
International Journal of Advances in Applied Sciences (IJAAS)
Vol. 8, No. 3, September 2019, pp. 184~194
ISSN: 2252-8814, DOI: 10.11591/ijaas.v8.i3.pp184-194  184

Journal homepage: http://iaescore.com/online/index.php/IJAAS

Cache optimization cloud scheduling (COCS) algorithm based
on last level caches

K. Vinod Kumar, Ranvijay
Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology, India

Article Info ABSTRACT

Article history:

Received Apr 23, 2019
Revised Jun 18, 2019
Accepted Jul 3, 2019

 Recently, the utilization of cloud services like storage, various software,
networking resources has extremely enhanced due to widespread demand of
these cloud services all over the world. On the other hand, it requires huge
amount of storage and resource management to accurately cope up with ever-
increasing demand. The high demand of these cloud services can lead to high
amount of energy consumption in these cloud centers. Therefore, to eliminate
these drawbacks and improve energy consumption and storage enhancement
in real time for cloud computing devices, we have presented Cache
Optimization Cloud Scheduling (COCS) Algorithm Based on Last Level
Caches to ensure high cache memory Optimization and to enhance the
processing speed of I/O subsystem in a cloud computing environment which
rely upon Dynamic Voltage and Frequency Scaling (DVFS). The proposed
COCS technique helps to reduce last level cache failures and the latencies of
average memory in cloud computing multi-processor devices. This proposed
COCS technique provides an efficient mathematical modelling to minimize
energy consumption. We have tested our experiment on Cybershake
scientific dataset and the experimental results are compared with different
conventional techniques in terms of time taken to accomplish task, power
consumed in the VMs and average power required to handle tasks.

Keywords:

Cloud computing
Dynamic voltage and
frequency scaling
Energy consumption
Last level cache

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

K. Vinod Kumar,
Department of Computer Science and Engineering,
Motilal Nehru National Institute of Technology,
Allahabad, 211004-India.
Email: vinodkgpt@gmail.com

1. INTRODUCTION

In the field of next upcoming generation of computing platform, the application of big data is most
emerging application because there is a huge increment in the creation of data and the storage space. As per
the research done in 2012, the ever-lasting increment of data has converted a particular dataset of few
terabytes data to the several petabytes [1]. The several features like large capacity, bulky distributed datasets
and high velocity is mainly considered in the applications of Big Data which requires the diverse processing
schemes such that optimization strategies and an accurate decision making can be enabled [2]. In actual
world a huge amount of data is generated in many fields like medical, surfing on internet,
telecommunication, pharmaceutical, technology of information and the business.

Moreover, in recent time, cloud computing applications has taken immense rise in real world due to
its various facilities provided by the cloud providers like ‘pay-as-you-go’ scheme, massive promotions, easy
to use, large connectivity with massive number of subscribers. An application of the cloud computing is
distributed type application which allows the user to provide the services as per there demand through the
internet [3]. The main reason for the drastic growth of cloud computing is because its application saves huge
amount of computational time and capacity required for storing the data and also for accessing the several
resources. The different resources which are provided by the cloud providers (i.e. amazon, Microsoft etc.) are

Int. J. of Adv. in Appl. Sci. ISSN: 2252-8814 

Cache optimization cloud scheduling (COCS) algorithm based on last level caches (K. Vinod Kumar)

185

available in the form of VMs (virtual machines) within Infrastructure-as-a-Service (IaaS) model [4]. In a
cloud computing environment, the time required to execute any of the operations on the virtual machines is
clearly relied upon the number of instructions handled by 𝑉𝑀 which is in some millions and processing
power which is in million instructions per second per core. However, the execution time is also dependent on
the criticality levels of various functions as it can be varied for every function. Thus, an efficient scheduling
is highly appreciated to execute millions of instructions at a time in a cloud environment. Therefore, an
efficient task scheduling can be utilized to reduce the processing time in numerous functions of cloud
computing environment.

Furthermore, various adaptive control methods like dynamic voltage and frequency scaling (𝐷𝑉𝐹𝑆),
dynamic speed scaling (𝐷𝑆𝑆) and dynamic frequency scaling (𝐷𝐹𝑆) are introduced by different researchers
in recent time to conserve energy and shield environment. Dynamic voltage and frequency scaling (𝐷𝑉𝐹𝑆) is
one of the most promising technology which can adaptively optimize power by scaling frequency and
voltage. Other energy optimization technologies which are available in the market are like 𝐷𝐹𝑆, 𝐷𝑆𝑆
and 𝐷𝑆𝑃. All these techniques provide energy-conserving scheduling by diminishing the supply frequency
and voltage of the cloud computing environment when numerous jobs are processing adaptively [5-8].
Currently, various chip manufacturing companies provide built-in-processors in integration with 𝐷𝑉𝐹𝑆
technologies to speed up performance of their network and reduce power consumption in various cloud
computing systems like Intel utilizes Intel SpeedStep processor [9], 𝐴𝑅𝑀 utilizes intelligent energy manager
[10] and 𝐴𝑀𝐷 company uses Power Now processors. The processors which works on higher frequencies can
provide decent performance. However, at the same time, they consume immense amount of energy in cloud
computing environment. Thus, to ensure high performance and lower energy consumption, 𝐷𝑉𝐹𝑆 is the most
suitable technique currently. The energy can be conserved in the cloud computing devices in two ways such
as by scaling voltage and frequency either at task slack period or while processing external peripherals.
Therefore, a huge amount of energy can be conserved using 𝐷𝑉𝐹𝑆 technologies.

Thus, numerous researchers are concerned about the lack of energy conservation in cloud computing
environment and hence numerous power efficient technologies are introduced by different researchers to
protect environment by enormous amount of power dissipation and enhance the performance of the
environment. However, these power efficient technologies require enormous amount of interaction cost
between inter-processors. Moreover, these technologies provide insufficient results and energy consumption
of cloud computing devices cannot be reduced more due to enormous amount of memory utilization.
Furthermore, cache memory optimization is an essential factor to reduce further energy consumption in the
cloud computing environment. In recent years, the speed of cloud computing processors and density of main
memory has taken immense growth as well as the utilization of I/O sub-systems has extremely enhanced.
Specifically, the growth of I/O subsystems in the applications like multimedia and networking has further
enhanced the demand of storage capacity. Even though the processing speed of I/O memory sub-systems is
highly enhanced, it cannot fulfill the demand of computer sub-systems. Therefore, storage sub-systems are
the one of the performances limiting factor and even can be a reason for high energy consumption in cloud
computing environment. Therefore, to reduce energy consumption and enhance performance of I/O sub-
systems in cloud computing environment, the optimization of cache is an essential factor.

