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 The three dimensional dispersion of thermo elastic waves in a 
homogeneous isotropic rotating cylindrical   panel is investigated in 
the context of the linear theory of thermo elasticity. Three 
displacement potential functions are introduced to uncouple the 
equations of motion. The frequency equations are obtained for 
traction free boundary conditions using Bessel function solutions.In 
order to illustrate theoretical development, numerical solutions are 
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we found that the wave characteristics are more stable and realistic in 
the presence of thermal and the rotation parameters. 

Keyword: 

Bessel function  solution  
Dispersion analysis 
Rotating cylindrical panel  
Thermo elasticity  

Copyright © 2013 Institute of Advanced Engineering and Science. 
All rights reserved. 

Corresponding Author: 

R .Selvamani, 
Departement of Mathematics, 
Karunya University, 
Coimbatore, Tamil Nadu, India, 64114. 
Email: selvam1729@gmail.com 

 
1. INTRODUCTION 

The dispersion of displacement, temperature change in a rotating cylindrical panel is plays a vital 
role in smart material applications and rotating gyroscope. This type of model analysis is very important in 
bio sensing applications in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI) and echo 
planar imaging (EPI). The analysis of thermally induced vibration of rotating cylindrical panel is common 
place in the design of structures, atomic reactors, steam turbines, supersonic aircraft, and other devices 
operating at elevated temperature. At the present time applied mathematicians are exhibiting considerable 
interest in dynamical methods of elasticity, since the usual quasi static approach ignores certain very 
important features of the problems under consideration. That approach is based on the assumption that the 
inertia terms may be omitted from the equations of motion. This assumption holds good only when the 
variations in stresses and displacements, but there arise number of problems in engineering and technology, 
when this assumption may not hold good and the inertia terms in the equations of motion may have lead to 
cases of considerable mathematical complications. In the field of nondestructive evaluation, laser-generated 
waves have attracted great attention owing to their potential application to noncontact and nondestructive 
evaluation of sheet materials. The high velocities of modern aircraft give rise to aerodynamic heating, which 
produces intense thermal stresses, reducing the strength of the aircraft structure. In the nuclear field, the 
extremely high temperatures and temperature gradients originating inside nuclear reactors influence their 
design and operations. Moreover, it is well recognized that the investigation of the thermal effects on rototing 
elastic wave propagation has bearing on many structural applications.   

