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Abstract: Epitopes are essential peptides for immune system stimulation, such as governing helper T 

lymphocyte (HTL) activation via antigen presentation and recognition. Current predictive models for epitope 

selection mainly rely on the antigen presentation, although HTLs only recognize 50% of the presented peptides. 

Thus, we developed a HTL epitope predictor which involves the antigen recognition step. The predictor is 

specific for epitopes presented by Human Leukocyte Allele (HLA)-DRB1*01:01, which is protective against 

developing multiple sclerosis and association with autoimmune diseases. As the data set, we used binding 

register of immunogenic and non-immunogenic HTL peptides related to HLA-DRB1*01:01. The binding 

registers were obtained from consensus results of two current HLA-binder predictors. Amino acid descriptors 

were extracted from the binding registers and subjected to random forest algorithm. A threshold optimization 

were applied to overcome data set imbalance class. In addition, descriptors were screened by using a recursive 

feature elimination to enhance the model performance. The obtained model shows that the hydrophobicity, 

steric, and electrostatic properties of epitopes, mainly at center of binding registers, are important for the TCR 

recognition as well as the HTL epitopes predictive model. The model complements current HLA-DRB1*01:01-

binder prediction methods to screen immunogenic HTL epitopes. 
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Abstrak: Epitop adalah peptida yang sangat penting dalam stimulasi sistem kekebalan, seperti dalam 

pengaturan aktivasi limfosit T penolong (HTL) melalui presentasi dan pengenalan antigen. Saat ini, model 

prediksi untuk menyeleksi epitop hanya berdasarkan pada presentasi antigen, meskipun HTL hanya mengenali 

50% peptida yang dipresentasikan. Maka, kami mengembangkan model prediksi yang melibatkan tahapan 

pengenalan antigen. Model prediksi yang dikembangkan spesifik untuk epitop yang dipresentasikan oleh Human 

Leukocyte Allele (HLA)-DRB1*01:01, yang bersifat proteksi terhadap sklerosis ganda dan berkaitan dengan 

penyakit-penyakit autoimun. Sisi pengikatan peptida HTL yang imunogenik dan non-imunogenik pada HLA-

DRB1*01:01 digunakan sebagai data set. Informasi sisi pengikatan diperoleh dari hasil konsensus dua server 

prediksi peptida. Selanjuntya, deskriptor asam amino diekstrak dari sisi pengikatan peptida dan digunakan 

untuk melatih model algoritma random forest. Pendekatan optimasi ambang juga digunakan untuk mengatasi 

ketidakseimbangan jumlah kelas pada data set. Selain itu, deskriptor diseleksi dengan metode eliminasi rekursif 

untuk meningkatkan performa model. Model yang dihasilkan menunjukkan bahwa hidrofobisitas, sterik, dan 

elektrostatik epitop, terutama pada bagian sisi pengikatan peptida ke MHC, penting bagi pengenalan TCR. 

Model prediksi ini melengkapi metode prediksi peptida yang terikat pada HLA-DRB1*01:01 untuk menyeleksi 

epitop HTL yang imunogenik. 
 

Kata kunci: epitop, model prediktif, helper T lymphocyte, algoritma random forest 

 

INTRODUCTION  

In human, the adaptive immune system has an 

essential role in protecting hosts from diverse 

pathogen invasions. Through CD8+ cytotoxic T 

lymphocytes (CTLs), it destroys either infected or 

tumor cells. Meanwhile, activating CD4+ helper T 

lymphocytes (HTL) provokes other immune cells like 

B cells and macrophages to eventually destroy 

pathogens (Murphy 2011). These responses are relied 

on two important molecular events. The first event is 

the antigen presentation, where the antigenic peptide 

epitope binds to the major histocompatibility 

complex (MHC) as pMHC. The second event is the T 

cell receptor (TR) recognition of pMHC which 

results in the activation of either CTL or HTL (Khan 

& Ranganathan 2011). 
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CTLs and HTLs recognize dissimilar peptide 

epitopes displayed by two different MHC molecules 

(Murphy 2011). MHC class I molecules load peptide 

epitopes (CTL epitopes) for CTL recognition, 

whereas MHC class II molecules present other kinds 

of peptide epitopes (HTL epitopes) for HTL. CTL 

epitopes, possessing length 9-11 residues, are 

intracellular pathogens origin. They particularly bind 

the MHC class I through their N- and C-termini 

residues, as the consequence their middle parts have a 

bulged conformation. On the other hand, HTL 

epitopes are generated through a serial antigen 

processing of extracellular pathogens and have length 

12-25 residues. They use their nine sequential amino 

acids to bind MHC class II. These nine residues, 

which are called peptide binding registers, mainly 

interact with the MHC class II at positions 1, 4, 6, 

and 9 (Sant’Angelo et al. 2002). The rest residues of 

HTL epitopes, referred as peptide flanking residues 

or PFRs, can extend outside N- and C-termini of the 

groove.   