Furthermore, the storage devices in which cache memory is utilized are termed as fast storage sub-
systems. However, the capacity of these fast storage sub-systems is limited and hence, replace methods
should be utilized to enhance the efficiency of storage devices and cache memory. Moreover, some of the
well-known cache replace algorithms utilizes 𝐹𝐼𝐹𝑂, 𝐿𝐹𝑈 𝑎𝑛𝑑 𝐿𝑅𝑈 and their relevant technologies. The
cache hit ratio is utilized to enhance the performance of cloud computing environment which rely upon the
information reference confinedity. The performance of I/O subsystem is clearly depending on the processing
speed of storage sub-systems which need to be similar in all the storage devices. However, this often does not
happen as the processing speed of storage devices varies system to system. Therefore, there is a need of a
technique, which maintains the cache hit ratio and enhance the accessing speed of the network by optimizing
cache memory. Moreover, energy consumption and higher memory utilization can be minimized by reducing
the traffic on shared cache memories and memory handlers. The additional energy consumption and slower
processing in the cloud computing environment is due to missing of last level caches (𝐿𝐿𝐶) on shared storage
sub-systems.

Therefore, these problems need to be focused soon so that the performance and memory capacity of
cloud computing devices get enhanced. Thus, here, we have adopted a Cache Optimization Cloud Scheduling
(𝐶𝑂𝐶𝑆) Algorithm Based on Last Level Caches to ensure high cache memory Optimization and to enhance
the processing speed of I/O subsystem in a cloud computing environment which rely upon Dynamic Voltage
and Frequency Scaling (𝐷𝑉𝐹𝑆). The proposed cache Optimization technique helps to minimize the
mismanagement of last level caches and to identify the behaviors of cache patterns. This technique decreases
congestion on shared cache memories and relocates memory sub-systems dynamically. The memory capacity

  ISSN: 2252-8814

Int. J. of Adv. in Appl. Sci. Vol. 8, No. 3, September 2019: 184 – 194

186

of cloud computing environment can be enhanced by sharing caches between cores dynamically. The
experimental outcomes verify that the proposed Cache Optimization Cloud Scheduling (𝐶𝑂𝐶𝑆) Algorithm
can provide higher performance in terms of energy consumption, memory capacity and efficiency in cloud
computing environment even in the worst-case scenarios.

This paper is presented in following sections which are as follows. In section 2, we describe about
the related work to cache memory and their importance and drawbacks in existing techniques and in section
3, we described our proposed Cache Optimization Cloud Scheduling (𝐶𝑂𝐶𝑆) methodology. In section 4,
experimental results and evaluation shown and section 5 concludes our paper.

2. RELATED WORK

In recent years, the concerns related to enormous memory utilization and performance in cloud
computing environment have taken immense growth. Thus, performance enhancement and proper
management of storage sub-systems is highly critical need. Moreover, to enhance the storage in cloud
computing environment, the optimization of cache memory. Therefore, a widespread literature survey is
introduced on proper utilization of storage sub-systems and energy aware scheduling algorithms and their
link with 𝐷𝑉𝐹𝑆 in a multi-core heterogeneous cloud computing environment.

In [11], an algorithm for the efficient management of shared caches and their effective partitioning
is presented to reduce the accessing of main memory in cloud computing environment. This technique helps
to minimize the arithmetic and addressing operations. The architecture of last level cache is introduced to
reduce loop tiling problems. However, the balancing of energy consumption and performance is a
challenging task. In [12], a cache energy Optimization technique is introduced by interchanging from high
speed LI cache to L1 low speed cache using the DVFS application. This model provides a cache hierarchy to
model a low-power cache algorithm. This method helps to reduce congestion and also decrease extra latency
of main memory. However, a proper cache switching modelling is required to utilize this technique in real
time. In [13], an efficient cache architecture is presented for DVFS-enabled devices top reduce the cache
overhead in the cloud computing environment. This technique is capable of handling faults by changing
associativity adaptively in the network. This technique also helps to eliminate redundant information present
in the network. In [14], an efficient caching technique is introduced to compare performance of the network
with various state-of-art-techniques. The static cache and redis cache technique help to reduce congestion in
the cloud computing network and to provide proper resource utilization. In [15], an accurate memory
frequency scaling strategy is introduced using Graphics Processing Units (𝐺𝑃𝑈𝑠) based on dynamic voltage
and frequency scaling (𝐷𝑉𝐹𝑆) technique to reduce energy consumption and enhance performance of the
network. This strategy optimizes L2 cache, shared memory and L1 cache memory. In [16], various cache
bypassing methods are introduced based on CPU and GPU cores and compared with each other. This
technique helps to enhance the capacity of cache memory and decrease energy consumption in larger caches.
However, the problems like high congestion in the network and miss rate can be enhanced while using cache
by-passing techniques. In [17], a cache by-passing technique is presented for various mobile SOCs which are
clock domain and 𝐷𝑉𝐹𝑆 enabled. This technique helps to enhance performance of the network and energy
conservation in 𝐷𝑉𝐹𝑆-enabled CPUs. Here, last level caches are directly accessed to enhance energy
conservation and performance of the system. In [18], a novel cache Optimization technique is presented
based on Dynamic voltage and frequency scaling to enhance the reliability of the cloud computing network.
This technique helps to enhance performance and capacity of the system. However, overhead of the network
is very high using this technique.

Various researchers have introduced different cache memory Optimization techniques in above
literatures. However, very few methods can be utilized in real-time due to various problems like high
overhead, high energy consumption, slower performance and unable to reduce cache memory [11, 12, 14, 17-
19]. Thus, we have adopted a Cache Optimization Cloud Scheduling (𝐶𝑂𝐶𝑆) Algorithm Based on Last Level
Caches to ensure high cache memory Optimization and to enhance the processing speed of I/O subsystem in
a cloud computing environment based on Dynamic voltage and Frequency Scaling (𝐷𝑉𝐹𝑆) technique.