The static analysis cannot predict the behavior of the material due to the thermal stresses changes 
very rapidly. Therefore in case of suddenly applied load, thermal deformation and the role of inertia are 
getting more important. This thermo elastic stress response being significant leads to the propagation of 
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thermo elastic stress waves in solids. The theory of thermo elasticity is well established by Nowacki [1]. Lord 
and Shulman [2] and Green and Lindsay [3] modified the Fourier law and constitutive relations, so as to get 
hyperbolic equation for heat conduction by taking into account the time needed for acceleration of heat flow 
and relaxation of stresses. A special feature of the Green–Lindsay model is that it does not violate the 
classical Fourier's heat conduction law. Vibration of functionally graded multilayered orthotropic cylindrical 
panel under thermo mechanical load was analyzed by X.Wang et.al [4]. Hallam and Ollerton [5] investigated 
the thermal stresses and deflections that occurred in a composite cylinder due to a uniform rise in 
temperature, experimentally and theoretically and compared the obtained results by a special application of 
the frozen stress technique of photo elasticity. Noda [6] has studied the thermal-induced interfacial cracking 
of magneto electro elastic materials under uniform heat flow.  Chen et al [7] analyzed the point temperature 
solution for a pennay-shapped crack in an infinite transversely isotropic thermo-piezo-elastic medium 
subjected to a concentrated thermal load applied arbitrarily at the crack surface using the generalized 
potential theory. Abouhamze [8] discussed a multi objective optimization strategy for optimal stacking 
sequence of laminated cylindrical panels is presented with respect to the first natural frequeny and critical 
buckling load using the weighted summation method. He used the trained neural network to evaluate the 
fitness function in the optimization process and in this way increasing the procedure speed. Chadwick [9] 
studied the propagation of plane harmonic waves in homogenous anisotropic heat conducting solids. Sharma 
[10] investigated the three dimensional vibration analysis of a transversely isotropic thermo elastic 
cylindrical panel. The application of powerful numerical tools like finite element or boundary element 
methods to these problems is also becoming important. Prevost and Tao [11] carried out an authentic finite 
element analysis of problems including relaxation effects. Eslami and Vahedi [12] applied the Galerkin finite 
element to the coupled thermo elasticity problem in beams. Huang and Tauchert [13] derived the analytical 
solution for cross-ply laminated cylindrical panels with finite length subjected to mechanical and thermal 
loads using the extended power series method. Ponnusamy and Selvamani [14] investigated the wave 
propagation in a generalized thermol elastic plate embedded on elastic medium. Ponnusamy and Selvamani 
[15] have studied the dispersion analysis of generalized magneto-thermo elastic waves in a transversely 
isotropic cylindrical panel using the wave propagation approach.Later,Selvamani and Ponnusamy [16] 
studied the damping of generalized thermo elastic waves in a homogeneous isotropic plate using the wave 
propagation approach and obtained the numerical result for Zinc plate. Since the speed of the disturbed 
waves depend upon rotation rate, this type of study is important in the design of high speed steam, gas 
turbine and rotation rate sensors.Loy and Lam [17] discussed the vibration of rotating thin cylindrical panel 
using Love first approximation theory. Bhimaraddi [18] developed a higher order theory for the free vibration 
analysis of circular cylindrical shell. Zhang [19] investigated the parametric analysis of frequency of rotating 
laminated composite cylindrical shell using wave propagation approach. Body wave propagation in rotating 
thermo elastic media was investigated by Sharma and Grover [20]. The effect of rotation, magneto field, 
thermal relaxation time and pressure on the wave propagation in a generalized visco elastic medium under 
the influence of time harmonic source is discussed by Abd-Alla and Bayones [21].The propagation of waves 
in conducting piezoelectric solid is studied for the case when the entire medium rotates with a uniform 
angular velocity by Wauer [22]. Roychoudhuri and Mukhopadhyay studied the effect of rotation and 
relaxation times on plane waves in generalized thermo visco elasticity [23]. Gamer [24] has discussed the 
elastic-plastic deformation of the rotating solid disk. Lam [25] has studied the frequency characteristics of a 
thin rotating cylindrical shell using general differential quadrature method. 

In this paper, the three dimensional dispersion of thermo elastic  waves  in a homogeneous isotropic  
rotating cylindrical panel is discussed using the linear three-dimensional theory of thermo elasticity. The 
frequency equations are obtained using the traction free boundary conditions. The Bessel function with 
complex argument is directly used to find the solutions and are studied numerically for the material Zinc. The 
computed non-dimensional phase velocities are plotted in the form of dispersion curves. 
 
2. FORMULATION OF THE PROBLEM 

Consider a cylindrical panel as shown in Fig.1 of length L having inner and outer radius a and b 

with thickness h and uniform angular velocity


. The angle subtended by the cylindrical panel, which is 
known as center angle, is denoted by . The cylindrical panel is assumed to be homogeneous, isotropic and 
linearly elastic with Young’s modulus E, Poisson ratio     and density    in an undisturbed state. 

In cylindrical coordinate the three dimensional stress equation of motion, strain displacement 
relation and heat conduction in the absence of body force for a linearly elastic rotating medium .
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where   is the mass density, vc  is the specific heat capacity, /K c   is the diffusivity, K  is the thermal 

conductivity,  0T  is the uniform  reference temperature , the displacement equation of motion has the 

additional terms with a time dependent centripetal acceleration ( )u 


and ,2 tu


 where, ( , 0, )u u w


 

is the displacement vector and (0, ,0)  


is a constant, the comma notation used in the subscript denotes 

the  partial differentiation with respect to the  variables. The stress strain relations are given as follows 

