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 Accurate and reliable software development effort estimation (SDEE) is one 

of the main concerns for project managers. Planning and scheduling a 

software project using an inaccurate estimate may cause severe risks to the 

software project under development such as delayed delivery, poor quality 

software, missing features. Therefore, an accurate prediction of the software 

effort plays an important role in the minimization of these risks that can lead 

to the project failure. Nowadays, the application of artificial intelligence 

techniques has grown dramatically for predicting software effort. The 

researchers found that these techniques are suitable tools for accurate 

prediction. In this study, an improved model is designed for estimating 

software effort using support vector regression (SVR) and two feature 

selection (FS) methods. Prior to building model step, a preprocessing stage is 

performed by random forest or Boruta feature selection methods to remove 

unimportant features. Next, the SVR model is tuned by a grid search 

approach. The performance of the models is then evaluated over eight well-

known datasets through 30%holdout validation method. To show the impact 

of feature selection on the accuracy of SVR models, the proposed model was 

compared with SVR model without feature selection. The results indicated 

that SVR with feature selection outperforms SVR without FS in terms of the 

three accuracy measures used in this empirical study. 
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1. INTRODUCTION 

In an age of regular technological disruption, for software companies, growing fast has become 

essential to survival. Moreover, software companies must also target becoming profitable rapidly and 

efficiently. One of the main keys to achieve this goal is to allocate software project resources efficiently and 

schedule activities as optimally as possible. In this context, estimating software development effort is critical. 

Various methods have been investigated in software effort estimation, including traditional methods such as 

the constructive cost model (COCOMO) [1], and, recently, machine learning techniques such as MLP neural 

networks [2], radial basis function (RBF) neural networks [3], random forest (RF) [4-5] , fuzzy analogy (FA) 

[6] and support vector regression (SVR) [7]. Machine learning techniques use data from past projects to build 

a regression model that is subsequently employed to predict the effort of new software projects. However, no 

single method has been found to be entirely stable and reliable for all cases. Furthermore, the performance of 

any method depends mainly on the characteristics of the dataset used to construct the model. These 

characteristics include dataset size, outliers, number of features, categorical features and missing values. 

Therefore, performing a preprocessing data prior to any SDEE model building can contribute to improve the 
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accuracy of the generated estimation. Depending on dataset used, the preprocessing data can be cleaning data 

by imputing missing value or transforming and/or reducing the data by removing redundant and irrelevant 

features. As one of the major concerns when using dataset to construct a SDEE model is the negative impact 

of irrelevant and redundant information on estimation accuracy [8].  

Hence, we need to remove irrelevant and redundant information and keep a subset of relevant 

features so only information about the effort (dependent variable) is reserved. For this purpose, many feature 

selection (FS) methods have been employed in the literature [8-13]. In this context, this paper aims to 

investigate the use of two feature selection methods as preprocessing step before feeding data to SVR model 

building stage. The paper aims also to evaluate whether or not the wrapper feature selection methods improve 

the accuracy of the SVR model. Therefore, we assess SVR models preprocessed with two wrapper methods 

and we compare them with SVR model built without feature selection methods. The main contributions of 

this paper are threefold: (1) assessing the impact of feature selection methods on the predictive capability of 

SVR models over eight datasets (2) employing two wrapper feature selection methods to select the attributes 

used for SVR models (3) tuning the hyperparameter values of SVR using a grid search approach and 10-fold 

cross-validation approach. This paper is organized as follows. Section 2 presents the SVR technique and the 

two feature selection methods used in this study and Section 3 gives an overview of related work conducted 

on SVR in SDEE. In Section 4, we describe the architecture of the proposed model including the 

methodology adopted to adjust it parameters values. Section 5 presents a brief description of the datasets, the 

accuracy measures, the validation method used in this study. The empirical results are presented and 

discussed in Section 6. Finally, Section 7 concludes the paper. 

 

 

2. BACKGROUND 

Before entering into details, we introduce the three main tools of this paper: support vector 

regression, feature importance, and feature selection. 