3. PROPOSED CACHE OPTIMIZATION CLOUD SCHEDULING (COCS) ALGORITHM

MODELLING
This section provides detailed modelling for the proposed Cache Optimization Cloud Scheduling

(𝐶𝑂𝐶𝑆) technique. Here, we introduce a Cache Optimization Cloud Scheduling (𝐶𝑂𝐶𝑆) Algorithm Based on
Last Level Caches to ensure high cache memory Optimization and to enhance the processing speed of I/O
subsystem in a cloud computing environment based on Dynamic voltage and Frequency Scaling (𝐷𝑉𝐹𝑆)
technique. The architecture of the proposed Cache Optimization Cloud Scheduling (𝐶𝑂𝐶𝑆) technique is

Int. J. of Adv. in Appl. Sci. ISSN: 2252-8814 

Cache optimization cloud scheduling (COCS) algorithm based on last level caches (K. Vinod Kumar)

187

presented in Figure 1. Here, we provide efficient modeling to reduce energy consumption and enhance
capacity and efficiency of the cloud computing network. The proposed cache Optimization technique
migrates cloud virtual machines to reduce the final Last Level Cache (𝐿𝐿𝐶) failures in the cloud computing
network. This technique contains confined and generalized scheduling stages. Here, Figure 1 demonstrates
the proposed cache Optimization technique which identifies the behavior of various caches in every 𝑉𝑀 from
different working nodes and gathers all the VMs to decrease the final cache failures and the latencies of
average memory in the cloud computing network. Figure 1 defines the complete architecture of the proposed
𝐶𝑂𝐶𝑆 model. In each working node, 𝐿𝐿𝐶 failures are checked to measure the performance of the system. The
monitoring system measures the 𝐿𝐿𝐶 failures per VM and transfer it to the cloud computing scheduler. The
generalized scheduling is depending on the status of VMs from each node. The proposed 𝐶𝑂𝐶𝑆 Algorithm
utilizes the measured information of cloud computing VMs. Initially, the 𝐶𝑂𝐶𝑆 technique locates VMs on
working nodes which takes CPU and memory for every node to enhance the behavior of cache memories.

Figure 1. Architecture diagram of proposed Cache Optimization Cloud Scheduling (COCS) model

3.1. Modeling of cache-aware cloud scheduling

This section provides a detailed modeling for proposed cache-aware cloud scheduling technique.
Initially, the proposed cache Optimization techniques takes conflicts of shared cache memories. Then,
migrates cloud virtual machines to reduce the final Last Level Cache (𝐿𝐿𝐶) failures in the cloud computing
network. This technique contains confined and generalized scheduling stages. All the VMs are gathered
together to at each working node and planned to domains of mutual caches. The optimization of VMs is
presented to enhance the network bandwidth and network capacity. The cloud simulator scheduler is utilized
to reallocate VMs at the nodes where 𝐿𝐿𝐶 failures in a computing network of generalized stage. Here,
Algorithm 1 is demonstrated in Table 1 which describes the proposed 𝐶𝑂𝐶𝑆 Algorithm based on Last level
caches. This cache aware scheduling algorithm distributed into two stages like one is confined stage and
other one is generalized stage. All the VMs at every working nodes are classified by LLC failures and then
gathered together according to their missed last level caches in the domains of shared caches. The virtual
machines with the most LLC failures fit in group 1, next VM with most 𝐿𝐿𝐶 in group 2. Similarly, the virtual
machines with the least LLC failures fits in group 1 and next VM with least 𝐿𝐿𝐶 in group 2. This scheme
helps to allocate all the VMs in either of the group.

The cloud scheduler realizes two types of nodes present in the cloud computing network such as
node with highest 𝐿𝐿𝐶 failures and node with least 𝐿𝐿𝐶 failures in the generalized phase. If the difference
between 𝐿𝐿𝐶 failures is more than threshold value then both the VMs are swapped using cache optimization
technique. The cloud scheduler performs two-stage scheduling progressively by decreasing the final 𝐿𝐿𝐶
failures in a cloud computing network after a regular interval of time.

Algorithm 1 Cache Optimization Cloud Scheduling (COCS)Algorithm

Step 1: N_L= <n_x1,….,n_x2> // LLC miss of every computing node
Step 2: W_L= <w_x1,….,w_x2> // LLC miss of VMs in each working nodes

// confined stage
Step 3: for every working node j from 1 to y do // identify LLC failures in for every VM in working node j
Step 4: 𝑛𝑥௝ ⇐ 𝑐𝑜𝑙𝑙𝑙𝑒𝑐𝑡𝑠 (𝑗)

  ISSN: 2252-8814

Int. J. of Adv. in Appl. Sci. Vol. 8, No. 3, September 2019: 184 – 194

188

Step 5: 𝑊𝕃 ⇐ 𝑠𝑜𝑟𝑡 ൫𝑛𝑥௝൯ // disperse VMs with LLC failures
Step 6: disperse (𝑊𝕃)
Step 7: end for

// Generalized stage
// identify working nodes with largest and least LLC failures

Step 8: largeNode ⇐ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑙𝑎𝑟𝑔𝑒𝑁𝑜𝑑𝑒(𝑁𝕃)
Step 9: leastNode ⇐ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑙𝑒𝑎𝑠𝑡𝑁𝑜𝑑𝑒(𝑁𝕃)

// search VMs which contains maximum and minimum LLC failures
Step 10: largeVM ⟸ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑉𝑀(𝑙𝑎𝑟𝑔𝑒𝑁𝑜𝑑𝑒)
Step 11: leastVM ⇐ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑙𝑒𝑎𝑠𝑡𝑉𝑀 (𝑙𝑒𝑎𝑠𝑡𝑛𝑜𝑑𝑒)
Step 12: if 𝑇 < 𝑙𝑎𝑟𝑔𝑒𝑁𝑜𝑑𝑒𝕃𝕃ℂ − 𝑙𝑒𝑎𝑠𝑡𝑁𝑜𝑑𝑒𝕃𝕃ℂ 𝑡ℎ𝑒𝑛
Step 13: interchange (𝑙𝑎𝑟𝑔𝑒𝑉𝑀, 𝑙𝑒𝑎𝑠𝑡𝑉𝑀)
Step 14: end if

