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1. INTRODUCTION

The PSO algorithm is one of the modern evolutionalgorithms. Kennedy and Eberhart first
proposed this algorithm. PSO was developed thraimglulation of a simplified social system, and hasrb
found to be robust in solving continuous non-lineptimization problems [1-3].

The PSO algorithm can produce high-quality soluiavithin shorter calculation time and more
stable convergence characteristics than other astichmethods [1-3].

Several other researchers have proposed alteratiothe particle swarm algorithm to allow it to
operate on binary spaces. Agrafiotis and Cedefiau$éH the locations of the particles as probadslito
select features in a pattern-matching task. Eaatuffe was assigned a slice of a roulette wheeldbaséts
floating-point value, which was then discretized@o1}, indicating whether the feature was seldote not.
Mohan and Al-Kazemi [5] suggested several ways tihatparticle swarm could be implemented on binary
spaces. One version, which he calls the “reguldiectete particle swarm,” performed very well osugte of
test problems. In Pamparé et al. [6], instead ofadly encoding bit strings in the particles, egehticle
stored the small number of coefficients of a trigmetric model (angle modulation), which was them tw
generate bit strings.

Extending PSO to more complex combinatorial seapates is also of great interest. The difficulty
there is that notions of velocity and direction éavo natural extensions for TSP tours, permutations
schedules, etc. Nonetheless, progress has redergty made [Clerc 7, 8;Moraglio et al. 9]but itas early
to say if PSO can be competitive in these spaces.

Dynamic problems are challenging for PSO, a sedfpidg multi-swarm has been derived
[Blackwell 10]The multi-swarm with exclusion hasemefavorably compared, on the moving peaks problem,
to the hierarchical swarm, PSO re-initializatiordam state-of-the-art dynamic-optimization evolution
algorithm known as self-organizing scouts.
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To deal with discrete events, an algorithm baseddzcret-particleswarn-optimization was
developed in [11]. Tis approach solves the overlapping coalition foromafroblem in multiple virtua
organizations.

Recently, in [12] presented a PSO method demoirgjrat significant performance improvems
over the SPSO, QIPSO, UPSO, FIPS, DMSPSO, and CL&A§®ithms.Because the proposed mett
utilizes fuzzy set theory for the adaptation of graeters, it is referred to as the adaptive fuzzyp
(AFPSO).

The rest of the paper is as follows. In Sectioth2, PSO algorithm is presented. The proposet
algorithm is pesented in Sections 3. In Section 4, we presengtperimental results. The paper conclu
in Section 5.

2. THEPSO ALGORITHM

In the PSO (PSO) algorithm, each particle searfidvesn optimal solution to the objective functi
in the search space. Eaphrticle dynamically updates its position basedtsrmprevious position and ne
information regarding velocity. Its best locatiauhd in the search space so far is called pbestrentles
location found for all the particles in the popidatis called gbest.

PSO emulates the swarm behavior and the individegisesent points in th{)-dimensional search
space. A particle represents a potential soluffdre velocity Vid and position Xid of thvth dimension of
theith particle are updated as follovl), (2):

Vik+1 =wVik + c¢1 * random1 * (pbes— Xik) + c2 * random2 * (gbesiik) (1)
Xik+1 =Xik + Vik+1 (2)

WhereXi = (Xi1, Xi2, ...,XiD) is the position c:the particle;] Vi = (Vil, Vi2, ..., ViD) represent:
velocity of particlei. pbestiis the best previousposition yielding tlesttfitness value for thith particle;;
and gbestis the best position discovered by thelevhopulation.c1 and-2 are the acceleration consta
reflecting the weighting of stochastic acceleratienms that pull each particle toward pbestand gl
positions, respectively. randomland random2are fav@lom numbers in the range (0, 1). A partic
velocity on each dimension is clamped to a maxinmagnitude \maz[13].

The inertia weight w is given |

Wmax — Wmin

W= W =g X K 3)

Where Wmax is the initial weight, Wmin is the fimakight, itermax is the maximum iterati
number, k is the current iteration number. Thismfola usually has used in fuzzy methods.In s
algorithms in the amount of w is equal to 0.7.Tresamete is accountable for balancing between local
global search, consequently, needing less or nterations for the algorithm to converge. A smallueaof
inertia weight implies in a local search; a higredeads to a global search, yet with a high cutational
cost.However, linear decreasing inertia functioryralso be used if it is interested in reduce tlkiémce of
past velocities during the optimization proc

3. THE PROPOSED ALGORITHM

In this section, we propose aDynamic PSO algoritive. creee a new element and it is call
pworst.In our method,all the particles in the pagioh search their backspace too, as you can siedow
figure, might be there is the best minimum in outision of the particle:

In this example, according to threvious algorithms, because of one of the particlés the loca
minimum, the other particleswill converge to it. tasult all the particles will trap in local minimu
(Figure 2).

