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 Shunt active power filter based on multilevel inverter is used to compensate 
the power factor and to delete the harmonics. This one permits to reduce the 
inverse voltages applied to the filter switches and their switching frequencies. 
Nevertheless, the high number of used switches requires a complicated 
controller and increases the switching losses; where the necessity of finding 
another resolution system. In this work a new topology of multilevel inverter 
is proposed as a shunt active power filter using two IGBT transistors in series 
of opposite sense meticulously controlled by a parallel control algorithm, 
with the concept of reduced number of six switches which are able to create 
five levels of the output voltage. This system substute the classical system of 
eight switches. The harmonic currents identification is carried out using the 
instantaneous active and reactive power method. The simulation is performed 
using Matlab/Simulink. The obtained results show that the filtering 
performances are well enhanced.
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1. INTRODUCTION 

The use of controlled systems, especially the power static converters based on electronic 
components, leads to a serious problem of disturbed currents in terms of electrical networks of distribution.  

These disturbed currents engender damages in the power quality. Those explain the increase of the 
harmonic rate and the unbalance of both currents and voltages, and also an important consummation of the 
reactive power. These harmonics disturbances have catastrophic consequences on the performances of all the 
receivers connected to electrical networks and the supply source. So, it is necessary to find a well adapted 
solution permitting to decrease these disturbances at the lowest level. A shunt system of the disturbing load 
must be connected in order to make both the current and the voltage under sinusoidal waveform and the 
power factor closer to unity.     

The idea of the active power filter presents a well adapted solution to these problems faced in active 
power lines [1]. It has known a fast development since the arrival of new electronic components (switches) 
such as GTO thyristors, IGCT and IGBT transistors [2]. Active filters can be structured in parallel [3], in 
series [4], [5] or hybrid [6], [7] in the network.  

Inverters with two or three levels, have a reduced number of switches. They are also used as shunt 
active power filters to suppress the harmonic currents and to compensate the power factor. However, a high 
switching frequency is required to achieve a purely sinusoidal waveform of the supply current [8], [9]. As a 
result, the delay created during switches turn-on/off creates power losses, limiting the robustness of the 
DC/AC conversion. Furthermore, high inverse voltage applied to the switches can demolish the 
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semiconductor characteristics. Consequently, a negative impact on the energy quality appears on the 
waveform of both supply voltage and current.  

Multilevel inverters structures permit to reduce the problems by producing a hatched output voltage 
composed of many levels [10]-[12]. The use of this sort of topology helps to limit the stress in inverse 
voltage supported by switches via dividing the continue voltage bus DC. Each switch, in locked state, 
supports a part of the full continue voltage DC. The multiplication of levels permits to reduce the amplitude 
of each part increasing or decreasing the output voltage.       

These sorts of multilevel inverters must operate with exact control algorithms to turn on/off the 
power switches in optimal time. The algorithm permits also to suppress some higher order harmonics, and 
consequently, to improve the output current and voltage frequency spectrums [13], [14]. Nevertheless, the 
number of semiconductors can be higher; it requires a very complex controller that engenders switching 
losses of each switch. This can have a negative impact on the robustness of the multilevel inverter.         

Several techniques are used to detect disturbances in the electrical networks. Frequency detection 
techniques are carried out by the Discrete Fourier Transform (DFT) which can be used to analyze the voltage 
or current non-sinusoidal signals. Fast Fourier Transform (FFT) and Discrete Recursive (TFDR) [15], [16] 
represent well efficient computational methods. However, the direct application of these methods requires a 
significant computation time which delays the filter control response. Nevertheless, there are other 
techniques, such as Notch filter [17]. The Artificial Neuron Network (ANN) technique has been developed to 
the optimal identification of the harmonic signals [18], [19] and the instantaneous power method [20],[21] 
which is the constantly used one.  

Current studies are focused on the determination of a robust control strategy for different filter 
topologies, such as sliding mode technique [22]. Pulse Width Modulation (PWM) control technique applied 
for multi–level and the Fuzzy controller [23], [24] are able to create the logic signals which are sent to the 
electronic components. Hysteresis [25] or three-dimensional space vector modulation [26] can also be used to 
control the inverters. 

In this paper, a new topology of five-level inverter using two IGBT transistors in series of opposite 
sense meticulously controlled by a parallel control algorithm, is proposed as a shunt active power filter 
(SAPF). This topology has a small number of power switches (six IGBT transistors + zero Diodes for neutral 
point clamped) able to generate five levels of output voltage.  Classical systems of the NPC inverter require 
eight power switches (eight IGBT transistors + zero Diodes for neutral point clamped). 