 
2.1.  Support vector regression 

Support Vector Machines as described in [14] have shown to deliver promising solutions in various 

classification and regression tasks thanks to their ability to avoid local minima, improved generalization 

capability, and sparse representation of the solution. SVM are based on Structural Risk Minimization (SRM) 

principle and thus tries to control the upper bound of generalization risk while reducing the model 

complexity. In addition, they do not suffer from over fitting problem and local minimization issues and hence 

offer enhanced generalization capability. For regression tasks, Vapnik proposed an SVM called ε-support 

vector regression (ε-SVR), which performs prediction tasks from the ε-insensitive loss function. Because the 

ε parameter is useful if the approximation accuracy is specified beforehand, it is better to find a procedure to 

optimize this accuracy without depending a priori on a value set. This procedure was studied by Sölkopf, 

Smola, Williamson and Bartlett [15]. They proposed a new formulation, called ʋ-support vector regression 

(ʋ-SVR), that automatically minimizes the ε-insensitive loss function and changes the SVR formulation 

by using a new ʋ parameter whose value is between [0,1]. In addition to minimizing the ε value, the ʋ 

parameter is used for controlling the number of support vectors, since the value of ε influences the choice of 

support vectors. 

In this study, a special form of SVM i.e., Support Vector Regression (SVR) is utilized for modeling 

the input–output functional relationship or regression purpose and is explained next. Given a set of input–

output sample pairs {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛 , 𝑦𝑛)} where 𝑥𝑖 ∈ 𝐼𝑅𝑝and 𝑦𝑖 ∈ 𝐼𝑅, the objective of ν-SVR 

technique is to approximate the nonlinear relationship given in (1), such that 𝑓(𝑥) should be as close as 

possible to the target value y and should be as flat as possible in order to avoid over-fitting.  

 

 𝑓(𝑥) = 𝑤𝑇 . 𝜑(𝑥) + 𝑏 (1) 

 

where 𝑤𝑇  is the weight vector, 𝑏 is the bias and 𝜑(𝑥) represents the transformation function that maps the 

lower dimensional input space to a higher dimensional space. The primal objective of the problem thus 

reduces to (2), in order to ensure that the approximated function meets the above two objectives of closeness 

and flatness.  

 

minimize 
1

2
‖𝑤‖2 + 𝐶 {𝛾. 𝜀 +

1

2
∑ (𝜉 + 𝜉∗)𝑛

𝑖=1 } (2) 
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subject to the

 constraints
{

𝑦𝑖 − 〈𝑤𝑇 . 𝜑(𝑥)〉 − 𝑏 ≤ 𝜀 + 𝜉𝑖
∗,

〈𝑤𝑇 . 𝜑(𝑥)〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗,

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 

 

where ε is a deviation of a function f(x) from its actual value and, ξ, ξ
i

*
are additional slack variables 

introduced by Cortes & Vapnik, 1995, which determines that, deviations of magnitude ξ above ε error are 

tolerated. The constant C known as regularization parameter determines the tradeoff between the flatness of f 

and tolerance of error above ε. Further ϒ (0≤ϒ≤1), represents the upper bound on the function of margin 

errors in the training set and establishes the lower bound on the fraction of support vectors. To solve the 

primal problem in (2), its dual formulation is introduced by constructing Lagrange function (L) given as: 

 

𝐿: 
1

2
‖𝑤‖2 + 𝐶 {Υ. 𝜀 +

1

𝑛
∑ (𝜉 + 𝜉∗)𝑛

𝑖=1 } −
1

𝑛
∑ (𝜂. 𝜉 + 𝜂∗𝜉∗)𝑛

𝑖=1 −
1

𝑛
∑ (𝜀 + 𝜉1 − 𝑤𝑇 . 𝜑(𝑥) − 𝑏) 𝑛

𝑖=1 +
1

𝑛
∑ (𝜀 + 𝜉𝑖 − 𝑤𝑇 . 𝜑(𝑥) + 𝑏) − 𝛽. 𝜀𝑛

𝑖=1  (3) 

 
where 𝛼, 𝛼∗, 𝜂, 𝜂∗ 𝑎𝑛𝑑 𝛽 are Lagrange multipliers and 𝛼(∗) = 𝛼. 𝛼∗. Thus, maximizing the Lagrange function 

gives 𝑤 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 . 𝜑(𝑥𝑖) and yields the following dual optimization problem:  

maximizes  

 

−
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗). (𝛼𝑗 − 𝛼𝑗
∗)

𝑛

𝑖,𝑗=1

. 𝐾(𝑥𝑖 , 𝑥𝑗) + ∑ 𝑦𝑖 . (𝛼𝑖 − 𝛼𝑖
∗);