3.2. Modelling for minimizing energy consumption using COCS

In this section efficient mathematical modelling is presented to minimize energy consumption in
multicore cloud computing systems using proposed cache optimization cloud scheduling technique. This
technique helps to minimize energy consumption in cloud devices using cache minimization concept by
eliminating dynamic constrained minimization problem. The energy consumption 𝑃(𝑡) occurs in any multi-
core cloud computing processor is expressed as

𝑃(𝑡) = 𝑒(𝑡)𝑀௔, (1)

Where, 𝑃(𝑡) represents the energy consumption in a cloud computing processor in the 𝑡௧௛ managing
period. Here, 𝑒(𝑡) represents power consumption of a cloud computing multi-core processor which is linked
with both frequencies of the core 𝐵௞ and size of the current 𝐿2 cache which remains a constant for the
frequencies of the core 𝐵௞ , size of the current L2 cache and task-load of the system and remain unchanged
throughout in every managing period whereas 𝑀௔ is managing period to release multiple illustrations of
every task during 𝑡௧௛ managing period. Here, 𝑣௞(𝑡) represents the core (𝐵௞) utilization in a 𝑡௧௛ managing
period which depends on the statistics produced by an operating system. Here, the cloud computing processor
consists of two cache levels L1 and L2 which are shared with homogenous cores in multi-core shared
architecture. In the proposed model each cloud computing processors support DVFS-enabled cores which
conserve high amount of energy. The cache memory is divided into various tasks. The level 2 cache memory
divider can be denoted as 𝑎௞(𝑡) for a core size 𝐵௞ . The maximum core frequency for a core size 𝐵௞ can be
expressed as 𝕗௞↑

(𝑡). Then, energy consumption 𝑃(𝑡) of the cloud computing multi-core processor can be
expressed as

min
௔ೖ(௧)|ଵ ஸ௞ஸ௜,𝕗ೖ(௧)|ଵஸ௞ஸ௜

∑ [𝑉௞ − 𝑣௞(𝑡)]ଶ,௜
௞ୀଵ (2)

𝑚𝑖𝑛

௔ೖ(௧)|ଵ ஸ௞ஸ௜,𝕗ೖ(௧)|ଵஸ௞ஸ௜
𝑃(𝑡) (3)

𝑅↓,௞ ≤ 𝕗௞(𝑡) ≤ 𝑅↑,௞ 𝑤ℎ𝑒𝑟𝑒, (1 ≤ 𝑘 ≤ 𝑖) (4)

∑ 𝑎௞(𝑡) ≤ 𝐴௜

௞ୀଵ (5)

Where, 𝑉௞ is a Utilization points of sets in which 𝑉 = [𝑉ଵ, … … . , 𝑉௜]் for a frequency range of
ൣ𝑅↑,௞, , 𝑅↓,௞൧ for every core 𝐵௞ and overall size of L2 caches cloud computing processors is denoted by 𝐴
whereas {𝑎௞(𝑡)|1 ≤ 𝑘 ≤ 𝑖 } represents the size of cache memory partition and {𝕗௞(𝑡)|1 ≤ 𝑘 ≤ 𝑖} denotes the
frequency of cores in a 𝑡௧௛ managing period to reduce the difference between core utilization 𝑣௞(𝑡) and
Utilization points of sets (𝑉௞). Here, the (2) represents the least energy consumption in any cloud computing
multicore processor due to constant power generation 𝑒(𝑡) for the 𝑡௧௛ managing period. Here, the (3)
represents shows that the frequency of CPU usually lies in the acceptable range for every core suing the
proposed 𝐶𝑂𝐶𝑆 technique. The change in the frequency of any cloud computing device depends on the
processors utilized. The (4) represents summation of each divided cache memory which is equivalent to the
overall cache memory of the cloud computing processor. For every core of the processor, the difference
between core utilization 𝑣௞(𝑡) and Utilization point of sets (𝑉௞) is minimized using the proposed cache

Int. J. of Adv. in Appl. Sci. ISSN: 2252-8814 

Cache optimization cloud scheduling (COCS) algorithm based on last level caches (K. Vinod Kumar)

189

optimization technique by changing size of cache partition and frequency of cores. However, these processes
decrease the speed of the cloud computing processors. Therefore, to enhance the speed and performance of
the system a dynamic model is introduced to maintain a link between managing 𝑣௞(𝑡) and manipulated
𝑎௞(𝑡) factors and core frequency 𝕗௞(𝑡) in the 𝑡௧௛ managing period. Initially, for a core 𝐵௞ , the proposed
dynamic model provides a link between 𝑏௞௣(𝑡), task operating time 𝑀௞௣ and both manipulated factors 𝕗௞(𝑡)
in the 𝑡௧௛ managing period and 𝑎௞(𝑡). Then, 𝑏௞௣(𝑡) can be of operates in various manners like frequency
dependent and independent segments and can be represented as

𝑏௞௣(𝑡) = 𝑖௞௣ . ൫𝕗௞(𝑡)൯
ିଵ

+ 𝑠௞௣(𝑡), (6)

Where, 𝑖௞௣ . ൫𝕗௞(𝑡)൯
ିଵ

 is a segment which rely upon frequency whereas 𝑠௞௣(𝑡) represents the a
segment which is independent of frequency for an operating time 𝑀௞௣ due to operating speed of I/O devices
does not rely upon the frequencies of core. These I/O devices does not participate at the time of executing
task. Then, the reserved cache memory for a task operating time 𝑀௞௣ is denoted as 𝑠௞௣(𝑡) which defines a
strong link between size of cache memory and the number of cache failures. Then, a link between 𝑠௞௣(𝑡) and
𝑎௞௣(𝑡) and allocated cache size for a multi-core architecture 𝐵௞is expressed as