It can improve the filtering performances and answer better to the industrial requirements [27]-[30]. 
It can also minimize the power losses in the inverter by a reduced number of switching pulses. This filter 
permits to maintain the switch characteristics by reducing the inverse voltage applied to semiconductors. 

The identification of these harmonic currents is made with the instantaneous active and reactive 
power method. These techniques make the supply current under the sinusoidal waveform with a power factor 
closer to unity. The control of the filter switches is made by a PDPWM (phase disposition Pulse Width 
Modulation) operating with four triangular carriers of low switching frequency equal to 5000 Hz in the first 
time and equal to 15000 Hz in the second Time in order to eliminate the ripples appearing on the current 
waveform (high frequency distortions). We are also, interested to regulate the injected current by using the 
fuzzy-controller technique. The numerical simulation is developed and performed by using Matlab/Simulink. 
The obtained results show that the proposed 5L-SAPF with two switches in series of opposite sense improves 
the filtering performances. This improvement in the first or in the second time (5000&15000 Hz) shows a 
reduction of the total harmonic distortions of the currents (THD<5%) conform to the permissible limits in 
accordance to IEEE norms [31]. The proposed system made the supply current under a sinusoidal waveform 
and in phase with the supply voltage. Furthermore, the three phase voltages have the same amplitudes, 
sinusoidal waveforms and phases balance.  

 
 

2. SYSTEM PROCESSED DESCRIPTION 
Figure 1 shows the new topology of the multilevel inverter connected to the three-phase electrical 

network. It is composed of three identical structures which operate independently at each phase.  
In a single phase each structure is composed of two capacities C1 and C2 and six bipolar switches 

Sw1, Sw2, Sw3, Sw4, Sw5 and Sw6 (Figure 2). The two first are meticulously controlled, connected in anti-
series between the points O (center of the C1 and C2) and n (neutral). They generate the voltage levels Vdc/2, 
0, -Vdc/2 and ensure the bidirectional for the current and the voltage across the ground and the middle of the 
DC bus. To generate the 5 levels of the output voltage -Vdc, -Vdc/2, 0, +Vdc/2, +Vdc , we have chosen to 
dispose two capacitors (C1, C2), that ensure a continuous supply of the DC bus, each one has an amplitude 
equal to Vdc/2. 
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Figure 1. New 5L-SAPF linked at the electrical 
network            

Figure 2. Modified model for a single phase 

 
 
The states of opening and closing for all SAPF switches of this new topology are summarized in 

Table 1. 
 
 

Table 1. Switching table for proposed system 
Sw1 Sw2 Sw3 Sw4 Sw5=Sw6 van 

1 0 0 1 0 Vdc 
1 0 0 0 1 Vdc/2 
1 0 1 0 0 0 
0 1 0 0 1 -Vdc/2 
0 1 1 0 0 -Vdc 

 
 
3. INSTANTANEOUS ACTIVE AND REACTIVE POWER IDENTIFICATION METHOD 

The three phase voltages and currents values instantaneous in α-β space can be expressed by:  
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The instantaneous active and reactive powers in this space are calculated by:  
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From the expression (3), we have: 
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To extract the reference currents expression in function of instantaneous power in the α-β space, this is given 
by: 
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To compensate the reactive power and harmonic currents generated by the nonlinear load simultaneously, the 
reference currents must include ,  : as followingsݍ	݀݊ܽ	തݍ
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The reference currents in the a-b-c space are given by: 
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The model of the instantaneous powers method has been implemented in Matlab / Simulink to extract the 
reference currents of the Equation (7) shown in Figure 3. 
 

 
Figure 3. Algorithm for extraction of reference currents in Matlab/simulink 

 
 

4. CONTROL STRATEGY 
The injected harmonic current by the SAPF is obtained through the control of IGBT switches. This 

is achieved by the phase disposition pulse width modulation (PDPWM), this technique is mainly based on the 
comparison between the reference current signal (Iref) and the four identical triangular carriers (Up1, Up2, Up3, 
Up4) as shown in Figure 4. This one sends 6 logical signals simultaneously, 0 or 1 for each one; transmited to 
the switches (Sw1, Sw2, Sw3, Sw4, Sw5, and Sw6). 

The two carriers Up1 and Up2 allow generating the levels Vdc and Vdc/2 respectively. By symmetry, 
the levels –Vdc/2 and -Vdc are created by the carriers Up3 and Up4 respectively. The level Vdc=0 is obtained 
when the reference signal is located between the carriers Up2 and Up3.  
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Figure 4. Phase Disposition PWM with four identical Triangular Carriers 
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The simulation model explains in detail the control of the switches (Figure 5), the new parallel 
algorithm makes simultaneously the comparison between Iref with 4 carriers, and this method can quickly 
generate the signals sent to the switches of the proposed model at the right time. 