𝑛

𝑖=1

 

 

 subject to {

∑ (𝛼𝑖
𝑛
𝑖=1 − 𝛼𝑖

∗) = 0,

∑ (𝛼𝑖
𝑛
𝑖=1 − 𝛼𝑖

∗) ≤ 𝐶𝛶,

𝛼𝑖 , 𝛼𝑖
∗ ∈ [0,

𝐶

𝑛
]

 (4) 

 

where 𝐾(𝑥𝑖 , 𝑥𝑗) denotes the kernel function given by 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇 . 𝜑(𝑥𝑗). The solution to (4) yields 

the Lagrange multipliers 𝛼, 𝛼∗. Substituting weight w in (1), the approximated function is given as:  

 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗).𝑛

𝑖=1 𝐾(𝑥𝑖 , 𝑥) + 𝑏 (5) 

 

The choice of kernel function for specific data patterns, which is another attractive question in the 

application of SVR, appeared somewhat arbitrary till now. Some previous work [6, 16] empirically indicate 

that the use of the gaussian RBF kernel is superior to other kernel functions because of its accessibility to 

implement and powerful mapping capability. Therefore, the gaussian RBF kernel function, (6), was 

employed in this study.  

 

 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)  𝑤ℎ𝑒𝑟𝑒  𝛾 =   
1

2𝜎2    (6) 

 
The parameter σ affects the mapping transformation of the input data to the feature space and 

controls the complexity of the model, thus, and the value of parameter 𝛾 should be selected carefully and 

adequately. In addition, SVR requires also setting two parameters: the complexity parameter usually denoted 

by C, the extent to which deviations (i.e., errors) are tolerated denoted by Epsilon (ε), and the ʋ parameter 

which is used for controlling the number of support vectors, since the value of ε influences the choice of 

support vectors. 

 
2.2.  Feature selection methods 

This subsection provides an overview of the feature selection methods with particular focus on 

feature importance concept used by the methods used in this paper.  

 
2.2.1. Feature selection methods 

Feature selection, also known as variable selection, is the process of identifying the most promising 

features (variables, attributes) in a given dataset. The selected feature will be used to construct the model or 

as inputs of a prediction system. There are many potential benefits of feature selection such as improving the 

generalization performance of the predictive model, reducing the computational time to construct the model, 
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and better understanding the underlying process. Several feature selection methods have been proposed and 

studied in the literature [17]. They can fall into three categories: the wrapper, the filter and embedded. The 

wrapper methods use a predictive model to score feature subsets. Each new subset is used to train a model, 

which is tested on a hold-out set. Counting the number of mistakes made on that hold-out set (the error rate 

of the model) gives the score for that subset [18]. The filter methods consider statistical characteristics of a 

data set directly without involving any learning algorithm. The embedded methods combine feature selection 

and the learning process in order to select an optimal subset of features. In general, the results of wrapper 

methods are better than those of filter methods. However, the wrapper method is slow (time-consuming) and 

very complicated when there are many features in the dataset. Fortunately, in our case, the datasets used in 

this study have relatively a small number of features. 

 
2.2.2. Random forest feature importance 

Random forest (RF) is an ensemble learning technique based on classification and 

regression trees [19]. Each tree is trained on a bootstrap sample, and optimal variables at each split are 

identified from a random subset of all variables. The selecting criteria are different for classification and 

regression problems. For the former setting, the Gini index is applied, whereas variance reduction is used for 

the latter approach. The global prediction of the RF is computed as a majority vote or average for 

classification or regression, respectively [20]. In addition to prediction, RFs can be used as method to 

estimate variable importance measures to rank variables by predictive importance. To illustrate this, let’s 𝐹𝑗 a 

project feature. RF feature importance of 𝐹𝑗 is defined, as described in [21], as follows. For each tree t of the 

forest, consider the associated 𝑂𝑂𝐵𝑡 sample (Out Of Bag is the data which was not included in the boostrap 

sample used to construct 𝑡). Denote by 𝑒𝑟𝑟𝑂𝑂𝐵𝑡  the mean square error (MSE) of a single tree t on this 𝑂𝑂𝐵𝑡  

sample. Now, randomly permute the values of 𝐹𝑗 in 𝑂𝑂𝐵𝑡  to get a perturbed sample denoted by  𝑂𝑂𝐵𝑡
𝑗̌  and 

compute 𝑒𝑟𝑟𝑂𝑂𝐵𝑡
𝑗
, the error of predictor t on the perturbed sample. Feature importance of 𝐹𝑗 is then equal to: 