As can be seen in the Figure 3,with using the fétanid) and given tttthe rand is between zero a
one, the space of Ais not searched, in resultspiaee of B is searchedhope get to the nationatmxitm.Sc
in our algorithm (Dynamic PSO), the particles costhrch its backspace, and will find the best nati
extermum.
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Figurel. Example of PSQ’s problem

Figure2. Local Minimum

Pworst

Figure 3.Pworst
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Figure4. Best Minimum.

The velocity Vid and position Xid of thith dimension of theth particle are updated as follows

and 5.
Vik+1 = wVik + ¢1 * randoml * (pbes— Xik) + c2 * { (pworsti —Xik)+ random?2
* (pworsti — Xik) } (4)
Xik+1 =Xik + Vik+1
®)
w — Whj
W= Wnax — — 5 — x K (6)
1termax

As can be seen in the flowchart (Figure 5), theppsed algorithm is as follov

The first, the particles are initialized, amountdifest and Pworstin the first stage are equalédli
place,then for each particle is defined as a vhlrigthat will count the number of times that fis rostter
(such CLPSO), if this variable does not reach tlae,nn the moving of particles, the C1li value iszand
Czivalue is equal to two.If Mreachehe max, this means that number of the maxmovepdingcle has nc
moved to a better place, in result, the C1i valuange to zero and C2i value change to two.Thi®mads
done only once to avoid the trap of local minim

Each particle also has i-Pworseand ind®best indexesthat represent the particle iin pRigell
useof the particles inBworseand ir-Pbest to update their movements.This action isrfore variety in the
population and search environment. Until M value hat been reached the r, theseindexes arefixed f
the particle i move to better place of the partiderrectly. But the moment that Misequaled
max,theseindexes take a new value randomly and Bghaled to zero and untilM has not reached the
again, these indexesremamnstant

At the moment that M b equaled the max, after opger{leading to the trigger and escape from
local extremum), the C1i value change totwo and W@Rie change to zero to maintain convergence e
algorithm.
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Start

Pworstid = Pid
Vig=0

Pig = Random in Range
F’bestn‘d = Pig

No i <= Numbers of Particles

i <= Numbers of Particles

Algorithms
is Ready to
Be Finished?

~

i <= Numbers of Particles

ind-bestid = Random (Numbers of Particles)
ind-worst = Random (Numbers of Particles)

fbest = fi
Pbest = Pi

fbest > fi

~
Vid =W * Vid + C1i * Rand * (Pbestind-bestid} - Pi,d) +
C2i * { [Pid - Pworst(ind-worstid),d] +
Rand * [Pid - Pworst(ind-worstid)d] }
Pid = Pid + Vid
J

d=d+1

Figure5. Flowchart of Dynamic PSO
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4, Theexperimental results

In this section, the proposed DPSO algorithm is mamed with theAFPSO [12],CLPS
[13],andCPSO[14]algorithms. The main aim of thipgrawas to improve the performance of the PSO v
dealing with multimodal problem¢herefore, we tested the proposed algorithms wétious multimoda
functions. The forthmultimodal benchmark functions with respective digiens 10 and 30 are f

comparison. Functions 4-were selected from [1.

These functions are multimodal proble to be minimized. All the test functions are shows

follows:

1) Rastrigin Function

D
fo(z) = Z (27 — 10 cos(2ma;) + 10)
i=1

2) Rosenbrock Funcion

D—-1

fa(z) = Z (1[)() (27 — .’l,‘H_l)Q + (z; — 1)2)
i=1
3) SchewfelFuncion
D
1
fs(x) =418.9829 x D — Z 2; sin ('LL|§)
=1

4) AckleyFuncion

fa(x) = —20exp (—(1.2

1
—exp (5 ZCUS(‘ZW.’U,)) +20+e¢

=1

SIOREoRE

Schewfel

S 5

Rosenbroc Ackeley

Figure6. Benchmark Functions
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Rastrigin Functior— 10D Rastrigin Functior— 30D

