSO, a self-adapting multi-swarm has been derived 
[Blackwell 10]The multi-swarm with exclusion has been favorably compared, on the moving peaks problem, 
to the hierarchical swarm, PSO re-initialization and a state-of-the-art dynamic-optimization evolutionary 
algorithm known as self-organizing scouts. 
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To deal with discrete events, an algorithm based on discrete
developed in [11]. This approach solves the overlapping coalition formation problem in multiple virtual 
organizations.  

Recently, in [12] presented a PSO method demonstrating a significant performance improvement 
over the SPSO, QIPSO, UPSO, FIPS, DMSPSO, and CLPSO algorithms. 
utilizes fuzzy set theory for the adaptation of parameters, it is referred to as the adaptive fuzzy PSO 
(AFPSO). 

The rest of the paper is as follows. In Section 2, the PSO algorithm is presented. The proposed our 
algorithm is presented in Sections 3. In Section 4, we present the experimental results. The paper concludes 
in Section 5. 

 
 
2. THE PSO ALGORITHM

In the PSO (PSO) algorithm, each particle searches for an optimal solution to the objective function 
in the search space. Each particle dynamically updates its position based on its previous position and new 
information regarding velocity. Its best location found in the search space so far is called pbest and the best 
location found for all the particles in the population is calle

PSO emulates the swarm behavior and the individuals represent points in the 
space. A particle represents a potential solution. The velocity Vid and position Xid of the 
the th particle are updated as follows (

 
Vik+1 = wVik + c1 * random1 * (pbesti 

Xik+1 =Xik + Vik+1 

WhereXi = (Xi1, Xi2, …,XiD) is the position of 
velocity of  particle . pbestiis the best previousposition yielding the best fitness value for the 
and gbestis the best position discovered by the whole population. 
reflecting the weighting of stochastic acceleration terms
positions, respectively. random1and random2are two random numbers in the range (0, 1). A particle’s 
velocity on each dimension is clamped to a maximum magnitude V

The inertia weight w is given by

 
Where Wmax is the initial weight, Wmin is the final weight, itermax is the maximum iteration 

number, k is the current iteration number. This formula usually has used in fuzzy methods.In some 
algorithms in the amount of w is equal to 0.7.This parameter
global search, consequently, needing less or more iterations for the algorithm to converge. A small value of 
inertia weight implies in a local search; a high one leads to a global search, yet with a high comp
cost.However, linear decreasing inertia function may also be used if it is interested in reduce the influence of 
past velocities during the optimization process.

 
3. THE PROPOSED ALGORITHM

In this section, we propose aDynamic PSO algorithm. We creat
pworst.In our method,all the particles in the population search their backspace too, as you can see in follow 
figure, might be there is the best minimum in out of vision of the particles.

In this example, according to the p
minimum, the other particleswill converge to it. In result all the particles will trap in local minimum 
(Figure 2). 

As can be seen in the Figure 3,with using the formula (4) and given tha
one, the space of Ais not searched, in result, the space of B is searchedhope get to the national extremum.So 
in our algorithm (Dynamic PSO), the particles could search its backspace, and will find the best national 
extermum. 
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Where Wmax is the initial weight, Wmin is the final weight, itermax is the maximum iteration 
number, k is the current iteration number. This formula usually has used in fuzzy methods.In some 
algorithms in the amount of w is equal to 0.7.This parameter is accountable for balancing between local and 
global search, consequently, needing less or more iterations for the algorithm to converge. A small value of 
inertia weight implies in a local search; a high one leads to a global search, yet with a high comp
cost.However, linear decreasing inertia function may also be used if it is interested in reduce the influence of 
past velocities during the optimization process. 
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pworst.In our method,all the particles in the population search their backspace too, as you can see in follow 
figure, might be there is the best minimum in out of vision of the particles. 

In this example, according to the previous algorithms, because of one of the particles is in the local 
minimum, the other particleswill converge to it. In result all the particles will trap in local minimum 

As can be seen in the Figure 3,with using the formula (4) and given thatthe rand is between zero and 
one, the space of Ais not searched, in result, the space of B is searchedhope get to the national extremum.So 
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Figure1. Example of PSO’s problem 
 
 

 
 

Figure2. Local Minimum 
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The velocity Vid and position Xid of the 

and 5. 
 
Vik+1 = wVik + c1 * random1 * (pbesti 

* (pworsti – Xik) } 
 
Xik+1 =Xik + Vik+1 

 
As can be seen in the flowchart (Figure 5), the proposed algorithm is as follows:
 
The first, the particles are initialized, amount of Pbest and Pworstin the first stage are equaled initial 

place,then for each particle is defined as a variable that will count the number of times that fis not better 
(such CLPSO), if this variable does not reach the max, in the moving of particles, the C1i value iszero and 
C2ivalue is equal to two.If Mreaches t
moved to a better place, in result, the C1i value change to zero and C2i value change to two.This action is 
done only once to avoid the trap of local minimum.

Each particle also has ind
useof the particles ind-Pworseand ind
population and search environment. Until M value has not been reached the max
the particle i move to better place of the particle correctly. But the moment that Misequaledthe 
max,theseindexes take a new value randomly and M be equaled to zero and untilM has not reached the max 
again, these indexesremain constant.