 

𝐹𝑒𝑎𝑡𝐼𝑚𝑝(𝐹𝑗) =
1

𝑛𝑡𝑟𝑒𝑒
∑ (𝑡  𝑂𝑂𝐵𝑡

𝑗̌ − 𝑒𝑟𝑟𝑂𝑂𝐵𝑡
𝑗
),  (7) 

 

where the sum is over all trees 𝑡of the RF and 𝑛𝑡𝑟𝑒𝑒 denotes the number of trees of the RF. Features 

that are relevant for prediction will have large importance values, whereas features that are not associated 

with the outcome have values close to zero. 

 
2.2.3. Boruta feature selection method 

Boruta is an all relevant feature selection algorithm, i.e., embedded with the RF algorithm and uses 

calculated Z-scores as a measure of band importance. The main idea of this approach is to compare the 

importance of the real predictor variables with those of random so-called shadow variables using statistical 

testing and several runs of RFs [22]. In each run, the set of predictor variables is doubled by adding a copy of 

each variable. The values of those shadow variables are generated by permuting the original values across 

observations and therefore destroying the relationship with the outcome. A RF is trained on the extended data 

set and the variable importance values are collected. For each real variable a statistical test is performed 

comparing its importance with the maximum value of all the shadow variables. Variables with significantly 

larger or smaller importance values are declared as important or unimportant, respectively. All unimportant 

variables and shadow variables are removed and the previous steps are repeated until all variables are 

classified or a certain determined number of runs has been done [20]. 

 
 

3. RELATED WORK 

The SVR technique has been used in many empirical software engineering studies especially in 

predicting several software characteristics such as bug and defect [23-24], reliability [25], quality [26] and 

enhancement effort [27]. Regarding application of an SVR for estimating software development effort, we 

identified 13 relevant studies in the literature [7, 27-38]. The first investigation of SVR in SDEE was 

originally carried out by Oliveira [7]. He has considered SVR with linear as well as RBF kernels and 

optimized its parameters employing grid selection. The experiments were performed using software projects 

from NASA dataset and the results have shown that SVR significantly outperforms RBFNs and linear 

regression. His work did not investigate feature selection methods; all input features were used for building 

the regression models. In [28, 39] used a genetic algorithm (GA) approach to select an optimal subset feature 

and optimize SVR parameter for SDEE. They used binary coded chromosome as solution representation for 

subset feature and SVR parameter. Their simulations have shown that the proposed GA-based approach was 
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able to improve substantially the performance of SVR and outperform bagging MLP network and  

bagging M5P. 

The authors in [36] investigated particle swarm optimization (PSO) application to select subset 

feature and SVR parameter applied to software effort estimation. They used continuous value type to 

optimize SVR parameter and discrete value type to select subset feature. However, the study was limited to 

Desharnais dataset and does not show the performance of the resulting SVR model using commonly 

employed accuracy measures in SDEE. Support vector regression has been also used to estimate the 

development effort of web projects using Tukutuku dataset in [30, 40-41]. The results of these studies 

showed that SVR has potential since it outperformed the most commonly adopted prediction techniques. It 

was argued that SVR is a flexible method that use kernels and parameter settings which enable the learning 

mechanism to better suit the characteristics of different chunks of data, which is a typical characteristic of 

cross-company datasets. In order to automatically select suitable SVR parameters including the kernel 

function, the authors in [33] proposed the use of an approach based on Tabu Search (TS). They evaluated 

empirically the proposed model using different types of datasets from PROMISE repository and Tukutuku 

dataset. Their results showed that SVR combined with TS significantly outperformed CBR and manual 

stepwise regression methods. This section has attempted to provide a brief summary of the major literature 

relating to software effort estimation using support vector regression. 

 

 
4. SVR MODELS WITH FEATURE SELECTION METHODS 

This section presents an overview of the two SVR models designed in this paper namely SVR with 

backward feature elimination and SVR with Boruta feature selection (henceforth SVR-BFE and SVR-

BORUTA respectively) and illustrates how these models were trained and optimized by grid search method.  