𝑠௞௣(𝑡) = ቊ
𝐷௞௣𝑎௞௣(𝑡) + 𝐻௞௣ 0 ≤ 𝑎௞௣(𝑡) ≤ 𝑋௞௣

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎௞௣(𝑡) ≥ 𝑋௞௣
 (7)

Where, 𝑋௞௣ is the size of operating set within a task operating time 𝑀௞௣ whereas 𝐷௞௣ and 𝐻௞௣ are

the specified task factors. Here, the (7) describes that using the proposed COCS technique, whenever size of
operating set 𝑋௞௣ is larger than 𝑎௞௣(𝑡), and then the size of cache memory enhances and can lead to a
minimum operating time. Similarly, whenever size of operating set 𝑋௞௣ is smaller than 𝑎௞௣(𝑡), then cache
failure rate becomes high and cannot be handled by assigning an extra cache memory. Then, to manage real-
time task, the link between overall independent frequency and operating time of every task for multi-core
processor 𝐵௞ and size of overall cache 𝑎௞(𝑡) allocated to core 𝐵௞ can be expressed as

𝑠௞(𝑡) = ቊ
∑ 𝐷௞௣

ᇱ𝑎௞(𝑡) + ∑ 𝐻௞௣ ௣௣ 0 ≤ 𝑎௞(𝑡) ≤ 𝑋௞

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎௞(𝑡) ≥ 𝑋௞
 (8)

Where, 𝐷௞௣
ᇱ = 𝐷௞௣𝑎௞௣(𝑡). ൫𝑎௞(𝑡)൯

ିଵ
 and 𝑋௞ = ∑ 𝑋௞௣௣ . Here, the (8) represents the summation of

(7) for each task on a multi-core processor 𝐵௞ . Then, the proposed COCS technique helps to minimize
interference between shared caches resources of various cores and can be expressed as

ℎ௞(𝑡) = ∑ 𝑖௞௣௣ 𝑞௞௣ . ൫𝕗௞(𝑡)൯
ିଵ

+ ∑ 𝐷௞௣
ᇱ𝑞௞௣𝑎௞(𝑡) + ∑ 𝐻௞௣ 𝑞௞௣௣௣ (9)

Where, ℎ௞(𝑡) represents the predicted core utilization and 𝑞௞௣ represents rate of the task within

operating time 𝑀௞௣ for a multi-processor core 𝐵௞ . From (9), it is verified that ℎ௞(𝑡) is inversely proportional
to the frequency of core 𝕗௞(𝑡). The predicted change in utilization ∆ℎ௞(𝑡) for a multi-core architecture 𝐵௞
can be expressed as

∆ℎ௞(𝑡) = 𝑙௞(𝑡) ∑ 𝑖௞௣௣ 𝑞௞௣ + ∆𝑎௞(𝑡) ∑ 𝐷௞௣

ᇱ𝑞௞௣௣ (10)

Where, 𝑙௞(𝑡) = ൫ 𝕗௞(𝑡)൯
ିଵ

− ൫ 𝕗௞(𝑡 − 1)൯
ିଵ

 and ∆𝑎௞(𝑡) = 𝑎௞(𝑡) − 𝑎௞(𝑡 − 1). Here, ∆ℎ௞(𝑡) can
be termed as the linear function of 𝑙௞(𝑡) and ∆𝑎௞(𝑡). Here, the (10) replaces the direct utilization of
frequency of core 𝕗௞(𝑡) to 𝑙௞(𝑡). The (10) shows that ∆ℎ௞(𝑡) is directly proportional to 𝑖௞௣ and 𝐷௞௣

ᇱ. Then,
the cost function of cloud computing system can be reduced with the help of controller for a multi-core 𝐵௞ as

𝑍௞(𝑡) = ∑ ‖𝑣௞(𝑡 + 𝑐 − 1|𝑡) − 𝛽𝕗௞(𝑡 + 𝑐 − 1|𝑘)‖ଶ + ‖𝑢௞(𝑡|𝑡) − 𝑢௞(𝑡 − 1|𝑡)‖ଶா

௖ୀଵ (11)

Where,

𝑅↓,௞ ≤ 𝕗௞(𝑡) ≤ 𝑅↑,௞ (12)

  ISSN: 2252-8814

Int. J. of Adv. in Appl. Sci. Vol. 8, No. 3, September 2019: 184 – 194

190

𝑎௞(𝑡) ≤ 𝑎௤௨௢௧௔,௞ (13)

Where, 𝑢௞(𝑡) = ቂ
௟ೖ(௧)

∆௔ೖ(௧)
ቃ and 𝐸 represents estimated horizon to estimate the behavior of the device

in 𝐸 managing periods. Here, 𝛽𝕗௞(𝑡 + 1|𝑡) represents the trajectory with respect to the utilization factor
𝑣௞(𝑡 + 𝑐 − 1|𝑡) must change from the present utilization factor 𝑣௞(𝑡) to utilization point of sets 𝑉௞. The size
of cache 𝑎௞(𝑡) for a multi-core system 𝐵௞ is limited by 𝑎௤௨௢௧௔,௞ to satisfy (5). From this above modelling, the
optimization of cache memory can be easily achieved and optimization and least square problems are also
minimized. The optimized power consumption can be presented using our proposed COCS technique as

𝑒௞(𝑡) = 𝑆௞𝕗௞(𝑡)ଷ + 𝑌௞𝑎௞(𝑡) + 𝐶௞ (14)

Where,

𝑅↓,௞ ≤ 𝕗௞(𝑡) ≤ 𝑅↑,௞ (15)

𝑎௞(𝑡) ≤ 𝑎௤௨௢௧௔,௞ (16)

Where, 𝑆௞ , 𝑌௞ 𝑎𝑛𝑑 𝐶௞ are the power factors of the cloud computing multi-core processor. The power

consumption of cloud computing multi-core processor is represented as the sum of the power consumption of
cores and shared caches. The total power consumption is directly depending on the dynamic components of
power 𝑆௞𝕗௞(𝑡)ଷ and leakage power 𝐶௞. Therefore, the power consumption in cache can be optimized using
the proposed 𝐶𝑂𝐶𝑆 technique. In this way, energy consumption of a cloud computing model is minimized
and performance of the system can be enhanced.

