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Abstract

In the induction motor speed control without sessoperated by the method Field Oriented Control (FO@p
required an observer to estimate the speed. Obsesthods have been developed, among others, wanetimd of Self-
Constructing Fuzzy Neural Network (SCFNN) with some tgimilgorithms such as backpropagasi (BP). Levenbésguard
(LM) etc.. In the induction motor control technigugere also developed methods of Direct Torque Cof2tC) with observer
Recurrent Neural Network (RNN). This paper comparesprformance of the motor response to initial rimatbetween
SCFNN observer method that uses the LM training #lyor with DTC control technique with RNN observerorfr the
observation performance of the motor response itiairrotation of the two methods shows that the hidthod has better
performances than the RNN. This can be seen onthetparameters : overshoot, rise time, settlingetimeak and peak time.
With the right method, can enhance better perforreanf the system. With the improvement of systeiorpeance, is expected
to increase work efficiency in the industrial worldo overall, particularly for systems that requingin precision, FNN
methodcan be said to be better.

Keywords: Motor Speed control without sensors, FOC, SCFNNO, D'B@enberg Marquardt and RNN

1. Introduction

DC motors are the most ideal type of motor for giecontrol because of its speed can be adjusisiye
and does not require a converter. The weaknes<aibtors are relatively expensive, relatively lasgee, there is
the commutator and brushes in the motor, thus reguthe complex maintenance and should be dongney.
The stoping of operation during maintenance, aelstas not desired in the industry, because it wilrupt the
process and reduce yield (production) industry cWiaiffects to the company's losses. [9]

BLDC motors have many advantages over brushed D@rsyand induction motors, such as a better speed
versustorque characteristics, high dynamic responsd) bifjciency and reliability, long operating lifeaq brush
erosion), noiseless operation, higher speed ramagesteduction of electromagnetic interference (ENM addition,
the ratio of delivered torque to the size of thetanas higher, making it useful in applications whespace and
weight are critical factors, especially in aerospapplications. The control of BLDC motors cando@e in sensor
or sensorless mode, but to reduce overall costtofating devices, sensorless control techniquesamally used.
The advantage of sensorless BLDC motor contrdias the sensing part can be omitted, and thus bweists can
be considerably reduced. The disadvantages of dess@ontrol are higher requirements for conttgbathms and
more complicated electronics [10]. All of the elédl motors that do not require an electrical etion (made
with brushes) between stationary and rotating pesis be considered as brushless permanent maghBt (P
machines [11], which can be categorised based ®rPMs mounting and the back-EMF shape. The PMsbean
surface mounted on the rot¢8MPM) or installedinside of the rotor(IPM) [12], and the back-EMF shape can
either be sinusoidal or trapezoidal. According lte back-EMF shape?M AC synchronous moto(®MAC or
PMSM) have sinusoidal back-EMF amtushless DC motor¢BLDC or BPM) have trapezoidal back-EMF. A
PMAC motor is typically excited by a three-phaseusbidal current, and a BLDC motor is usually paudeby a set
of currents having a quasi-square waveform [13,Bé&lcause of their high power density, reliabiligfficiency,
maintenance free nature and silent operation, pggntamagnet (PM) motors have been widely usedviariety of
applications in industrial automation, computers,oapace, military (gun turrets drives for combailtieles) [10],
automotive (hybrid vehicles) [15] and household ducts. However, the PM BLDC motors are inherently
electronically controlled and require rotor positimformation for proper commutation of currentsiis stator
windings. It is not desirable to use tpesition sensor$or applications where reliability is of utmost pertance
because a sensor failure may cause instabilitydrcontrol system.

In the speed regulation system of the inductionomdtat be operated by FOC method required a speed
sensor to observe the value of the speed. The aigaT of speed sensor of induction motor is coragao the
speed setpoint, which is then fed to the contraflerontrol the speed to match the setpoint atrthet. Usually the
location of the sensor is too far from the consgstem then processes the sensor in this induotimtor speed
measurement results become less accurate. To overtioese problems required an observer to obséeve t
functioning of the torque and current, so that mafeeeds can be predicted. Then developed somevehsthere
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are that using the SCFNN observer by its applicatising several methods of training algorithm, deample:
Backpropagation (BP), Levenberg-Marquardt (LM) etc.

