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 In this paper, acceptance sampling plans are developed for the odd 
generalized exponential log logistic distribution based on percentiles when 
the life test is truncated at a pre-specified (pre-determined) time. The 
minimum sample size necessary to ensure the specified life percentile is 
obtained under a given consumer’s risk. The operating characteristic values 
of the sampling plans as well as the producer’s risk are presented. One 
example with real data set is also given as an illustration. 
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1. INTRODUCTION 

Acceptance sampling is ‘the middle of the road’ approach between no inspection and 100% 
inspection. The objective of acceptance sampling is not to estimate the quality of the lot, but to decide 
whether or not the lot is likely to be acceptable. The applications stanch from real life scenarios: if every 
bullet was tested in advance prior to war, no bullet is at hand for the time of action and if no bullet is tested, 
then malfunctions may occur in the war with disastrous results. The selection of a sample from a lot or 
consignment and the outcome of the products totally depend on the characteristics collected from this sample 
which was described by [1]. This procedure is called as acceptance sampling plan (ASP) or ‘lot sentencing’. 
In mass production, a sample is taken at random and tested on the basis of the quality characteristics, ASP is 
used to accept or reject a submitted lot. An ASP is a specified plan that establishes the minimum sample size 
to be used for testing. In most ASPs for a truncated life test, the foremost issue is to determine the minimum 
sample size from a lot under consideration. Traditionally, the lot of items is accepted when the life test 
indicates that the average life of items exceeds the specified one, otherwise it is rejected. For any industries, 
the objective is to reducing the cost and test time, a truncated life test may be conducted to obtain the 
smallest sample size to ensure a certain average life time/percentile lifetime of items, for a given acceptance 
number c, the number of failures observed does not exceed when the life test is terminated at a pre-assigned 
time. The decision is to accept the lot if a pre-determined average lifetime/percentile lifetime can be reached 
with a pre-determined high probability which provides protection to consumer. Therefore, the life test is 
ended at the time the failure is observed or at the pre-assigned time, whichever is earlier. For such a truncated 
life test and the associated decision rule; we are focused in obtaining the smallest sample size to arrive  
at a decision. 
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In the past few decades, much effort has gone into the investigation of acceptance sampling plans 
under a truncated life test. The truncated life tests in the exponential distribution were first considered by [2]. 
Truncated life tests are deliberated by many authors for various distributions: for example [3-7]. The ASPs 
could be used for the quantiles and derived the formulae for generalized Birnbaum-Saunders distribution and 
Marshall-Olkin extended Lomax distribution was proposed by [8, 9]. ASP based on truncated life tests for 
log-logistic distribution and exponentiated Fréchet distribution was proposed by [10, 11].  

The design of ASPs based on the population mean under a truncated life test is considered by all the 
authors who are in the above. For a skewed distribution, the median represents a better quality parameter than 
the mean was suggested by [12]. On the other hand, for a symmetric distribution, mean is preferable to use as 
a quality parameter. ASPs based on the truncated life tests to Birnbaum-Saunders distribution and Burr type 
XII for percentiles was considered by [13, 14] and they proposed that the ASPs based on mean may not 
satisfy the requirement of engineering on the specific percentile of strength or breaking stress. When the 
quality of a specified low percentile is concerned, the ASPs based on the population mean could pass a lot 
which has the low percentile below the required standard of consumers. Furthermore, a small diminution in 
the mean with a simultaneous small intensification in the variance can result in a significant downward shift 
in small percentiles of interest. This means that a lot of products could be accepted due to a small decrease in 
the mean life after inspection. But the material strengths of products are deteriorated significantly and may 
not meet the consumer’s expectation. Therefore, engineers should pay more attention to the percentiles 
lifetimes than the mean life in life testing applications. Moreover, most of the employed life distributions are 
not symmetric. Actually, percentiles provide more information regarding a life distribution than the mean life 
does. When the life distribution is symmetric, the 50th percentile or the median is equivalent to the mean life. 
Several authors developed the acceptance sampling plans based on percentile. ASPs from truncated life tests 
based on the log-logistic and inverse Rayleigh distributions, Marshall – Olkin extended Lomax distribution, 
Linear Failure Rate distribution, Half Normal distribution, Gompertz distribution for percentiles were 
developed by [15-20]. ASPs based on median life for Fréchet distribution was discussed by [21]. An ASPs 
from truncated life tests based on the weighted exponential distribution was considered by [22]. New 
acceptance sampling plans based on percentiles for exponentiated Fréchet distribution was constructed  
by [23]. An ASPs based on percentiles for Odds exponential log logistic distribution (OELLD) was discussed 
by [24]. New ASPs based on life tests for Birnbaum–Saunders distributions was considered by [25]. 
Acceptance sampling for attributes via hypothesis testing and the hyper-geometric distribution was developed 
by [26]. Acceptance sampling based on life tests from some specific distributions was constructed [27]. 
These reasons we are motivate to develop ASPs based on the percentiles, since odd generalized exponential 
log logistic distribution, we prefer to use the percentile point as the quality parameter, and it will be denoted 
by 𝑡௤. The rest of the paper is organized as follows: In Section 2, we describe concisely the odd generalized 
exponential log logistic distribution. In Section 3, the design of proposed acceptance sampling plan for 
lifetime percentiles under a truncated life test is presented. In Section 4, we present the description of the 
proposed plan and obtain the necessary results. An example with real data set and comparison of the 
proposed sampling scheme with the OELLD is also given as an illustration. Finally, conclusions are made  
in Section 5.  