 ( ) 2 ( )rr rr zz rre e e e T         
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                                                                                                        (2)
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    Where ije  are the strain components,   is the thermal stress coefficients, T is the temperature, t is the time, 

  and    are Lame’ constants. The strain ije  are related to the displacements are given by 
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Where , ,u v w  are displacements along radial, circumferential and axial directions respectively,

, ,rr zz  
 
are the normal stress components and , ,r z zr    are the shear stress components , , ,rr zze e e

are normal strain components and , ,r z zre e e  are shear strain components.
 Substituting the Eq. (3) and Eq. (2) in Eq. (1), gives the following three displacement equations of motion 
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(5) 

The above coupled partial differential equations is also subjected to the following non-dimensional 
boundary conditions at the surfaces  ,r a b  

(i)  The traction free non dimensional mechanical boundary conditions for a stress free edge are given by  

                  0,rr r rz    
                                                                                                                      (6a) 

(ii). The non dimensional insulated or isothermal thermal boundary condition is given by 

   , 0rT hT 
                                                                                                                                   

(6b)
 

Where h is the surface heat transfer coefficient .Here 0h  corresponds to thermally insulated              
surface and h   refers to isothermal one.                                                                                       
To solve Eq.  (5), we take [10] 
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Using Eq. (5) in Eq. (1), we find that   T,,   satisfies the equations.
2 2 2 2
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Eq. (7c) in terms of    gives a purely transverse wave, which is not affected by temperature. This 

wave is polarized in planes perpendicular to the z-axis. We assume that the disturbance is time harmonic 
through the factor ei t . 
 
3. SOLUTION TO THE PROBLEM 

The Eqs. (7) are coupled partial differential equations of the three displacement components. To 
uncouple Eqs. (7), we can write three displacement functions which satisfies the simply supported boundary 
conditions followed by Sharma [10] 
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( , , , ) ( )sin( )sin( / ) i tr z t r m z n e       F
 

( , , , ) ( , , , )sin( )sin( / ) i tT r z t T r z t m z n e       
Where m is the circumferential mode   and n is the axial mode,   ω is the angular frequency of the 

cylindrical panel motion. By   introducing   the dimensionless quantities 
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After substituting Eq. (9) and Eq.8 in Eq. (7), we obtain the following system of equations  
22
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1C   wave velocity of the cylindrical panel.   A non-trivial solution of the algebraic systems (10) 

exist only when the determinant of Eqs. (10) are equal to zero. 
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Eq. (11), on simplification reduces to the following differential equation: 
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Eq. (9a) is a Bessel equation with its possible solutions is 
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Where 
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 and J and Y  are Bessel functions of the first and second kinds respectively 

while, I  and k are modified Bessel functions of first and second kinds respectively. , 1, 2,3, 4i iA B i    are 

the arbitrary constants. Generally 
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For convenience, we consider the case of 
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1 0k   and the derivation for the case of 
2

1 0k  is similar.
 The solution of Eq. (10a) is 

4 1 4 1( ) ( ) ( )r A J k r B Y k r   
                                                                                                                      (16) 

Where   
 2 22

1 (2 ) Lk t    

  
4. SPECIAL CASES 
4.1   Thermo elasticity 

By taking  0   the motion corresponding to the rotational mode decouple from the rest of motion 
and the various results reduces to the thermo elasticity  
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     4 1 4 1( ) ( ) ( ) sin cos i tr A J k r B Y k r m z n e 

      
 With  

2
1

2(2 )( )Lg t   
      

2 22
1 (2 ) Lk t   

                                                                                             (18)                      
Eqs. (17)& (18) constitute the solution for the homogenous isotropic cylindrical panel with traction 

free boundary conditions. It is noticed that Eq.  (18) is similar to the particular case obtained and discussed 
by Sharma [10] in case of thermo elasticity. 
 