2. Research Method

The purpose of this study was to compare the Inititation performance responses of induction motor
between observer method SCFNN LM training algorithiat performed by the author with induction matmque
control technique known as the DTC with RNN obsepanducted by researchers [8].

The result is expected to be used as guidanceténrdiming the proper choice for method of obseorath
induction motor speed control. With the right methean enhance better performance for the systeitin the
improvement of system performance, is expecteddrmease work efficiency in the industrial world.

This method of speed vector sensorless for indmathotor control was be developed so rapidly in the
control system applications, due always must obthisf more accurate results [1-3].

The observer method will be developed using neuetivork observer so that the simulation resultsasho
better performance and flux errors can be maintewi¢h small intervals.

Fuzzy Neural Network (FNN) combines his skills re thandling of fuzzy information and learning oe th
learning parameters based on back propagation ithggrthe parameters of membership functions rdlate
development customized weight and structure offiN8&l are determined. Despite this appearance otiiueture
of FNN control with the ability of online teachiragnd learning parameters are acceptable, but iduthgunt of data
first collected in front of a lot thus for the ingohentation plan usually spend a lot of time. [4]

To overcome the problem of achieving fast learrobgectives, be developed a Self-Constructing Neural
Fuzzy Inference Network (SCNFIN). To demonstrate fphase structure of the learning parameters were
simultaneously, network structure with the paramseté both complex learning. therefore SCNFIN diift to be
implemented or applications of practical. [5].

Using the method of Self Contructing Fuzzy Neuratwbrk (SCFNN) by learning to use backpropagation
[6] and Levenbewrg-Marquardt [7] to obtain the autaccording to the given setpoint.[6-7]

Another technique developed by |. Takahashi nart@lyue control technique of induction motor, known
as Direct Torque Control (DTC). With the DTC torqeemntrol is possible with a good performance withasing a
mechanical transducer on the motor shaft. By [8HUSTC with RNN observer.[8].

3. Resultsand Analysis
The results obtained from this study is a simutatiutput of that be applied to the model, while the
analysis to be used is comparison method

3.1. TheModeling

Developed from several studies that have been thgn8eong-Hwan Kim, et al. [1], Iradiratu [3] and
Sutedjo [6] the block diagram of the system devetbjm this research is like Figure 1.

FOC is a method of setting the field on ac motdrere the coupled system is converted into decduple
system. By strengthening the current system andnibter load current can be controlled separateytpsgque and
flux can also be arranged separately. Block diagthustrating the basic principle of the system Dpted Field
Oriented Control (FOC decoupled) induction motoshewn in Figure 2.
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Figure 1. Configuring System Speed-Sensorless Yé&xatrol for Induction Motors with SCFNN
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Figure 2. Block diagram of decoupled FOC Inductibotors

Rotation vector of the magnetization current amdue producing current reference phase currentasze
for PWM inverter control signal. The resulting \agie inverter will be used by the induction motatat. PWM

inverter model is shown in Figure 3.
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Figure 3. PWM Inverter

The equivalent circuit of induction motor in d-gozdinates can be seen in Figure 4.
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Figure 4. Induction Motor Equivalent circuit in deqordinates

The equivalent circuit of induction motor in dq cdimates, by entering the rotor voltage (Vr,, =tgn
obtain the stator voltage magnitude which is a fioncof stator currents and rotor currents in mxafdrm, as

follows:
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with: p =d If observed at stationary coordinates € 0), then equation (1) becomes:

dt

v | [R+pL, 0 oM 0 i

Vqs _ 0 RS + [:)LS 0 pM iqs
0 pM oM R+pL, @)L i« @)
0] | ~wM pM —wl, R +pL ||

3.2. TheMethods

In Self Constructing Fuzzy Neural Network with thevenberg Marquardt Learning Methode. This
controller is a fuzzy controller input, so that inps numeric data in the form of error .. Fuzyibadructure of a
neural network as in Figure 5.

In the first layer occurs only process crisp inplidata that is error (X1) and Delta errors (X2¥dovard
the signal to the next layer.

In the second layer occurs fuzyfikasigaess and the formation of membership functions.flihetion used is

Gaussian function.