 
4.1.  SVR models with backward feature elimination (SVR-BFE) 

In the preprocessing stage of this model, we used a simpler form of backward feature elimination so 

that instead of iterating the backward elimination procedure until the end, we stopped this procedure at the 

fourth elimination. This method is particularly useful in studying the accuracy of the model after each 

iteration and comparing the results obtained with the Boruta based SVR. Following this method and using 

variable importance computed by random forest, four subsets of features were generated by removing each 

time the least important variable. So, in the first subset denoted BFE_1, we eliminate the least significant 

feature and in the second subset BFE_2, we removed the next least important feature according to variable 

importance ranking and so on. Starting from these subsets, four SVR models, denoted SVR-BFE_i were 

optimized using grid search optimization method and 10-fold cross validation approach. Figure 1 depicts the 

model graphically and shows the different stages of SVR model building including feature selection step and 

hyper-parameter optimization step. 

 
4.2.  SVR model with boruta feature selection method (SVR-BORUTA) 

This SVR model is composed, like the first one, from one preprocessing stage where Boruta 

algorithm is performed to remove all unimportant features and keep only the relevant ones. Next, the 

hyperparameter of SVR model (C, µ) were adjusted by the same procedure used for SVR with BFE in order 

to evaluate them under the same conditions. Figure 1 illustrates the model building architecture.  
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Figure 1. Architecture of SVR models with FSS 

 

 

4.3.  Parameters setting 

It is well known that the parameter settings could have a significant impact on the estimation 

accuracy of trained SDEE techniques. Therefore, building an accurate model requires selection of optimal 

values of its learning parameters [16]. However, finding optimal values is complicated task and various 

approaches have been proposed in the literature to address this issue, such as grid search (GS) [42], particle 

swarm optimization (PSO) [43] and genetic algorithm (GA) [39]. In order to enable SVR models, developed 

in this study, to achieve a higher prediction accuracy over the eight datasets used in SDEE, we employed grid 

search (GS) as optimization method combined with cross-validation procedure. The main idea behind the 

grid search method is that different pairs of parameters are tested and the one with the highest cross 

validation accuracy is selected. The major advantage of GS method is its high learning accuracy and the 

ability of parallel processing on the training of every SVR, because they are independent of each other. 

Although GS method can find the optimum parameters, the computational complexity is very big obviously, 

and the time spent is very large, especially for large sample data. In our case, we limited the search space to 

most promising values guided by previous studies [44]. Table 1 shows GS  parameter for SVR models. 

 

 

Table 1. Grid search parameter for SVR models 
Techniques Parameters 

SVR 

Type= { µ-regression} 
Kernel function = { RBF } 

Complexity = {from 0,005 to 0,1, step=0,005} 

Kernel parameter ={1/number of features} 
µ ={0,1 to 1,0, step=0,1} 

 

 

The GS method finds the best configuration of SVR models by evaluating every possible 

combination of Table 2 with respect to mean square error (MSE) based error function using 10-fold cross-

validation approach. The best configuration of each technique that minimizes MSE is then selected. Note that 

the same range of parameter values were used for SVR with Boruta feature selection method. Regarding the 

parameters of random forest feature selection and Boruta algorithm were adjusted as shown in Table 3. 

In fact, these parameters do not have a significant impact on variable importance ranking except maxRuns 

parameter of Boruta method which should be increased in certain case to resolve attributes left Tentative by 

the algorithm.  
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Table 2. Parameters used for RF and Boruta Feature Selection Methods 
Method Parameter Description 

Random Forest ntree = 5 000 

mtry= 5 

Number of trees 

Number of variables selected at each split 

Boruta pValue =0.01 
maxRuns=500 

Confidence Level 
Maximal number of importance source runs. 

 

 

5. EXPERIMENTAL DESIGN 

This section presents the experimental design of this study including: (1) the accuracy measures 

used to evaluate the proposed SVR models, (2) the description of the datasets used, and (3) the experimental 

process followed to construct and compare the different SVR models. 