Peptide epitope sequences are vital information to 

develop vaccines in prophylactic and 

immunotherapeutic settings. Such information 

assisted the development of the next-generation 

Malaria RTS,S vaccine (MosquirixTM) which 

acquired a final recommendation from WHO in 2015 

(Oyarzún & Kobe 2016). Interestingly, peptide 

epitope information also contributed to the 

development of the RNA-lipoplex vaccine targeting 

melanoma which reached a phase I clinical trial in 

2016 (Gilboa 2016).  

Unfortunately, peptide epitope discovery through 

experimental methods are laborious, time consuming, 

and costly (Tong et al. 2007).  To address such 

problems, many research groups worldwide have 

developed computational approaches (i.e. 

immunoinformatics’) either using structure- (Rognan 

et al. 1994; Rosenfeld et al. 1995; Tong et al. 2004; 

Bordner & Abagyan 2006; Khan & Ranganathan 

2010; Patronov et al. 2011) or sequence-based  

approaches (Rammensee et al. 1999; Guan et al. 

2003; Reche et al. 2004; Zhang et al. 2005; Nielsen 

et al. 2004; Gonzalez-Galarza et al. 2011; Zhang et 

al. 2012; Karosiene et al. 2013; Andreatta et al. 

2015). These two methods complement each other, 

where the structural approach needs sequences and 

vice versa. Both approaches construct their 

algorithms based on the binding of the peptide 

epitope to the MHC, because this antigen 

presentation event is considered as the critical step in 

the immune system activation. Most methods assume 

that the higher binding affinity values of MHC-bound 

peptides are, the longer time they are presented. 

Hence, they have a bigger change to be recognized 

by T cell. Studies revealed that only a half of such 

peptide MHC-binders are recognized by T cells or 

immunogenic (Chuan & Ranganathan 2013), 

however.  

In last a decade, some groups started to develop 

immunogenicity prediction methods for CTL 

epitopes related to HLA-A2. The first predictor was 

POPI. It used 23 physicochemical properties and feed 

them to a super vector machine (SVM) classifier. The 

same group then developed a POPISK using SVM 

with string kernels (Tung et al. 2011). It 

outperformed POPI and identified six important 

positions (1, 4, 5, 6, 8, and 9) for CTL epitopes 

immunogenicity. Another group, Saethang et al. 

(2013), built a PAAQD using a random forest based 

on amino acid pairwise contact potentials (AAPP) 

and quantum topological molecular similarity 

(QTMS) descriptors. They suggested that the 

positions 1 and 8 determine the immunogenicity of 

nonamer peptide epitopes, whereas the anchor 

residues less contribute in T-cell reactivity prediction. 

Chowell et al. (2015) analyzed a hydrophobicity 

difference between immunogenic and non-

immunogenic CTL peptides. They found that the 

hydrophobicity property is sufficient to predict 

immunogenic CTL epitopes. Zhang et al. (2015) 

applied genetic algorithm-based ensemble learning, 

as a feature selection, on various combination of 

physicochemical descriptors. They proposed that 

relative accessible surface areas (RASA) of peptides 

and AAPP are the optimal features for CTL epitopes 

immunogenicity.  

On the other hand, none of method for HTL 

epitopes immunogenicity is available yet. The 

complexity of HTL epitopes, which consist of 

binding registers and PFRs, is the major challenge in 

their immunogenicity modeling. Intriguingly, these 

peptide epitopes mainly interact with TRs through 

their binding registers (Sant’Angelo et al. 2002). This 

basis could be sufficient for discriminating 

immunogenic HTL epitopes from MHC class II-

binder peptides predicted by current prediction 

servers.  

The HLA-DRB1*01:01 is a kind of human MHC 

class II allele. It is protective against developing 

multiple sclerosis and association with autoimmune 

diseases, for example rheumatoid arthritis (Sauer et 

al. 2015) and Crohn's disease (Goyette et al. 2015). 

Incidence and prevalence of these autoimmune 

diseases worldwide is increasing (Lerner et al. 2015). 

During 2000 to 2016, the number of 583,694 people 

worldwide were suffering multiple sclerosis, and 

108,907 of them reside in the lower middle-income 

region, including Indonesia. Furthermore, in the same 

period of time, around 5 million people in the world 

live with rheumatoid arthritis (WHO 2016). Thus, 

modelling immunogenic HTL epitopes related to 

HLA-DRB1*01:01 is important.  

Despite limited experimental data providing 

binding register information of HTL epitopes, the 

NetMHCIIpan (Andreatta et al. 2015) and the 

TEPITOPEpan (Zhang et al. 2012) exhibited a 

reliable prediction of human MHC class II-bound 

peptides, including the HLA-DRB1*01:01 (Andreatta 
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et al. 2015). Hence, we constructed a data set using 