 
 

2. THE ODD GENERALIZED EXPONENTIAL LOG LOGISTIC DISTRIBUTION  
In this section, we provide a brief summary about the odd generalized exponential log logistic 

distribution (OGELLD). The OGELLD was introduced and studied quite extensively by [28]. The probability 
density function (pdf) and cumulative distribution function (cdf) of OGELLD respectively are given  
as follows 
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where 𝜎, 𝜆 are the scale parameters and 𝜃, 𝛾 are shape parameters respectively. The 100q-th quantile of the 
OGELLD is given as 
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Hence, for the fixed values of 𝜆 = 𝜆଴, 𝜃 = 𝜃଴ and 𝛾 = 𝛾଴, the quantile qt  given in (3) is the function 

of scale parameter 𝜎 = 𝜎଴, that is 𝑡௤ ≥ 𝑡௤
଴ ⇔ 𝜎 ≥ 𝜎଴, where 
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Note that 𝜎଴ also depends on 𝜆଴, 𝜃଴ and 𝛾଴, to construct the acceptance sampling plans for the 

OGELLD ascertain 𝑡௤ ≥ 𝑡௤
଴, equivalently that 𝜎 exceeds 𝜎଴. 

 
 

3. THE ACCEPTANCE SAMPLING PLAN 
The problem considered is that of finding the minimum sample size necessary to ensure a percentile 

lifetime of the product, when the life test is terminated at a pre-assigned time 𝑡௤
଴ and when the observed 

number of failures does not exceed a given acceptance number c. The decision procedure is to accept a lot 
only if the specified percentile lifetime can be established with a pre-assigned high probability α, which 
provides protection to the consumer. The life test experiment gets terminated at the time at which (𝑐 + 1)௦௧ 
failure is observed or at quantile time 𝑡௤, whichever is earlier. The probability of accepting lot based on the 
number of failures from a sample under a truncated life test at the test time schedule 𝑡଴ is given by 
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where n is the sample size, c is the acceptance number and p is the probability of getting a failure within the 
life test schedule, 𝑡଴. If the product lifetime follows an OGELLD, then𝑝 = 𝐹(𝑡଴; 𝜎, 𝜆଴, 𝜃଴, 𝛾଴). Usually, it 
would be convenient to express the experiment termination time 𝑡଴ 

as 𝑡଴ = 𝛿௤
଴ 𝑡௤

଴ for a constant 𝛿௤
଴and the 

targeted 100q-th lifetime percentile, 𝑡௤
଴. Suppose 𝑡௤is the true 100q-th lifetime percentile. Then, p can be 

rewritten as 
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In order to obtain the proposed design parameters of the proposed plan, we prefer the approach 

based on two points on the Operating Characteristic (O.C) curve by considering the Type I and Type II errors 
(i.e., producer’s and consumer’s risk). In our methodology, the quality level is intended through the ratio of 
its percentile lifetime to the true lifetime, 𝑡௤ ÷ 𝑡௤