 

5.1.  Accuracy measures 

We employ the following criteria to assess and compare the accuracy of the effort estimation 

models. A common criterion for the evaluation of effort estimation models is magnitude of relative error 

(MRE), which is defined as  

 

 𝑀𝑅𝐸 = |(
𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙−𝐸𝑓𝑓𝑜𝑟𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝐸𝑓𝑓𝑜𝑟𝑡𝑎𝑐𝑡𝑢𝑎𝑙
)| (8) 

 

The MRE values are calculated for each project in the dataset, while mean magnitude of relative 

error (MMRE) computes the average over N projects as follows: 

 

𝑀𝑀𝑅𝐸 =
1

𝑁
∑ 𝑀𝑅𝐸𝑖

𝑁
𝑖=1  (9) 

 

Generally, the acceptable target value for MMRE is 25%. This indicates that on the average, the 

accuracy of the established estimation models would be less than 25%. Another widely used criterion is the 

Pred(l) which represents the percentage of MRE that is less than or equal to the value l among all projects. 

This measure is often used in the literature and is the proportion of the projects for a given level of accuracy. 

The definition of Pred(l) is given as follows: 

 

 𝑃𝑟𝑒𝑑(𝑙) =
𝑘

𝑁
  (10) 

 

Where N is the total number of observations and k is the number of observations whose MRE is less 

or equal to l. A common value for l is 0.25, which is also used in the present study. The Pred(0.25) represents 

the percentage of projects whose MRE is less or equal to 25%. The Pred(0.25) value identifies the effort 

estimates that are generally accurate whereas the MMRE is fairly conservative with a bias against 

overestimates [45-46]. For this reason, MdMRE has been also used as another criterion since it is less 

sensitive to outliers (10). 

 

𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸𝑖) (11) 

 

5.2.  Datasets 

For this study, eight datasets, collected from different organizations and countries, were selected to 

evaluate the performance of SVR and SVR-RF techniques. A total of 1119 projects were used from  

three sources: 

 915 projects came from six datasets of PROMISE data repository which is a publicly available online 

data repository (Menzies et al. 2012) namely: Albrecht, COCOMO81, China, Desharnais, Kemerer and 

Miyazaki datasets.  

 151 projects selected from ISBSG R8 repository. In fact, this repository contains more than 2000 

software projects described by more than 50 numerical and categorical attributes. The selected projects 

are the results of a data pre-processing study conducted by [47], the objective of which was to select 

data (projects and attributes), in order to retain projects with high quality. The first step of this study 

was to select only the new development projects with high quality data and using IFPUG counting 

approach. The second step was concerned by selecting an optimal subset of numerical attributes that are 

relevant to effort estimation and most appropriate to use as effort drivers in empirical studies.  

 53 Web projects from Tukutuku dataset [48]. Each Web application is described using 9 numerical 

attributes such as: the number of html or shtml files used, the number of media files and team 

experience. However, each project volunteered to the Tukutuku database was initially characterized 
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using more than 9 software attributes, but some of them were grouped together. For example, we 

grouped together the following three attributes: number of new Web pages developed by the team, 

number of Web pages provided by the customer and the number of Web pages developed by a third 

party (outsourced) in one attribute reflecting the total number of Web pages in the application 

(Webpages). 

Table 3 summarizes descriptive statistics of the selected datasets, including size of dataset, effort 

unit, number of attributes, median, mean, minimum, maximum, skewness and kurtosis of effort. None of the 

selected datasets had a normally distributed effort as skewness values ranged from 2.04 to 6.26. This presents 

a challenge for researchers attempting to build accurate SDEE techniques [16, 49]. 

 

 

Table 3. Descriptive statistics of the eight datasets 

Dataset 
# of softwar 

project 

Unit # of 

features 

Distribution of Effort 

Min Max Mean Median Skewness Kurtosis 

ISBSG (R8) 151 Man/hours 6 24 60 270 5 039 2 449 4.17 21.10 

COCOMO 252 Man/months 13 6 11 400 683.4 98 4.39 20.50 
TUKUTUKU 53 Man/months 9 6 5 000 414.85 105 4.21 20.17 

DESHARNAIS 77 Man/hours 8 546 23 940 4 834 3 542 2.04 5.30 

ALBRECHT 24 Man/months 7 0.5 105.20 21.88 11.45 2.30 4.67 
KEMERER 15 Man/months 6 23 1107 219.24 130 3.07 10.6 

MIYAZAKI 48 Man/months 8 5.6 1586 87.47 38 6.26 41.3 

CHINA 499 Man/hours 15 26 54 620 3 921.04 1 829 3.92 19.3 

 

 

5.3.  Validation method 

A 30% holdout validation method was used to evaluate the generalization ability of the estimation 

models. So, the datasets were split randomly into two non-overlapping sets: training set containing 70% of 

data and testing set composed from 30% of the remaining data. The purpose of holdout evaluation is to test a 

model on different data to that from which it is learned. This provides less biased estimate of learning 

performance than all-in evaluation method. 