4. PERFORMANCE EVALUATION

In this modern era, the utilization of cloud computing embedded devices in daily life has
tremendously increased due to abundant utilization of various portable gadgets, information systems and
digital appliances etc. However, these embedded devices require high amount of power to operate properly,
Thus, the performance of this multi-core cloud computing systems and embedded devices must be very high
due to satisfy the ample demand of the market. However, in recent time, the performance of various cloud
computing centers has degraded due to large amount of energy consumption in these cloud computing
centers. Another major problem while using the cloud computing systems is the storage of the system. The
amount of data present in these cloud computing systems is extremely high and requires ample amount of
storage to handle these large data. Therefore, to maintain a balancing between high amount of energy
consumption and storage enhancement of cloud computing systems, we have introduced a Cache
Optimization Cloud Scheduling (𝐶𝑂𝐶𝑆) Algorithm Based on Last Level Caches to ensure high cache
memory Optimization and to enhance the processing speed of I/O subsystem in a cloud computing
environment which rely upon Dynamic Voltage and Frequency Scaling (𝐷𝑉𝐹𝑆). The proposed cache
Optimization technique helps to minimize the mismanagement of last level caches and to identify the
behaviors of cache patterns. Here, we have tested our model on 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 scientific dataset and various
sizes of tasks are considered like 30, 50, 100, and 1000 tasks to calculate time taken to accomplish tasks.
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 Workflow is produced with the help of four type of jobs like 30, 50, 100 and 1000. It is used
for the Southern California Earthquake center to identify earthquake dangers in a specified place [20]. It
requires large amount of storage and CPU resources. The experimental outcomes are presented in terms of
time taken to execute task of different size, power consumed in the VMs and average power required to
handle tasks against number of tasks considered. Different factors are considered to calculate operating time
and energy consumption which is demonstrated in the following section I Table 1. Our proposed 𝐶𝑂𝐶𝑆
model carried out on 64-bit windows 10 OS with 16 GB RAM which contains an
𝐼𝑁𝑇𝐸𝐿 (𝑅) 𝑐𝑜𝑟𝑒 (𝑇𝑀) 𝑖5 − 4460 processor. It consists of 3.20 GHz CPU. This project is simulated using
𝐸𝑐𝑙𝑖𝑝𝑠𝑒𝑊𝑆 Neon.3 editor and code is written in 𝐽𝐴𝑉𝐴.

4.1. Comparative analysis

Recently, the modern high-tech cloud computing systems are attempting to match high-end device
performance to fulfill the extreme demand of market. However, achieving high-end system performance can
head to the extreme energy consumption in these high-tech cloud centers. This is due to this device are
mainly battery-oriented and it is very critical to accurately control high amount of energy consumption. If
not, then the lifespan of these devices becomes limited due smaller battery life and it may frustrate cloud

Int. J. of Adv. in Appl. Sci. ISSN: 2252-8814 

Cache optimization cloud scheduling (COCS) algorithm based on last level caches (K. Vinod Kumar)

191

subscribers. Therefore, efficient task scheduling and storage capacity enhancement by removing unwanted
data is the best way to keep up with the high performance and minimum energy consumption. Therefore,
here, we have introduced a Cache Optimization Cloud Scheduling (𝐶𝑂𝐶𝑆) Algorithm Based on Last Level
Caches to ensure high cache memory Optimization and to enhance the processing speed of I/O subsystem in
a cloud computing environment which rely upon Dynamic Voltage and Frequency Scaling (𝐷𝑉𝐹𝑆). The
proposed technique helps to maintain balancing between high perform and minimum energy consumption.
Therefore, here, we have tested our experiment on 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 scientific dataset and the experimental
results are compared with different conventional techniques in terms of time taken to accomplish task, power
consumed in the VMs and average power required to handle tasks. These 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 scientific dataset is
widely utilized in evaluating the performance of various scheduling techniques and 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 workflow is
utilized in our experiment. Here, Table 1 demonstrates the performance comparison of our proposed COCS
technique in terms of task completion time, power sum, average power and power consumption occurs in
VMs using 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 scientific dataset of different size like 30, 50,100 and 1000. Power consumption
using the proposed 𝐶𝑂𝐶𝑆 technique for 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 30 is 128.4845 Watts, 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 50 is 151.5101
Watts𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒100 is 258.672 Watts and 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 1000 is 1696.490 Watts demonstrated in Table 1
which is extremely low in contrast to conventional standard technique. The proposed 𝐶𝑂𝐶𝑆 technique
compares Average task completion time using the proposed 𝐶𝑂𝐶𝑆 technique is compared with other
conventional techniques utilizing 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 scientific dataset of different size like 30, 50, 100 and 1000 as
demonstrated in Table 1. The Average Task Completion Time with the proposed 𝐶𝑂𝐶𝑆 technique for
scientific dataset 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 30 is 0.368431 sec, 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 50 is 0.193506 sec, 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 100 is
0.140568 sec and 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 1000 is 0.058476 sec and compared with various state-of-art-techniques. The
average task completion time is much smaller than any other state-of-art techniques like EMS-C, SPEA2,
MODE, NSPSO, ∈ −𝐹𝑈𝑍𝑍𝑌 PSO, MOHEFT [20] using our proposed 𝐶𝑂𝐶𝑆 technique demonstrated in
Table 2. The average Power required is much smaller than any other state-of-art techniques like EMS-C,
SPEA2, MODE, NSPSO, ∈ −𝐹𝑈𝑍𝑍𝑌 PSO, MOHEFT [20] using our proposed 𝐶𝑂𝐶𝑆 technique
demonstrated in Table 2. The VMs types with description used in our experiment is shown at Table 3. The
machine configuration used to compute these results are demonstrated in Table 4. The Power Consumption
required is much smaller than any other state-of-art techniques like EMS-C, SPEA2, MODE, NSPSO, ∈
−𝐹𝑈𝑍𝑍𝑌 PSO, MOHEFT [20] using our proposed 𝐶𝑂𝐶𝑆 technique demonstrated in Table 2. The machine
configuration used to compute these results are is demonstrated in Table 5. Figure 2 demonstrates the internal
architecture of 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 workflow.