2
u, = exp (MJ 3)
ji

with the M;, andgj is the average (mean) and standard deviation.
In the third layer. is the initial condit determination of fuzzy rules. Ledge is to obtaimultiplication result
of all the component inputs of the error and thiéaderror with the equation:

U =, 09U, 00)-- 4, (06) =[u,y %) @)

with u; is an output node rule number-j

Figure 5. The basic structure of SCFNN

Layer Four: Serves to add up all input signalsnalisilkan withZ, then formulated in the equation was then
performed defuzifikasi.
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In SCFNN there are two types of learning algorithnamely learning the structure and learning
parameters. Learning the structure used to seek smace partition of fuzzy logic and fuzzy logmat aims subject:
minimizing the number of rules and minimize the Zyzsets in the universe talks of each variable rpatar
input.Learning using supervised learning algorithmghereas to determine the weight and parameters of
membership function set with backpropagasi learaiggrithms.

The first step in learning the structure is to daiae whether or not to do the learning structlfr&min
< e|or EminA KA e |. By Emin and Emid is a positive constant, then the learning stractarneeded. Next
define a new node (membership function) in layan@ connecting fuzzy logic rule in layer 3. If thés one cluster
is given in the input will cause the existence dtizzy logic rule in layer 3, the power equationigrition (firing
strength) of a rule for each input data xi can lb@s as a point of where the input data relatettéocluster data.
Firing strength obtained from (4) which is usedresmeasurement of angles:

Di=U; j=1,..., Q) (6)

with Q(t) is the number of existing rules at timeCtiteria for the establishment of a new fuzzyerfdr new input
data is stated as follows. By determining the maximangle measurement,§)

= ) 7
Omax = M0 "

If Dmax< D, then shaped membership function witid0,1). Then the mean and standard deviation ohtve
membership function declared in advance with ai@dar value in heuristics or how lain.Jadi the mestandard
deviation of the new membership function as follows

m® = x ®)

=0 9

G;

with x; is the new input data and i is the standard dieviat.

To avoid a new membership function thmeas that already exist, the similarity betweenrtembership
function of the old and new should be examined, elgrthe assumptions that if there are two fuzzg getand B
with membership function is

HAKX) = exp [- (x - M 0y] and pb (x) = exp [- (x - B7 7.

And assumen, =m,.Kemudian| AN B |is calculated

Ang =L #(Xm, -m + Vo, +a,)| , 1 B(xm -m +V7(g, + ;)| 1 R(Hm, -m +Vrlo +a,)] (1)
2 Jrfo,+a,) 2 Vrlo,+a,) 2 Jrlo,+a,)

with h(x) = max{o, x}.

_|AnB|_ |An B| (11)

E(AB)= =
(a8) IADB| gJm+o,nADB[

Examination performed on all input variables xi. Wlihe value of the Maximum of,E,obtained with :

E...= max u(ni”ev),csg”e ) u(rql,cjl)} (12)

1< j=q(t)

with u(my,03,) is a Gaussian membership function with megrand standard deviatiom;; M (t) is the number of
i-th membership function of input variables.Bf., < F with F /7(0,1) is a predetermined value, then use the new
membership function and the number of M (t).
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M(t +1) =M(t) + 1 (13)

So the establishment of membership function asttiwith the formation of a new fuzzy rule and wigg

w(new).

SCFNN learning algorithm is to determine the par@nseof the adaptive rule to adjust the network
parameters, based on input-output pairs. If thevort parameter vector consists of parameters, theriearning
process taking into account the vector of detertiinaof the energy function. This method is gerlgréhsed
learning backpropagasi rule because the gradiesibvés calculated in a direction opposite to thepat of each
node, to explain the learning algorithm parame8€&NN supervised gradient decent method. Assumertbegy
function E is defined as:

m

1 1
EZE(CL)m_wr)Z:EeZ (14)

Then the parameter learning algorithm based onfdrapkgasi described as follows:
Layer 4:The error dipropagasi calculated as:

5¢=_0E | _OEOe, |_|_OE 0§ 0&, (15)
oy’ | Oe, 0y 0e,, 0y, dy"

and the weighting is updated magnitude

_ B E[Y_
| “@FL@J'M ! Y

by a factor is the learning-rate parameter of teeghting. Weighting in layer 4 was updated:
o, (N+D) =w,(N)+Aw, (17)

with N the number of iterations of the j-th
Layer 3:In this layer only the error that needs to beWaked and dipropagasi:

5% = —aj = _0£ * OLD =dw. (18)
b oy, ay” | | du, .
Layer 2:Error is calculated as follows:
52 = 9E :{_"EGYDH"“J‘ ]zds (19)
I 0 ]
auAJ dy- du; auA,
rule of update of fis :
& &M df-m)
. = —=|-n———-7—_|= 52 ! 20
NT]I _,7ma‘r]i ”mwpg dqi IZn i OJTi 2 ( )

And rule of updates ofj is .

d'l J - .
Ag; =_’7gE :[_’70 E A ]:%dﬁ%)zi) (21)

aaji au N aaji

with n, andn, are the learning-rate parameter of the mean amtatd devisasi Gaussian function. Mean and
standard deviation of the membership function ia layer is updated by:
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my; (N+3) =my (N) +Amy, (22)
0;(N+)=0,(N)+A0,) (23)

Having obtained equation this equation then sinadla series of controls with Self Constructing Néur
Fuzzy Networks with induction motor plant.

In this study the training methods Backpropagasdisd by [5] is replaced with Levenberg-Merquard
training (LM). LM training methods are a combinatiof Newton with the Steepest Descent algorithmeWwthe
Gradient Descent method is expressed as equation:

W, (t+D) =W, () +a.d,.Z, (24)
The equation above can be simplified to

W, =W, +a.g (25)
Where g is the gradient vector. And the Newthoragiqu is:

Wk+1 =Wk - Ak_l-g (26)

A, is the Hessian matrix (its elements are the sedenidative of the weighing error) following

[ 0%E 0%E 0%E
e W P
0°E 0°E 0°E

a- o0 OWE YED e
s Go o s
NN T MOWE

“A” can be written as:
A=21"] (28)
where: J is the Jacobian matrix

Equation improvement weighing of LM training metlsaate:
W =W =(IJy + )™ Je (29)

If the value of 4 = O, then the LM training methods will be identicalttee method of Gauss Newthon, is
not U, it when the LM training method will be equal tadkpropagasi (steepest descent).

Having obtained the equation, this equation it bansimulated to a control circuit with SCFNN LM
training methods with induction motor plant.

3.3. The Simulations
Block diagram of induction motor speed controlteys without speed sensor of Figure 1, And on the
adaptive observer using self contructing fuzzy aknetwork, as shown in Figure 6 and Figure 7.

Performance Comparison of Starting Speed Contrdhdfiction Motor (Deddy Kusbianto)
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Figure 7. Speed Estimation Structure

Figure 6, the structure of estimation to obtairinestes of flux, each of which consists of direatxfl A, and

quadratur fluxA._, the results of these two parameters are usettd the speed estimation, shown in Figure 7.

ar’
The induction motor parameters for SCFNN learniatadised in obtaining the target goals as follows:

+ Direct flux C, consist ofl 4, Vs, Vs, &,

* Quadratur fluxAy,, consists ofl ,, Vi, Vs @),

* Speedyconsists, Ay, A, 4, and .

The Learning methods to estimate the flux iderdtfizn of induction motor speed using a self-cortding
fuzzy neural network where the network consistfoaf layers, namely the input of 4, linguistic, poadition and 1
output. Linguistic, precondition and output to gaaiue of/ldr ,Aqr and &) . The learning process uses 4 neurons.

Inputs ie Vs, Is, and/L , learning done as much as 5 epoch. If learningasnés have not convergent or

not on target there will be additional new membgrshnction, the addition stops when a convergesatriing
outcomes .. The starting price is determined waighbetween 0 and 1 to find the optimal parameteas produce
the best performance.

In the process of estimation there are three SCR&INMomplete the estimated direct fluty, , flux

quadratur/\ after completion of this process there is a ceteplSCFNN speed estimatiof, . Off-Line

ar
Learning self-constructing fuzzy neural networketyer for identification of direct flux/ldr , shown in Figure 8.

-
iy

dq Motor Ay
Model
. +
X, =V a’/ X,= @ C armor
XJ = ng \ :_ ;Ld:
X1 = Ids
A‘d.r
SCFNN Observer

Figure 8. Estimation structure of Direct Fluk, Using SCFNNO
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Figure 8, illustrates the structure of direct flestimator A, using SCFNN, and the input consistslqf,

Vis» Vgs and &, in enter into the block SCFNNO.