 

 

6. EMPIRICAL RESULTS 

This section reports and discusses the results of empirical experiments performed using SVR models 

designed in Section IV and following the building process illustrated in Figure 1. To carry out these empirical 

experiments, different R packages were used to develop an R prototype employed to construct the proposed 

models. In this way, e1071 package was used to build the SVR models and randomForest, and Boruta 

packages were used for feature selection methods. 

 

6.1.  Feature selection results 

This subsection presents the results of the preprocessing step. Table 4 provides the four least 

important features generated by random forest, and the number of selected features and removed ones by 

Boruta method in each dataset. It can be seen from the data in Table 4 that the features rejected by Boruta are 

generally among the four least important feature identified by random forest, which is not surprising since 

Boruta algorithm is based on RF variable importance. However, Boruta method did not always remove the 

first least important feature. As example, for Albrecht dataset, it removed the second one (input) while the 

first least important feature is FPAdj. Concerning the number of the selected features, Boruta method 

selected almost at least 50% of features available in each dataset. The only exception was the case of 

Tukutuku dataset for which out of nine features, Boruta selected only two features. The single most striking 

result to emerge from the data is that all features of COCOMO dataset were deemed relevant and none of 

them was rejected. 
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Table 4. Number of selected features and removed ones in each dataset 

Datasets 
# of 

Feat. 
Four least important feature RF (1,2,3,4) 

Boruta 

# of selected 

Features 
Removed feature 

ISBSG (R8) 6 Business, Locations, Factor, Concurrent 3 Factors, Business, Locations 
COCOMO 13 VEXP, VIRTmajeur, LEXP, VIRTmineur 13 - 

TUKUTUKU 9 Audio, Teamexp, tot_nhigh, ANIM 2 
devTeam, teamExp, textP, 

imag, anim, audio, tot_nhigh 
DESHARNA

IS 
8 TeamExp, ManagerExp, Language, Envergure 6 

TeamExp, MangerEx 

ALBRECHT 7 FPAdj, Input, Inquiry, File 6 Input 
KEMERER 6 Language, Hardware, Duration, RAWFP 3 Language, Hardware, Duration, 

MIYAZAKI 7 EFORM, ESCRN, FILE, SCRN 6 EFORM 

CHINA 15 Dev.Type, Deleted, Changed, Resource 13 Deleted, Dev.Type 

 

 

6.2. Evaluation of SVR with FSS 

The second step of the model building process uses the original and the reduced datasets to 

determine the best setup of the proposed SVR models. The best configuration is determined, as explained 

earlier, by a search grid to minimize the mean square error (MSE). Once the five SVR models were trained 

using training sets (70% of data), we evaluated the generalization capability of the five configurations of 

SVR models using testing sets (30%) over the eight datasets. The evaluation was based on the MMRE, 

MdMRE, and Pred(0.25) criteria. The complete empirical results obtained are shown in Tables 5-8. From 

data in Table 5, we notice that no SVR configuration gave the best Pred(0.25) value in all datasets. However, 

SVR-BFE_1 (removing only the least important feature) generated the best Pred in 6 out of 8 datasets and 

SVR-BFE_4 only came second by giving best value of Pred in 5 datasets. The SVR without FS and SVR 

with Boruta method produced best value of Pred only in one dataset: Kemerer and China respectively. The 

best value of Pred(0.25) was obtained by SVR-BFE_4 in China dataset (83.33). 

The results reported in Table 6 and Table 7 related to MMRE and MdMRE measures confirm the 

fact that no SVR configuration performed better than the other in all situation. Nevertheless, we can easily 

observe that the best values of MMRE and MdMRE are obtained with same datasets as those of Pred. So, the 

lowest errors were obtained with China dataset and highest errors were generated with ISBSG dataset. What 

is interesting about the data in these tables is that the values of MdMRE are far lower than those of MMRE 

especially in COCOMO, ISBSG, Tukutuku and Kemerer datasets. These latter findings agree with the values 

of skewness and kurtosis of these datasets that exhibit high level of asymmetry and of nonnormality. 