5 levels of the SAPF output voltage (Van) respect 5 conditions performed simultaneously (in 
parallel) as follows: 

a. If Iref ≥ Up1, Sw1=1, Sw2=0, Sw3=0, Sw4=1, Sw5=0, Sw6=0 & van=vdc. 
b. If Up1> Iref ≥Up2, Sw1=1, Sw2=0, Sw3=0, Sw4=0, Sw5=1, Sw6=1 & van=vdc/2. 
c. If Up2> Iref ≥Up3, Sw1=1, Sw2=0, Sw3=1, Sw4=0, Sw5=0, Sw6=0 & van=0. 
d. If Up3> Iref ≥Up4, Sw1=0, Sw2=1, Sw3=0, Sw4=0, Sw5=1, Sw6=1 & van=-vdc/2. 
e. If Up4>Iref, Sw1=0, Sw2=1, Sw3=1, Sw4=0, Sw5=0, Sw6=0 & van=vdc.  

 
 
5. FUZZY-CONTROLLER APPLICATION 

To inject an optimal harmonic current by the proposed model, the fuzzy logic controller was chosen 
to regulate the switches control signals through the parallel control algorithm. In this work, a model 
established in Matlab/Simulink is shown in Figure 6. The operation here consists to replace the classical PI 
regulator by a fuzzy controller. This technique allows correcting the error between the reference current (Iref) 
and the injected one (Iinj). The error and its derivative are defined by three sub-sets: negative N, zero ZE and 
positive P, knowing that the membership functions are Gaussian type. The output signal Cde depends on the 
input states defined by five sub-sets, large negative LN, negative N, zero ZE, positive P and large positive 
LP. In this case, the membership functions are triangular type. Fuzzy controller should follow the 
fuzzification steps that use the "minimum" operator, and the inference mechanism that contains five rules. 
Finally by the help of the defuzzification of the fuzzy output, the barycentric method is applied. Fuzzy rules 
are based on the error variation sense (e), the algebraic sign, as well as its derivative "de/dt". So, the 
controller Cde, will be given according to the following state conditions: 

1. If e is ZE then Cde is ZE 
2. If e is P, then Cde is LP 
3. If e is N, then Cde is LN 
4. If e is ZE and "de/dt" is P, then Cde is N 
5. If e is ZE and "de/dt" is N, then Cde is P   
After having the corrected signal (Cde) at the bloc output of the fuzzy controller, it will be 

intersected with the four triangular carriers to generate logic signals sent to the IGBT switches of the 
proposed model. 
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Figure 5. Logical signals of parallel control 
algorithm 

Figure 6. Scheme bloc of fuzzy controller 
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6. SIZING OF THE DC BUS CAPACITORS 
An approach has been proposed in the literature [32], to size capacitors that feed the active filter. 

The transient variations in the instantaneous power absorbed by the load engender fluctuations in voltage Vdc 
across the capacitors. The amplitude of these fluctuations can be controlled by a judicious choice of the 
equivalent capacity value C which is expressed by ܥ ൌ ሺ12. ிሻܫ ሺ߂ ௗܸ. .ߨ ߱௦ሻ⁄ . IFA is the maximum 
amplitude of the injected current. ΔVdc is the fluctuation equal to 5% of Vdc. fs is the switching frequency of 
the carriers (ωs = 2.π.fs). In this case, IFA = 40 A with IFA (presented in the results), Vdc = 1000 V, Δ Vdc = 5%. 
Vdc, fs = 15 kHz, C will equal to  32.42	ܨߤ; then: C1 = C2 = 2.C = 64.84ܨߤ,Because C1 and C2 are connected 
in series. 
 
 
7. DC VOLTAGE REGULATION OF THE ACTIVE FILTER 

Regulating the DC bus voltage of the proposed system can be improved by adjusting the small rate 
of active power in capacitors. Thus, it compensates the losses by conduction and switching [33], [34]. The 
regulation loop of the voltage is designated to be smaller than the current loop. The regulation circuit of the 
DC voltage must be fast and that answer only for the steady state conditions. Transient variations in the DC 
voltage are not permitted and are taken into consideration when selecting the appropriate value of the 
capacitor. From the steady state, the fundamental component is not included in the reference current. For that, 
a regulator of a low-pass first order filter is required to maintain DC voltage (Vdc) closer to the DC voltage 
reference (Vdc-ref), the transfer function can be written as following:  
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With: Kc, τc gain and time constant of the low pass filter 
 

The regulation loop of the DC voltage is expressed by the following transfer function: 
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8. MODEL AND SIMULATION PARAMETERS 
For this simulation, a three phase diode bridge rectifier with RL load is used as the nonlinear load in 

this work. Table 2 summarizes the simulation parameters. The study is done only in the phase a, knowing 
that the two other phases (b and c) are delayed respectively by 120° and 240° relatively to the phase a.  
 