4.2   Elastokinetic 

In the present analysis if we take the coupling parameter for rotational and thermal field 

1 0      then the equations will reduces to the classical case in elasto kinetic. 
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Eqs. (19)& (20) constitute the solution for the homogenous isotropic cylindrical panel with traction 
free boundary conditions. It is noticed that Eq. (19) and Eq.20 are similar to one as obtained and discussed by 
Chen et al [19] in case of elastokinetics. 
 
5.    FREQUENCY EQUATION  

In this section we shall derive the secular equation for the three dimensional vibrations cylindrical 
panel subjected to traction free boundary conditions at the upper and lower surfaces at  

,r a b  
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                                                                                               (22) 

Where   prime denotes the differentiation with respect to r , ( , , )i iu u R i r z  are three non– 

dimensional displacements and , ,r rzrr r rzrr               are three non-dimensional stresses 

Using the result obtained in the Eqs. (1)- (3) in Eqs. (6) we can get the frequency equation of free 
vibration as follows 

                                                  
0 , 1,2,...8ijE i j                                                              

(23) 
The values of the ijE  are defined in Appendix. 

 
6.    NUMERICAL RESULTS AND DISCUSSION 

The frequency Eq. (22) is numerically solved for Zinc material. For the purpose of numerical 
computation we consider the closed circular cylindrical shell with the center angle 2   and the integer n 
must be even since the shell vibrates in circumferential full wave.  The frequency equation for a closed 
cylindrical shell can be obtained by setting  1,2,3.....l l   where l is the circumferential wave number in 

Eq. (14). The material properties of a Zinc is taken from [10] for isotropic material 
3 37.14 10 kgm           11 20.385 10 Nm                

11 20.508 10 Nm           0.3 rps   
6 2 15.75 10 degNm              0 296T K     

2 1 11.24 10 degK Wm  
     

2 1 13.9 10 degC J kg
    

The roots of the algebraic Eq. (12) were calculated using a combination of Birge-Vita method and 
Newton-Raphson method. In the present case simple Birge-Vita method does not work for finding the root of 
the algebraic equation. After obtaining the roots of the algebraic equation using Birge-Vita method, the roots 
are corrected for the desired accuracy using the Newton-Raphson method. This combination has overcome 
the difficulties in finding the roots of the algebraic equations of the governing equations. To validate the 
present analysis a comparative study is presented in Table.1 for different values of thickness to inner radius 

ratio (h/b=0.1, 0.2, 0.3) and center angle 0 0 030 ,60 ,90    of a cylindrical panel in the absence of thermal 
and rotational effect. A comparison is made between the non dimensional frequencies of thermally insulated 
and isothermal modes of vibration of a rotating and non rotating cylindrical shell with respect to different 
rotational speed in Tabl.2 and Table.3, respectively. From Table.2 and Table.3 it is clear that as the rotational 
speed increases, the non dimensional frequencies are also increases in both rotating and non rotating cases. 
As the rotation of the cylindrical shell increases, the coupling effect of various interacting fields also 
increases resulting in higher frequency. 
 
Table 1.The lowest natural frequency of Zinc cylindrical panel with respect to thickness to inner radius ratio. 

 
Table 1.Comparison between the non dimensional frequencies of Rotating and Non-Rotating thermo-elastic 
cylindrical shell for thermally insulated boundary in the first three modes of vibration. 

h/b   ( )  Ref[23]  Ref[24]  Present    

0.1    30 
  60 
  90 

 0.7207 
0.8262 
0.9697 

 0.7207 
0.8257 
0.9680 

 0.7190 
0.8192 
0.9533 

   

0.2    30  1.3448  1.3429  1.3325    
    60  1.3118  1.3055  1.1990    
 
0.3 

   90 
  30 
  60 
  90 

 1.3015 
1.9803 
1.8362 
1.6937 

 1.2901 
1.9706 
1.8099 
1.6552 

 1.2877 
1.9690 
1.8135 
1.6743 

   

   Rotating  Non-Rotating  

     n=1     n =2     n =3     n =1    n =2     n=3  
0.1  0.1033  0.1159  0.1462  0.0899  0.1059  0.1259  

0.3  0.3721  0.4821  0.5250  0.2897  0.2707  0.3779  

0.5  0.5285  0.6221  0.6614  0.5406  0.5241  0.6327  

0.7  0.9898  0.9053  0.7999  0.7840  0.9005  0.8945  

1.0  1.3144  1.3728  1.4663  1.1353  1.2064  1.3977  
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Table 2. Comparison between the non dimensional frequencies of Rotating and Non-Rotating thermo-elastic 
cylindrical shell for isothermal boundary in the first three modes of vibration. 