 

 

Table 5. The results obtained in terms of pred(0.25) over the eight datasets 

Techniques 

FSS 

method/# 

removed 

features 

COCOMO ISBSG TUKUTUKU ABRECHT DESHARNAIS KEMERER MIYAZAKI CHINA 

SVR 0 30,263 26,667 31,25 28,571 21,739 20 35,714 15,333 

SVR-BFE 

1 36,842 31,111 37,5 42,857 30,435 20 42,857 81,333 
2 32,895 24,444 37,5 42,857 34,783 20 21,429 81,333 

3 31,579 24,444 37,5 42,857 34,783 0 21,429 80 

4 36,842 31,111 12,5 42,857 39,13 0 28,571 83,333 
SVR - Boruta 34,211 24,444 25 28,571 34,783 0 42,857 75,333 

 

 

Table 6. The results obtained in terms of MMRE over the eight datasets 

Techniques 

FSS 

method/# 
removed 

feature 

COCOMO ISBSG TUKUTUKU ABRECHT DESHARNAIS KEMERER MIYAZAKI CHINA 

SVR 0 1,367 1,703 1,065 0,583 0,464 1,37 0,556 1,337 

SVR-BFE 

1 1,375 1,478 0,856 0,583 0,467 1,235 0,553 0,187 

2 1,262 1,187 0,8 0,548 0,456 1,334 1,503 0,191 

3 1,304 1,407 0,814 0,668 0,521 1,627 1,394 0,195 
4 1,242 1,092 1,028 0,685 0,462 1,59 1,367 0,17 

SVR-Boruta 1,524 1,559 0,507 0,566 0,457 1,671 0,527 0,242 
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Table 7. The results obtained in terms of MdMRE over the eight datasets 

Techniques 

FSS 

method/# 

removed 
feature 

COCOMO ISBSG TUKUTUKU ABRECHT DESHARNAIS KEMERER MIYAZAKI CHINA 

SVR 0 0,451 0,54 0,316 0,323 0,376 0,579 0,375 0,726 

SVR-BFE 

1 0,456 0,526 0,338 0,422 0,397 0,844 0,295 0,054 
2 0,471 0,568 0,339 0,308 0,324 0,469 0,588 0,052 

3 0,521 0,486 0,407 0,725 0,396 0,646 0,526 0,055 

4 0,508 0,429 0,47 0,709 0,361 0,636 0,571 0,047 
SVR-Boruta 0,41 0,433 0,516 0,343 0,332 0,668 0,311 0,088 

 

 

Table 8. The Results obtained in terms of pred(0.25), MdMRE and MdMRE over the eight datasets 
Techniques FSS method / # removed feature Pred(0.25) MMRE MdMRE 

SVR 0 26,192 1,056 0,461 

SVR-BFE 

1 40,367 0,842 0,417 

2 36,905 0,910 0,390 

3 34,074 0,991 0,470 
4 34,293 0,955 0,466 

SVR-Boruta 33,150 0,882 0,388 

 

 

To sum up, the findings of this study suggest that the use of feature selection method in the 

preprocessing phase of the SVR model building can contribute significantly to improve the accuracy of effort 

estimates. In addition, the backward feature selection can generate better effort estimates than  

Boruta method. 
 

 

7. CONCLUSION AND FUTURE WORK 

This empirical study assessed the impact of feature selection methods on the accuracy of SVR 

models in SDEE. For this purpose, two wrapper feature selection methods were used to pre-process eight 

well-known datasets. The SVR models based on pre-processed datasets were compared to those built without 

feature selection. The SVR models were optimized using a grid search procedure. The performance of the 

proposed models was assessed using three accuracy measures through 30%holdout validation method. The 

results obtained showed that the SVR models with feature selection generated better estimation than the SVR 

constructed without feature selection methods. In addition, using the proposed backward feature elimination 

based on RF feature importance can leads to better accuracy than Boruta method. However, this study has 

only examined the SVR models based on one type of feature selection method. Therefore, it would be 

interesting to assess the impact of others feature selection methods on the accuracy of SVR models in SDEE. 
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