଴. These ratios are very useful for the producer to give the 
better quality of products. Meanwhile the producer’s perspective, the probability of lot acceptance should be 
at least 1 − 𝛼 at acceptable reliability level (ARL), 𝑝ଵ. Therefore, the producer demands that a lot should be 
accepted at various levels, say 𝑡௤ ÷ 𝑡௤

଴ = 2,4,6,8 in (5). Whereas the consumer’s viewpoint, the lot is 
rejection should be at most 𝛽 at the lot tolerance reliability level (LTRL), 𝑝ଶ. However, the consumer 
considers that a lot should be rejected when 𝑡௤ ÷ 𝑡௤

଴ = 1. From (5), we have 
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where 𝑝ଵ and 𝑝ଶ are given by 
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The proposed plan parametric quantities for different values of parameters 𝜆, 𝜃 and 𝛾 are 
constructed. Given the producer’s risk 𝛼 = 0.05 and termination time schedule 𝑡଴ = 𝛿௤

଴𝑡௤
଴

 
with  

𝛿௤
଴ = 1.0, 1.5, 2.0 and 2.5  the four parameters of the proposed plan under the truncated life test at the  

pre-specified time, 𝑡଴ with 𝜃 = 2, 𝛾 = 2 and 𝜆 = 0.5, 1.0, 1.5, 2.0 are obtained according to the consumer’s 
confidence levels 𝛽 = 0.25, 0.10, 0.05, 0.01 for 50th percentile and the O.C. values are also obtained and  
the results are framed in Table 1 to Table 4. The proposed plan parameters are presented in Table 1 to  
Table 4 for 𝜃=2, 𝛾 = 2  and 𝜆 = 0.5, 1.0, 1.5, 2.0 with 50th percentiles, whereas Table 5 shows the plan 
parameters for 𝜆መ = 10.7592, 𝜃෠ = 2.4083 and 𝛾ො=1.3177 at 50th percentile. On clear observation, we noticed 
from Table 1 to Table 4 that the percentile ratio increases, the sample size ‘n’ decreases. 

 
 

Table 1. Minimum sample size necessary to assert the 50th percentile life and the corresponding  
O.C values of OGELLD for 𝜆 = 0.5, 𝜃 = 2.0, 𝛾 = 2.0 

𝛽 
𝑡௤

𝑡௤
଴
 

𝛿௤=1.0 𝛿௤ =1.5 𝛿௤ =2 𝛿௤=2.5 
c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) 

0.25 2 10 25 0.9574 8 14 0.9531 9 13 0.9539 8 10 0.9526 
 4 3 10 0.9658 3 7 0.9672 3 5 0.9810 2 3 0.9653 
 6 2 7 0.9811 1 3 0.9513 2 4 0.9806 1 2 0.9513 

 8 1 5 0.9609     0.9718 1 3 0.9513     0.9723 
0.10 2 14 37 0.9578 13 24 0.9600 12 18 0.9519 13 17 0.9522 

 4 4 14 0.9701 4 10 0.9678 3 6 0.9549 3 5 0.9582 
 6 2 9 0.9604 2 6 0.9652 2 5 0.9580 2 4 0.9641 

 8     0.9814     0.9840 1 3 0.9513     0.9839 
0.05 2 17 47 0.9512 16 31 0.9505 15 23 0.9534 16 21 0.9618 

 4 5 18 0.9749 4 11 0.9504 4 8 0.9660 4 7 0.9588 
 6 3 13 0.9765 3 9 0.9771 2 5 0.9580 2 4 0.9641 

 8 2 11 0.9670 2 7 0.9741     0.9807     0.9839 
0.01 2 - - - - - - 19 30 0.9506 - - - 

 4 6 25 0.9593 6 16 0.9739 5 11 0.9563 5 9 0.9619 
 6 4 19 0.9773 3 11 0.9518 3 8 0.9622 3 7 0.9534 

 8 3 17 0.9763     0.9813     0.9858 2 5 0.9646 
The upward arrow (↑) indicates the same values as the cell above. 