O
In the motor model block, determine the value dbeity (speed referenceévr ) to obtain a direct reference

flux A * dr. For the direct flux SCFNNO produce learnivly, , reference and learning the difference between the
value obtained error or direct flux estimation.

The output from SCFNNO flux is defined as direcrténg /Tdr, which is then used as inputs that can be
changed. If the estimated direct flux is the deeratof actual direct flux and error models of theationship
between the flux of direct flux IearninfdAOlr and flux direct reference * dr. So the error is the backpropagation of

SCFNN and the imposition of SCFNN is adjusted o lto reduce the error. Finally, the output of SGFah
actual direct flux model.
Figure 9, illustrates the structure of SCFNN SCFNfd@et the results that follow the actual speed.

Figure 9. Internal Structure SCFNNO

There are 3 blocks of SCFNNO, namely SCFNNO bldoks Ay, , A, and &, , SCFNNO block forA,

and /]qr : counted first, then the results incorporated the SCFNNO block,
At the time of learning, the number of rules creater each input can be different from the rulettisa
created for a block SCFNNO, because the charatitsrisf | o, |, Vs, Vs, and @, are not the same.

gs’

The data of induction motor used for simulation are

Rs = stator resistance (ohms) = 176

Rr = rotor resistance (ohms) = 190

The number of pairs of poles = 2

Ls = stator inductance (H) = 3.79

Lr = rotor inductance (H) = 3:31

M = inductance coupled (H) = 3:21

Kd = constant friction (Kg.m2 / s) = &:9

Voltage = 115 V Frequency = 60 Hz
and Figure 10 is the current speed Motor RespopsedReference Start with 750 rad / sec using La¥hitng
SCFNNO [8] and Figure 11. Mechanical Control DTGhARNN conducted by researchers [7]

gs’

Performance Comparison of Starting Speed Contrdhdfiction Motor (Deddy Kusbianto)
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Figure 10. Initial round of motor responses witference speed 750 rad / sec Observer LM

I:II.I I:IJII I:I:'I I:I.:H I:IIJ [ F . |
Figure 11. Motor speed response at the Speed Refef&tart with 750 rad / sec with RNN observer fang more
accurate figure can be seen in the following tdble

Table 1 Comparison of performance of Early Motoe&pResponse Between LM Observer and RNN Observer
with a speed of 750 rpm Reference

No Performance RNN LM
Observer Observer

1. Peak (rad/sec) 810 790

2. Rise Time 0.0125 0.008
(sec)

3. Settling Time 0.364 0.025
(sec)

4, Peak Time 0.045 0.0125
(sec)

5.  Overshoot (%) 7.99990 5.33333

Where a longer rise time means lower capacitiegltterough, and thus lower coupling noise, and & th
table shows that the rise time with FNN methoddager than the LM method, that means the FNN aukth
produces a rise time better than the LM

Settling time is the time required for an outputéach and Remain within agiven error band folimyi
some input stimulus, are in the table above shatsthe RNN method has a longer settling time thae M
method, which it means the achievement of steadite shethods LM is faster, it is because the erfotte
selected band is still too large, but along witle éror bandsare increasingly reduced, the RNN edetould be
better, that is, when will be applied on systenad tequire high precision

IJPEDS Vol. 1, No. 1, September 2011 : 47 - 57
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Although the peak and the overshoot for the LMhuodta little better than RNN method, but the peak
time is much better method of RNN, so overall, ipafarly for systems that require high precisiolNNRmethodcan
be said to be better

4. Conclusion
On start motor with a par round of 750 rad / se®R0IN observer happens overshoot is 7.9999% 5.3333%

LM, RNN peak at 810 rad / sec is the LM 790 radd, sise time RNN = 0.0125 sec are LM 0008 secosettljng
time RNN = 0.364 is LM = 0025. By comparing the slation results of both observe methods can comcthdt
parameters of overshoot, rise time, settling tipegk time and peak at observer LM is better thatNRRtom the
results of this research is expected to be referémcetermining the choice of appropriate methaidsbservation

in induction motor speed control. With the rightthred, can enhance better performance of the syatéth. the
improvement of system performance, is expecteddmease work efficiency in the industrial world.
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