Rosenbrockunction— 10D Rosenbroc Function — 30D

SchewfelFuncion— 10D SchewfeFuncion — 30D

Ackley Funcion- 10D Ackley Funcion- 30D

Figure7. Convergence performance of the 3 diffeRS$Ds on the 4 test functions (10D and 3
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Table 1. GLOBAL OPTIMUM, RESULTS for 10D and 30Dptems, SEARCH RANGES AND
INITIALIZATION RANGES OF THE RastriginFUNCTION
Gbestval Range xX* F(x*) Iteratio Particle Dimension PSOs
n numbers
7.9721e+004 -100, -99 0 0 2000 10 10 CLPSO
1.2158e+004 -100, -99 0 0 2000 10 10 DPSO
9.8010e+004 -100, -99 0 0 2000 10 10 CPSO
9.8022e+004 -100, -99 0 0 2000 10 10 AFPSO
2.6201e+005 -100, -99 0 0 2000 30 30 CLPSO
1.2119e+005 -100, -99 0 0 2000 30 30 DPSO
2.94030e+5 -100, -99 0 0 2000 30 30 CPSO
2.9408e+005 -100, -99 0 0 2000 30 30 AFPSO

Table 2. GLOBAL OPTIMUM, RESULTS for 10D and 30Doiems, SEARCH RANGES AND

INITIALIZATION RANGES OF THE Rosenbrock FUNCTION

Gbestval Range X* F(x Iteratio Particle Dimension PSOs
n numbers
1.4394e+006 -10, -9 0 0 2000 10 10 CLPSO
56.1162 -10, -9 0 0 2000 10 10 DPSO
2.3492900 e+007 -10, -9 0 0 2000 10 10 CPSO
2.3600e+007 -10, -9 0 0 2000 10 10 AFPSO
8.4873e+003 -10, -9 0 0 2000 30 30 CLPSO
10.3352 -10, -9 0 0 2000 30 30 DPSO
7.290900e+6 -10, -9 0 0 2000 30 30 CPSO
7.3225e+006 -10, -9 0 0 2000 30 30 AFPSO

Table 3. GLOBAL OPTIMUM, RESULTS for 10D and 30Dotiems, SEARCH RANGES AND

INITIALIZATION RANGES OF THE SchewfelFUNCTION

Gbestval Range X* F(x*) Iteration Particle Dimensio PSOs
numbers

2.8281e+003 360,361 420.96 0 2000 10 10 CLPSO
132.5651 360,361 420.96 0 2000 10 10 DPSO
3.6488e+003 360,361 420.96 0 2000 10 10 CPSO
3.6492e+003 360,361 420.96 0 2000 10 10 AFPSO

9.1486e+003 360,361  420.96 0 2000 30 30 CLPSO

2.8546e+003 360,361  420.96 0 2000 30 30 DPSO
1.0946e+004 360,361  420.96 0 2000 30 30 CPSO
1.0949e+004 360,361  420.96 0 2000 30 30 AFPSO
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Table 4. GLOBAL OPTIMUM, RESULTS for 10D and 30Doiems, SEARCH RANGES AND
INITIALIZATION RANGES OF THE Ackley FUNCTION

Gbestval Range X* F(x*) Iteration Particle Dimension PSOs
numbers
2.4083 -2,-1 0 0 2000 10 10 CLPSO
0.7720 -2,-1 0 0 2000 10 10 DPSO
3.6254 -2,-1 0 0 2000 10 10 CPSO
4.4784 -2,-1 0 0 2000 10 10 AFPSO
2.3168 -2,-1 0 0 2000 30 30 CLPSO
0.2515 -2,-1 0 0 2000 30 30 DPSO
3.6254 -2,-1 0 0 2000 30 30 CPSO
3.6344 -2,-1 0 0 2000 30 30 AFPSO

5. CONCLUSION

Particle swarm optimization is one of the inteligemethods for solving optimization
problems. This paper presents a method based onipgtion of particles that have too much powerrahe
local extremum. Use the search space for particlesing in the worst behind them that has not been
observed,this algorithm makes the rest of the mijmi not involved.

The using of the dynamic steps in the vector ofwloest particle to search the space behind them
that has not been observed, in this algorithm makegpopulation not involved in the static modewas
observed in a variety of functions, the proposedi@hm as well as the local extremum passes.

Future Work, change constant coefficients to theadyic mode in the related equations to calculate
particle velocity according to the current situataf populationand set the appropriate amount ah esep.
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