 
 
Table 2. Minimum sample size necessary to assert the 50th percentile life and the corresponding  

O.C values of OGELLD for 𝜆 = 1.0, 𝜃 = 2.0, 𝛾 = 2.0 

𝛽 
𝑡௤

𝑡௤
଴
 

𝛿௤=1.0 𝛿௤ =1.5 𝛿௤ =2 𝛿௤=2.5 
c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) 

0.25 2 4 12 0.9697 4 7 0.9605 6 8 0.9648 7 8 0.9634 
 4 1 5 0.9835 1 3 0.9757 1 2 0.9747 2 3 0.9867 

 6 0 2 0.9622 0 1 0.9576     0.9945 1 2 0.9871 

 8     0.9786     0.9759 0 1 0.9576     0.9957 
0.10 2 5 17 0.9587 5 9 0.9637 6 8 0.9648 11 13 0.9645 

 4 1 7 0.9673 1 4 0.9544 2 4 0.9858 2 3 0.9867 

 6     0.9928     0.9898 1 3 0.9843 1 2 0.9871 

 8 0 4 0.9576 0 2 0.9524 0 1 0.9576     0.9957 
0.05 2 6 21 0.9616 7 13 0.9714 8 11 0.9673 11 13 0.9645 

 4 1 8 0.9576 1 4 0.9544 2 4 0.9858 2 3 0.9867 

 6     0.9906     0.9898 1 3 0.9843 1 2 0.9871 

 8     0.9969 0 2 0.9524     0.9948     0.9957 
0.01 2 8 30 0.9610 8 16 0.9590 9 13 0.9539 14 17 0.9598 

 4 2 14 0.9805 2 7 0.9789 2 5 0.9687 2 4 0.9561 
 6 1 11 0.9822 1 5 0.9835 1 4 0.9702 1 3 0.9644 

 8     0.9940     0.9945     0.9898     0.9877 
The upward arrow (↑) indicates the same values as the cell above. 

 
 
 
 
 
 
 
 
 



      ISSN: 2252-8814 

Int. J. of Adv. in Appl. Sci. Vol. 8, No. 3, September 2019: 176 – 183 

180

Table 3. Minimum sample size necessary to assert the 50th percentile life and the corresponding  
O.C values of OGELLD for 𝜆 = 1.5, 𝜃 = 2.0, 𝛾 = 2.0 

𝛽 
𝑡௤

𝑡௤
଴
 

𝛿௤=1.0 𝛿௤ =1.5 𝛿௤ =2 𝛿௤=2.5 
c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) 

0.25 2 2  7 0.9720 3 5 0.9760 4 5 0.9688 8 9 0.9596 
 4 0 2 0.9706 0 1 0.9529 1 2 0.9893 1 2 0.9667 

 6     0.9910     0.9852 0 1 0.9662     0.9960 

 8     0.9962     0.9936     0.9852 0 1 0.9719 
0.10 2 3 12 0.9715 4 7 0.9786 6 8 0.9648 8 9 0.9596 

 4 1 7 0.9956 1 3 0.9935 1 2 0.9843 1 2 0.9667 

 6 0 4 0.9821 0 2 0.9706 0 1 0.9662     0.9960 

 8     0.9924     0.9873     0.9852 0 1 0.9719 
0.05 2 3 13 0.9621 4 8 0.9560 6 8 0.9648 8 9 0.9596 

 4 1 8 0.9942 1 4 0.9875 1 3 0.9702 1 2 0.9667 

 6 0 5 0.9777 0 2 0.9706 0 1 0.9662     0.9960 

 8     0.9905     0.9873     0.9852 0 1 0.9719 
0.01 2 4 19 0.9603 6 12 0.9731 8 11 0.9673 12 14 0.9524 

 4 1 11 0.9890 1 5 0.9798 1 3 0.9702 1 2 0.9667 

 6 0 7 0.9690 0 3 0.9563     0.9966     0.9960 

 8     0.9867     0.9810 0 2 0.9706 0 1 0.9719 
The upward arrow (↑) indicates the same values as the cell above. 