 

Table 2. Simulation Parameters 
Variable Values  

Source voltage , inductance line, frequency Vs =220 V , Ls =3 .10-4H , F=50 Hz 
Non-linear load (Graëtz bridge 6 diodes + resistance + inductance) R=4Ω , L=0.001H 

Capacitors voltage of multilevel inverter C1= C2 = 64,84 . 10-6 F 
Reference Continuous  supply DC bus Vdc-ref /2= 500 V 
Inductance at output of the active filter Lf =1,2 . 10-3 H 

 
 
9. RESULTS AND DISCUSSION 
9.1. Before Filtering 

Figure 7 shows the supply voltage with the source current and its harmonic currents spectrum before 
filtering. 

 

 
 

Figure 7. Supply current and voltage waveforms and its harmonic currents spectrum before filtering 
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The supply current obtained before filtering is completely distorted and its current Harmonic 
Distortion (THD) is 23.45%. This value is higher than the international standard (THD<5%).  

 
9.2. After Filtering   

The simulation was made for two different frequencies of the triangular carriers 
 

9.2.1. Results for fs=100.f  
SAPF using two Transistors in series Clamped into Five-level Inverter is simulated in 

MATLAB/SIMULINK and the output voltage waveform obtained between the neutral ‘‘n’’  and the phase 
‘‘a’’  is shown in Figure 8. 
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Figure 8. Output voltage waveform Van Figure 9. Active filter current with low switching 
frequency 

 
 
The filter injected current; the supply current sinusoidal waveform and its THD equal to 4.41% are 

shown in Figure 9 and Figure 10. 
 
  

 
 

 

Figure 10. Supply current and its harmonic spectrum after filtering with low switching frequency (5KHz) 
 
 
9.2.2. Results for fs=300.f  

After simulation, with this high carrier frequency (15 KHz), the filter injected current; sinusoidal 
waveform of the supply current and its THD equal to 2.19% are shown in Figure 11 and Figure 12. These 
Figures show that the filtering performances of the proposed system are improved with a power factor closer 
to unity (Figure 13). 

 
 

 
 

Figure 11. Active filter current with high switching frequency 
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Figure 12. Supply current and its harmonic spectrum after filtering with high switching frequency (15KHz) 
 
 
At the steady state, Figure 14 illustrates the supply currents which have sinusoidal waveforms with 

balanced phases a, b and c. Furthermore, the waveforms have the same amplitudes with the same frequencies. 
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Figure 13. Power factor 
 

Figure 14. 3-phase waveforms of the supply currents 
after filtering 

 
 
During the application of the modulator PDPWM, the switching frequency is imposed by the 

triangular carriers. Indeed, the sum of the switching frequencies of the four switches SW1, SW2, SW3, SW4 
is equal to the carrier frequency 15 kHz. Figure 15 and Figure 16 illustrate clearly the complementarities of 
the switches: Sw2=1-Sw1 and Sw4=1-Sw3; these two conditions protect the filtering system against the short 
circuit. 
 

 
 

 

Figure 15. Switch pulses of the Sw1and Sw2 Figure 16. Switch pulses of the Sw3and Sw4 
 
 

10. Conclusion 
In this work, a new topology of five-level inverter with two IGBT transistors linked in series of 

opposite sense, meticulously controlled by a parallel control algorithm limits the harmonic currents and 
ensures the robustness of the converter in the electrical distribution network. The system model was 
implemented in Matlab/Simulink and the simulations are carried out. The results are satisfactory and conform 
to the permissible limits in accordance to IEEE norms. The harmonic currents identification was conducted 
by the instantaneous active and reactive power method as a first step. The system is controlled by PDPWM 
operating with four triangular carriers of switching frequency equal to 5000 Hz. On the other hand we are 
interested on the regulation of the injected current by using the fuzzy-controller method. The results show 
that the proposed filter enhances the filtering performances. It also improves the energy quality with a 
reduction of switching pulses. The increase of the switching frequency up to 15000 Hz eliminates some 
ripples appearing on the supply current waveform. A significant reduction in the total harmonic distortion 
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rate (THD) is observed and calculated through FFT analysis tool in MATLAB/SIMULINK. Good 
compensation of the reactive power in the electrical distribution network is obtained with a power factor 
closer to unity.  
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