Table 1. Various parameters comparison for proposed COCS technique vs DVFS using scientific
model Cybershake

Parameters
Total Execution

Time (s)
Power Sum

(W)
Average Power

(W)
Power Consumption

(𝑊ℎ)

DVFS

Cybershake 30 VM=20 6359.41 12175922.64 19.146320 3495.42
Cybershake 50 VM=30 14448.90 29068552.89 20.118183 8518.39

Cybershake 100 VM=50 30124.41 61177338.40 20.308229 18966.33
Cybershake 1000 VM=30 74543.57 149968122.08 20.118184 236303.28

𝐶𝑂𝐶𝑆

Cybershake 30 VM=20 262.73 415469.6734 15.8135 128.4845
Cybershake 50 VM=30 283.68 451080.8167 15.9010 151.5101

Cybershake 100 VM=50 443.21 704751.2215 15.9010 258.672
Cybershake 1000 VM=30 1328.05 2111745.021 15.9010 1696.490

Table 2. Runtime ratios of the peer algorithms against the proposed EMS-C on the real-world workflows
(i.e., runtime (peer algorithm) =runtime (COCS))

DAGs
Number
of nodes

Average Execution time (s)

EMS-C DVFS SPEA2 MODE NSPSO
∈ −𝑓𝑢𝑧𝑧𝑦

𝑃𝑆𝑂
MOHFET 𝐶𝑂𝐶𝑆

𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 30 30 23.77 211.98 1.62 1.18 21.25 15.04 10.39 0.368431
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 50 50 29.32 288.978 1.28 1.37 30.17 26.81 38.16 0.193506
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 100 100 31.53 301.244 0.92 1.31 44.75 42.22 110.42 0.140568
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 1000 1000 22.71 74.54 0.32 0.97 70.72 69.56 -- 0.058476

Table 3. VMs types with description used in our experiment
Type Memory (GB) Core Speed (ECU) Cores

m1. small 1.7 1 1
m1. large 7.5 4 2

m1. xlarge 15 8 4

  ISSN: 2252-8814

Int. J. of Adv. in Appl. Sci. Vol. 8, No. 3, September 2019: 184 – 194

192

Figure 2. Internal architecture of Cybershake workflow

Table 4. Runtime ratios of the peer algorithms against the proposed EMS-C on the real-world workflows
(i.e., average power (peer algorithm) = average power (COCS))

DAGs
Number
of nodes

Average power
EMS-C DVFS SPEA2 MODE NSPSO ∈ −𝑓𝑢𝑧𝑧𝑦 𝑃𝑆𝑂 𝐶𝑂𝐶𝑆

𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 30 30 34.0079 141.02 2.317 1.688 30.402 21.51782 0.5271166
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 50 50 48.186 156.72 2.103 2.251 49.583 44.06124 0.31802
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 100 100 35.666 151.92 1.040 1.481 50.621 47.75910 0.15901
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 1000 1000 6.175 52.191 0.087 0.263 19.230 18.91500 0.015901

Table 5. Runtime ratios of the peer algorithms against the proposed EMS-C on the real-world workflows
(i.e., power consumption (peer algorithm) = power consumption 𝐶𝑂𝐶𝑆)

DAGs Number
of nodes

Power consumption
EMS-C DVFS SPEA2 MODE NSPSO ∈ −𝑓𝑢𝑧𝑧𝑦 𝑃𝑆𝑂 𝐶𝑂𝐶𝑆

𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 30 30 276.31 1145.8 18.83 13.71 247.02 174.8320 4.2828166
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 50 50 459.13 1493.2 20.04 21.45 472.44 419.8304 3.030202
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 100 100 580.21 2471.4 16.92 24.10 823.48 776.9287 2.58672
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 1000 1000 658.85 5568.3 9.283 28.14 2051.7 2018.056 1.69649

4.2. Graphical representation

This section describes about the graphical demonstration of experimental outcomes using proposed
𝐶𝑂𝐶𝑆 technique. Here, Figure 3 demonstrates task completion time Comparison of proposed 𝐶𝑂𝐶𝑆 technique
with conventional 𝐷𝑉𝐹𝑆 technique with the help of scientific dataset 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 for different task sizes as
30, 50,100 and 1000. Here, Figure 4 demonstrates Power Sum Comparison of proposed 𝐶𝑂𝐶𝑆 technique with
conventional 𝐷𝑉𝐹𝑆 technique with the help of scientific dataset 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 for different task sizes as 30,
50,100 and 1000. Here, Figure 5 demonstrates Average Power Comparison of proposed 𝐶𝑂𝐶𝑆 technique with
conventional 𝐷𝑉𝐹𝑆 technique with the help of scientific dataset 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 for different task sizes as 30,
50, 100 and 1000. Similarly, Figure 6 demonstrates Power Consumption Comparison of proposed 𝐶𝑂𝐶𝑆
technique with conventional 𝐷𝑉𝐹𝑆 technique with the help of scientific dataset 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 for different
task sizes as 30, 50, 100 and 1000. Furthermore, Figure 7 demonstrates average task completion time
Comparison of proposed 𝐶𝑂𝐶𝑆 technique with various state-of-art-techniques using scientific dataset
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 for different task sizes as 30, 50, 100.

Int. J. of Adv. in Appl. Sci. ISSN: 2252-8814 

Cache optimization cloud scheduling (COCS) algorithm based on last level caches (K. Vinod Kumar)

193

Figure 3. Task completion time comparison of
proposed COCS technique vs DVFS using

scientific workload 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒

Figure 4. Power sum comparison of proposed COCS
technique vs DVFS using scientific

workload 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒

Figure 5. Average power comparison of proposed
COCS technique vs DVFS using scientific

workload 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒

Figure 6. Power consumption comparison of
proposed COCS technique vs DVFS using

scientific workload 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒

Figure 7. Average task completion time comparison of proposed COCS technique with various
state-of-art-techniques using scientific workload 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒

5. CONCLUSION

An efficient task scheduling in each cloud computing VMs and reduction of high energy
consumption in these devices is become a primary priority. Various researchers have provided different
techniques to decrease energy consumption in multi-core cloud computing processors. However, still it
remains an unsolved issue. Therefore, one method to decrease storage and energy consumption in multi-core
processors is cache minimization. Therefore, we have adopted Cache Optimization Cloud Scheduling
(𝐶𝑂𝐶𝑆) Algorithm Based on Last Level Caches to ensure high cache memory Optimization and to enhance
the processing speed of I/O subsystem in a cloud computing environment which rely upon Dynamic Voltage

  ISSN: 2252-8814

Int. J. of Adv. in Appl. Sci. Vol. 8, No. 3, September 2019: 184 – 194

194

and Frequency Scaling (𝐷𝑉𝐹𝑆). This technique helps to reduce last level caches and identifies the behavior
of different caches in every 𝑉𝑀 from different working nodes and gathers all the VMs to decrease the final
cache failures. A detailed modelling is presented to minimize the energy consumption and storage in cloud
computing multi-core processors by reducing cache memory. We have tested our experiment on
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 scientific dataset and the experimental results are compared with different conventional
techniques in terms of time taken to accomplish task, power consumed in the VMs and average power
required to handle tasks. The Average Task Completion Time with the proposed 𝐶𝑂𝐶𝑆 technique for
scientific dataset 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 30 is 8.7576 sec, 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 50 is 5.6736 sec, 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 100 is 4.4321
sec and 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 1000 is 1.328 sec. Power consumption using the proposed COCS technique for
𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 30 is 128.4845 Watts, 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 50 is 151.5101 Watts 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒100 is 258.672 Watts
and 𝐶𝑦𝑏𝑒𝑟𝑠ℎ𝑎𝑘𝑒 1000 is 1696.490 Watts which is very less compare to any other state-of-art-techniques.
Experimental results verify superiority of our proposed 𝐶𝑂𝐶𝑆 technique in terms of task completion time,
average power required and energy consumption.

REFERENCES
[1] Wikipedia, Big data, 2014a. [Online]. Available: http://en.wikipedia.org/wiki/Big_data.
[2] M. A. Beyer and D. Laney, The Importance of ‘big data’: A Definition. Gartner, Stamford, CT, 2012.
[3] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," National Institute of Standards and

Technology, 2009.
[4] H. Topcuoglu, S. Hariri, and M.y. Wu, "Performance-effective and low-complexity task scheduling for

heterogeneous computing," IEEE Trans. Parallel Distrib. Syst., vol. 13(3), pp. 260-274, 2002.
[5] K. Li, "Energy-efficient task scheduling on multiple heterogeneous computers: Algorithms, analysis, and

performance evaluation," IEEE Trans. Sustain. Comput., vol. 1(1), pp. 7–19, 2017.
[6] K. Li, "Power and performance management for parallel computations in clouds and data centers," J. Comput. Syst.

Sci., vol. 82(2), pp. 174–190, 2016.
[7] X. Xiao, G. Xie, R. Li, and K. Li, "Minimizing schedule length of energy consumption constrained parallel

applications on heterogeneous distributed systems," Proc. 14th IEEE Int. Symp. on Parallel and Distributed
Processing with Applications, IEEE Computer Society, pp. 1471-1476, 2016.

[8] G. Xie, X. Xiao, R. Li, and K. Li, "Schedule length minimization of parallel applications with energy consumption
constraints using heuristics on heterogeneous distributed systems," Concurrency Comput. Parctice Experience,
vol. 29(16), 2016.

[9] “Enhanced intel speedstep technology for the intel pentium m processor,” March 2014. [Online]. Available:
http://downloa10] “Amd powernow!? technology informational white paper,” November 2000. [Online]. Available:
http://www.amd-k6.com/wpcontent/ uploads/2012/07/24404a.pdf

[10] K. Flautner, D. Flynn, and M. Rives, "A combined hardware software approach for low-power socs: Applying
adaptive voltage scaling and intelligent energy management software," 2003. [Online]. Available:
intel.com/design/network/papers/30117401.pdf

[11] V. Kelefouras, G. Keramidas, and N. Voros, "Cache Partitioning + Loop Tiling: A Methodology for Effective
Shared Cache Management," 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum,
pp. 477-482, 2017.

[12] K. Saito, R. Kobayashi, and H. Shimada, "Reduction of cache energy by switching between L1 high speed and low
speed cache under application of DVFS," 2016 International Conference on Advanced Informatics: Concepts,
Theory and Application (ICAICTA), pp. 1-6, 2016.

[13] M. Mavropoulos, G. Keramidas, and D. Nikolos, "A defect-aware reconfigurable cache architecture for low-Vccmin
DVFS-enabled systems," 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 417-422, 2015.

[14] M. Kusuma, Widyawan, and R. Ferdiana, "Performance comparison of caching strategy on wordpress multisite,"
2017 3rd International Conference on Science and Technology - Computer (ICST), pp. 176-181, 2017.

[15] Q. Wang and X. Chu, “GPGPU performance estimation with core and memory frequency scaling,” arXiv preprint
arXiv:1701.05308, 2017.

[16] S. Mittal, “A Survey of Cache Bypassing Techniques,” MDPI J. Low Power Electron. Appl., vol. 6(5), 2016.
[17] Joonho Kong and Kwangho Leeb, "A DVFS-aware cache bypassing technique for multiple clock domain mobile

SoCs," IEICE Electronics Express, vol. 14(11), pp. 1-12, 2017.
[18] Y. H. Chen, Y. L. Tang, Y. Y. Liu, A. C. H. Wu, and T. Hwang, "A Novel Cache-Utilization-Based Dynamic

Voltage-Frequency Scaling Mechanism for Reliability Enhancements," IEEE Transactions on Very Large-Scale
Integration (VLSI) Systems, vol. 25(3), pp. 820-832, 2017.

[19] Z. Zhu, G. Zhang, M. Li, and X. Liu, "Evolutionary Multi-Objective Workflow Scheduling in Cloud," IEEE
Transactions on Parallel and Distributed Systems, vol. 27(5), pp. 1344-1357, 2016.

[20] E. Deelman, D. Gannon, M. Shields, and I. Taylor, "Workflows and e-science: An overview of workflow system
features and capabilities," Future Generat. Comput. Syst., vol. 25(5), pp. 528-540, 2009.