 
A dispersion curve is drawn between the non-dimensional wave number versus   dimensionless 

phase velocity in case of rotating and non-rotating thermally insulated cylindrical shell with respect to 
different thickness parameters * 0.1, 0.25,0.5t b a R    for thermally insulated and isothermal boundaries 

is shown in Fig.1 and Fig.2 respectively. The solid line curves correspond to rotating thermo elastic 
cylindrical shell and the dotted line curves to that of non-rotating shell. From the Figs.1 and 2, it is observed 
that the non-dimensional phase velocity decreases rapidly to become linear at   higher values of wave number 
for both thermally insulated and isothermal cases.The phase velocity of lower value of *t  in case of non 
rotating shell is observed to increase from zero wave number and become stable at higher values of wave 
number for both the thermal boundaries. The phase velocity at higher value of *t  attain quite large values at 
the vanishing wave number and are non-dispersive due to rotation. When the thickness parameter of the 
cylindrical panel is increased, the dimensionless phase velocity is decreases for both rotating and non-
rotating cylindrical shell. 

 
Fig.1.Variation of wave number verses phase velocity with different t* for thermally insulated Zinc shell. 

 
The comparison of Fig.1 and Fig.2 shows that the non-dimensional phase velocity decreases 

exponentially for smaller wave number in case of thermally insulated and isothermal boundaries for all value 
of  t*,but the case of higher wave number   the non-dimensional phase velocity is steady and slow for all 
values of t*. 

 
Fig.2.Variation of wave number verses phase velocity with different *t  for isothermal Zinc shell. 

 

   Rotating  Non-Rotating  

  n=1  n=2  n=3  n=1  n=2  n=3  
0.1  0.1026  0.1215  0.1413  0.0741  0.1078  0.1214  

0.3  0.4443  0.4549  0.5245  0.2243  0.3550  0.4247  

0.5  0.6077  0.7075  0.7378  0.5922  0.7071  0.7077  

0.7  0.9196  0.8200  0.9044  0.9094  0.9909  0.9909  

1.0  1.4149  1.4256  1.4644  1.4142  1.4156  1.4142  
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7. CONCLUSION 
The three dimensional dispersion analysis of a homogeneous isotropic rotating cylindrical panel 

subjected to the traction free boundary conditions has been considered for this paper. For this problem, the 
governing equations of three dimensional linear thermo elasticity have been employed and solved by the 
Bessel function solution with complex argument. The effect of the wave number on the phase velocity of a 
closed Zinc cylindrical shell is investigated and the results are presented as dispersion curves. The rotational 
speed and different thermal boundaries influence the wave propagation characteristics. In addition, a 
comparative study is made between the rotating and non rotating cylindrical shell and the frequency change 
is observed to be highest for the rotating case. Also, a comparison of the non dimensional frequencies for the 
different thickness to inner radius ratio of cylindrical panel with out thermal and rotational effects shows well 
agreement with those of existing literature.                                                                                                                                       
 
 
APPENDIX 

The parameters ijE  in Eq. (22) are defined as 
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In which  *
1 1 2t a R t    , *

2 1 2t b R t  
 
and *t b a R   is the thickness -to-mean radius 

ratio of the panel. Obviously  2,4,6,8ijE j   can obtained by just replacing modified Bessel function of the 

first kind in  1,3,5,7ijE i 
 
with the ones of the second kind, respectively, while  5,6,7,8ijE i  can be 

obtained by just replacing 1t  
in  1,2,3,4ijE i   with 2t  . 
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