 
 

Table 4. Minimum sample size necessary to assert the 50th percentile life and the corresponding  
O.C values of OGELLD for 𝜆 = 2.0, 𝜃 = 2.0, 𝛾 = 2.0 

𝛽 
𝑡௤

𝑡௤
଴
 

𝛿௤=1.0 𝛿௤ =1.5 𝛿௤ =2 𝛿௤=2.5 
c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) 

0.25 2 1 5 0.9576 3 5 0.9847 4  5 0.9688 9 10 0.9582 
 4 0 3 0.9837 0 1 0.9748 1 2 0.9951 1 2 0.9789 

 6     0.9966     0.9945 0 1 0.9837 0 1 0.9631 

 8     0.9989     0.9982     0.9945     0.9872 
0.10 2 2 9 0.9792 3 6 0.9630 4  5 0.9688 9 10 0.9582 

 4 0 4 0.9783 0 2 0.9503 1 2 0.9951 1 2 0.9789 

 6     0.9955     0.9891 0 1 0.9837 0 1 0.9631 

 8     0.9986     0.9964     0.9945     0.9872 
0.05 2 2 11 0.9632 3 6 0.9630 6  8 0.9648 9 10 0.9582 

 4 0 5 0.9730 0 2 0.9503 1 2 0.9951 1 2 0.9789 

 6     0.9944     0.9891 0 1 0.9837 0 1 0.9631 

 8     0.9982     0.9964     0.9945     0.9872 
0.01 2 3 17 0.9728 4 9 0.9520 6  8 0.9648 9 10 0.9582 

 4 0 7 0.9624 1 4 0.9963 1 3 0.9860 1 2 0.9789 

 6     0.9922 0 3 0.9837 0 2 0.9677 0 1 0.9631 

 8     0.9975     0.9947     0.9891     0.9872 
The upward arrow (↑) indicates the same values as the cell above. 

 
 

Table 5. Minimum sample size necessary to assert the 50th percentile life and the corresponding  
O.C values of OGELLD for 𝜆መ = 10.7592, 𝜃෠ = 2.4083, 𝛾ො = 1.3177 

𝛽 
𝑡௤

𝑡௤
଴
 

𝛿௤=1.0 𝛿௤ =1.5 𝛿௤ =2 𝛿௤=2.5 
c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) c n 𝑃௔( 𝑝ଵ) 

0.25 2 2 7 0.9831 3 5 0.9817 4 5 0.9688 9 10 0.9599 
  4 0 3 0.9692 0 1 0.9637 1 2 0.9927 1 2 0.9740 
  6     0.9913     0.9896 0 1 0.9747 0 1 0.9501 
  8     0.9965     0.9958     0.9896     0.9792 
0.10 2 2 9 0.9643 3 6 0.9565 4 5 0.9688 9 10 0.9599 
  4 0 4 0.9591 1 3 0.9961 1 2 0.9927 1 2 0.9740 
  6     0.9884 0 2 0.9794 0 1 0.9747 0 1 0.9501 
  8     0.9953     0.9916     0.9896     0.9792 
0.05 2 3 13 0.9795 3 6 0.9565 6 8 0.9648 9 10 0.9599 
  4 1 8 0.9971 1 3 0.9961 1 2 0.9927 1 2 0.9740 
  6 0 5 0.9856 0 2 0.9794 0 1 0.9747 0 1 0.9501 
  8     0.9942     0.9916     0.9896     0.9792 
0.01 2 4 19 0.9806 4 8 0.9674 6 8 0.9648 9 10 0.9599 
  4 1 11 0.9944 1 4 0.9925 1 3 0.9792 1 2 0.9740 
  6 0 7 0.9799 0 3 0.9692     0.9981 0 1 0.9501 
  8     0.9918     0.9874 0 2 0.9794     0.9792 
The upward arrow (↑) indicates the same values as the cell above. 
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4. DESCRIPTION OF METHODOLOGY FOR PROPOSED PLAN WITH REAL DATA 
EXAMPLE 

4.1.  Description of the proposed plan 
Let us assume that the producer desires to implement a proposed plan for assuring that the 50th 

percentile life of the products under inspection is at least 1000 hours when 𝛽 = 0.10 at the percentile ratio 
𝑡௤ ÷ 𝑡௤

଴ = 2. He desires to run this experiment 1000 hrs. From the past data, if it is observed that the lifetime 
of the item follows OGELLD with 𝜆 = 𝜃 = 𝛾 = 2. The optimal plan from Table 4 or specified requirements 
such as, 𝛽=0.10, 𝜆 = 𝜃 = 𝛾=2, 𝑡௤ ÷ 𝑡௤

଴ = 2 and 𝛿௤ = 1.0 is obtained as 𝑛 = 9 and c=2 with the acceptance 
probability is 0.9792. Most of the life testing with ASPs for various life time distributions available in the 
literature is based on one point on the OC curve approach for assuring mean or percentile lifetime. But in this 
study, we have designed sampling plans based on two-points on the OC curve approach for assuring 
percentile lifetime of the products under OGELLD. 