At the moment that M b equaled the max, after one move (leading to the trigger and escape from the 
local extremum), the C1i value change totwo and C2i value change to zero to maintain convergence of the 
algorithm. 
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Figure4. Best Minimum. 
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4. The experimental results 
In this section, the proposed DPSO algorithm is compared with theAFPSO [12],CLPSO 

[13],andCPSO[14]algorithms. The main aim of this paper was to improve the performance of the PSO when 
dealing with multimodal problems; 
functions. The forth-multimodal benchmark functions with respective dimensions 10 and 30 are for 
comparison. Functions 1-4 were selected from [13].

These functions are multimodal problems
follows: 

 
1) Rastrigin Function 

2) Rosenbrock Funcion 

3) SchewfelFuncion 

4) AckleyFuncion 

 

Rastrigin 

          
Rosenbrock
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Rastrigin Function – 30D 
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Figure7. Convergence performance of the 3 different PSOs on the 4 test functions (10D and 30 D) 
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Table 1. GLOBAL OPTIMUM, RESULTS for 10D and 30Dproblems, SEARCH RANGES AND 
INITIALIZATION RANGES OF THE RastriginFUNCTION 

Gbestval Range x* F(x*) Iteratio

n 

Particle 

numbers 

Dimension PSOs 

7.9721e+004 -100 , -99 0 0 2000 10 10 CLPSO 

1.2158e+004 -100, -99 0 0 2000 10 10 DPSO 

9.8010e+004 -100, -99 0 0 2000 10 10 CPSO 

9.8022e+004 -100, -99 0 0 2000 10 10 AFPSO 

2.6201e+005 -100, -99 0 0 2000 30 30 CLPSO 

1.2119e+005 -100, -99 0 0 2000 30 30 DPSO 

2.94030e+5 -100, -99 0 0 2000 30 30 CPSO 

2.9408e+005 -100, -99 0 0 2000 30 30 AFPSO 

 
 
Table 2. GLOBAL OPTIMUM, RESULTS for 10D and 30D problems, SEARCH RANGES AND 

INITIALIZATION RANGES OF THE Rosenbrock FUNCTION 
Gbestval Range x* F(x

 

Iteratio

n 

Particle 

numbers 

Dimension PSOs 

1.4394e+006 -10, -9 0 0 2000 10 10 CLPSO 

56.1162 -10, -9 0 0 2000 10 10 DPSO 

2.3492900 e+007 -10, -9 0 0 2000 10 10 CPSO 

2.3600e+007 -10, -9 0 0 2000 10 10 AFPSO 

8.4873e+003 -10, -9 0 0 2000 30 30 CLPSO 

10.3352 -10, -9 0 0 2000 30 30 DPSO 

7.290900e+6 -10, -9 0 0 2000 30 30 CPSO 

7.3225e+006 -10, -9 0 0 2000 30 30 AFPSO 

 
 

Table 3. GLOBAL OPTIMUM, RESULTS for 10D and 30D problems, SEARCH RANGES AND 
INITIALIZATION RANGES OF THE SchewfelFUNCTION 

 
Gbestval Range x* F(x*) Iteration Particle 

numbers 

Dimensio PSOs 

2.8281e+003 360,361 420.96 0 2000 10 10 CLPSO 

  132.5651 360,361 420.96 0 2000 10 10 DPSO 

  3.6488e+003 360,361 420.96 0 2000 10 10 CPSO 

  3.6492e+003 360,361 420.96 0 2000 10 10 AFPSO 

9.1486e+003 360,361 420.96 0 2000 30 30 CLPSO 

2.8546e+003 360,361 420.96 0 2000 30 30 DPSO 

  1.0946e+004 360,361 420.96 0 2000 30 30 CPSO 

  1.0949e+004 360,361 420.96 0 2000 30 30 AFPSO 
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Table 4. GLOBAL OPTIMUM, RESULTS for 10D and 30D problems, SEARCH RANGES AND 
INITIALIZATION RANGES OF THE Ackley FUNCTION 

 
Gbestval Range x* F(x*) Iteration Particle 

numbers 

Dimension PSOs 

2.4083 -2,-1 0 0 2000 10 10 CLPSO 

0.7720 -2,-1 0 0 2000 10 10 DPSO 

3.6254 -2,-1 0 0 2000 10 10 CPSO 

4.4784 -2,-1 0 0 2000 10 10 AFPSO 

2.3168 -2,-1 0 0 2000 30 30 CLPSO 

0.2515 -2,-1 0 0 2000 30 30 DPSO 

3.6254 -2,-1 0 0 2000 30 30 CPSO 

3.6344 -2,-1 0 0 2000 30 30 AFPSO 

 
 

5. CONCLUSION 
Particle swarm optimization is one of the intelligent methods for solving optimization 

problems. This paper presents a method based on optimization of particles that have too much power over the 
local extremum. Use the search space for particles moving in the worst behind them that has not been 
observed,this algorithm makes the rest of the population not involved. 

The using of the dynamic steps in the vector of the worst particle to search the space behind them 
that has not been observed, in this algorithm makes the population not involved in the static mode.As was 
observed in a variety of functions, the proposed algorithm as well as the local extremum passes. 

Future Work, change constant coefficients to the dynamic mode in the related equations to calculate 
particle velocity according to the current situation of populationand set the appropriate amount in each step. 
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