 
4.2.  Real data example 

The following real data set corresponds to an uncensored data set from [29-32] on breaking stress of 
carbon fibres (in Gba). We describe the proposed plan for this data set: 
0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 
1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 
2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 
2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 
3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 
4.70, 4.90, 4.91, 5.08, 5.56 
 

We show a rough indication of the goodness of fit for our model by plotting the density (together 
with the data histogram) for the data shows that the OGELLD is a good fit in Figure 1 and also goodness of 
fit is emphasized with Q-Q plot, displayed in Figure 1. The maximum likelihood estimates of the parameters 
of OGELLD for the breaking stress of carbon fibres are 𝜆መ = 10.7592, 𝜃෠ = 2.4083 and 𝛾ො = 1.3177 and the 
K-S test and found that the maximum distance between the data and the fitted of the OGELLD is 0.0644 with 
p-value is 0.8006. Therefore, the four-parameter OGELLD provides good fit for the breaking stress of  
carbon fibres. 

 
 

 
 

Figure 1. The density plot and Q-Q plot of the fitted OGELLD for the strength data 
 
 

Let us suppose that it is desired to develop the single ASP to satisfy that the 50th percentile lifetime 
is greater than breaking stress of carbon fibres 0.35 through the experiment to be completed by breaking 
stress of carbon fibres 0.35. Let us fix that the consumer's risk is at 25% when the true 50th percentile is 
breaking stress of carbon fibres 0.35 and the producer's risk is 5% when the true 50th percentile is breaking 
stress of carbon fibres 0.70. Since 𝜆መ = 10.7592, 𝜃෠ = 2.4083 and 𝛾ො = 1.3177, the consumer's risk is 25%, 
𝛿௤

଴ = 1.0 and 𝑡௤/𝑡௤
଴ = 2, the minimum sample size and acceptance number given by n =9 and c =2 from 

Table 5. Thus, the design can be implemented as follows. Select a sample of 9 breaking stress of carbon 
fibres, we will accept the lot when no two or more failure occurs before breaking stress of carbon fibres 0.70. 
According to this proposed plan, the breaking stress of carbon fibres could have been accepted because there 
is only one failure before the termination time of breaking stress of carbon fibres 0.70. 
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4.3.  Comparison of distributions 
In Table 6, we compare the plan parameters of the proposed sampling plan with the odds 

exponential log –logistic distribution (OELLD) which was studied by [24] when 𝛽 = 0.05 and for various 
levels of 𝛿௤ = 1.0, 1.5, 2.0, 2.5. The sample size for the OGELLD is smaller as compared to OELLD for  
50th percentiles.  
 
 

Table 6. Comparison between OGELLD and OELLD for the combination of 𝜆 = 𝜃 = 𝛾 = 2 𝛽 = 0.05 
 OGELLD OELLD 

𝑡௤/𝑡௤
଴ 

𝛿௤ = 1.0 𝛿௤ = 1.5 𝛿௤ = 2.0 𝛿௤ = 2.5 𝛿௤ = 1.0 𝛿௤ = 1.5 𝛿௤ = 2.0 𝛿௤ = 2.5 
n n n n n n n n 

2 11 6 8 10 21 13 11 13 
4 5 2 2 2 8 4 4 3 
6 5 2 1 1 8 4 3 2 
8 5 2 1 1 8 2 3 2 

 
 
5. CONCLUSION 

In this manuscript, we established the single ASPs based on the OGELLD percentiles when the life 
test is truncated at a pre-fixed time. To ensure that the life quality of products exceeds a specified one in 
terms of the percentile life, the ASPs based on percentiles can be used. We have designed sampling plans 
based on two-points on the OC curve approach for assuring percentile lifetime of the products. Some tables 
are provided for practical use in industry and also proposed plan illustrated with real data set. We fitted the 
proposed OGELLD curve for the above data which is shown in the following graphs. The proposed sampling 
scheme is illustrated with a real data set and results shows that our methodology performs well as compared 
with existing sampling plans. 
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