the consensus result from NetMHCIIpan and 

TEPITOPEpan. The data set contains binding 

registers information of immunogenic and non-

immunogenic HTL peptides related to HLA-

DRB1*01:01. From these binding registers, we 

extracted various amino acid descriptor sets widely 

used in proteochemometric modelling (van Westen et 

al. 2013). We found that VHSE descriptor set is 

representative for immunogenicity modelling. A class 

imbalance, however, was the issue in the data set. It 

causes the resulted prediction model classifying 

unseen data as the majority class member (Kuhn & 

Johnson 2013). Since the model possesses a 

satisfactory area under ROC curve, we carried out 

automatic threshold probability optimization to 

minimize difference between specificity and 

sensitivity. This optimization adjusts automatically 

both in training set and future data. Ultimately, we 

have developed a random forest model of 

immunogenic HTL epitopes presented by HLA-

DRB1*01:01. The model complements the available 

peptides MHC class II-binder prediction servers to 

generate more accurate immunogenic HTL epitopes, 

which further help the development of 

immunotherapies for HLA-DRB1*01:01-related 

diseases, such as multiple sclerosis, Crohn’s disease, 

and rheumatoid arthritis. 

 

MATERIALS AND METHODS 

Data Set Preparation  

Data of HLA-DRB1*01:01-related peptides 

complemented with T cell assays information were 

obtained from IEDB (http://www.iedb.org/) (Vita et 

al. 2018). We removed peptides with unnatural 

amino acids and duplicates. Similarly, we discarded 

peptides possessing both positive and negative result 

of T cell assays. Because of the absence of 

information whether peptides with negative results of 

T cell assays are MHC-binders, we predicted their 

IC50 by using NetMHCIIpan (Andreatta et al. 2015). 

Those peptides with IC50 greater than 500 nM were 

cut off (Karosiene et al. 2013; Peters et al. 2006) to 

make the data set MHC-binder exclusive. Peptide 

binding registers were predicted using NetMHCIIpan 

(Andreatta et al. 2015) and TEPITOPEpan (Zhang et 

al. 2012). Consensus result from both prediction 

servers was collected to yield a binding register data 

set of 392 immunogenic and 122 non-immunogenic T 

cell peptides related to HLA-DRB1*01:01. We then 

randomly split the data set into a training and test set. 

Amino acid descriptors of Vectors of 

Hydrophobicity, Steric and Electronic (VHSE) (Mei 

et al. 2005) were extracted from binding registers 

using a script written in R programming language (R 

Core Team 2015). 

 

Random Forest 

We utilized a random forest algorithm, an 

ensemble of decision trees (Breiman 2001), to train 

immunogenic HTL epitopes model. Let   is 

descriptor vectors with outcome  or a binary label 

of a peptide immunogenicity in n samples of a 

training data, . The 

training data are drawn randomly from a probability 

distribution  to generate a random 

vector of descriptors  , which is independent of the 

previous ones  . The training data and 

 are used to construct a classifier h(x, Θk) of the 

kth tree. The resulted trees vote for the most popular 

class at input x. Implementation of random forest in a 

caret package denotes the  as a tuning parameter 

mtry.  

 

The Iterative Ten-Fold Cross-Validation  

We performed a resampling technique, a ten-

repeated ten-fold cross-validation (Kuhn & Johnson 

2013), for estimating model performance. It 

randomly divided training set into ten subsets. The 

first subset was held-out, while the rest subsets fitted 

a model. The held-out samples were predicted by this 

model and used to estimate performance measures. 

The first subset was returned to the training set and 

the procedure repeated until the last subset. 

    

Collinearity Removal 

We removed collinearity within descriptors using 

a procedure as described in (Kuhn & Johnson 2013). 

The procedure, firstly, calculated correlation matrix 

of the predictors and determined two predictors 

associated with the largest absolute pairwise 

correlation. It then determined the average correlation 

between the first predictor and the other variables and 

did so for the second predictor. It discarded the 

predictor with a larger average correlation, either the 

first or second predictor. The algorithm iteratively 

run the steps above until no absolute correlations 

greater than a threshold of 0.750. 

 

Recursive Feature Elimination with Resampling 

We carried out recursive feature elimination, 

implemented in the caret package (Kuhn 2008; Kuhn 

et al. 2016), as described by Kuhn & Johnson (2013). 

Data were partitioned into first subset and held-back 

set via resampling of 10-fold cross-validation. A 

model was trained using all descriptors on the subset 

set. The hold-back samples were predicted using the 

model and descriptors were ranked according their 

importance. Another models was trained using 

individual descriptor and then used to predict the 

held-back samples. The ranking of each descriptor 

was recalculated. The processes were repeated for all 

subset. The performance profile of descriptors was 

calculated. The number of predictors were 

determined and the final list of descriptors was 
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estimated. The final model was then fitted based on 

the optimal descriptors. 

 

Filter Method for Feature Selection 

As described in (Kuhn et al. 2016), the algorithm 

used univariate statistical methods to filter descriptor 

variables in each iteration. It estimated the 

performance using resampling. In the next step, it 

applied the same filter and the model to entire 

training data. It saved the model and the current 

selected descriptors. The final descriptors were voted 

based on the optimal performance.  

 

Threshold Probability Optimization 

The optimization of threshold probability was 

carried out as described in (Kuhn & Johnson 2013; 

Kuhn et al. 2016). Firstly, a tuning grid searched the 

number of randomly selected predictors, the mtry. 

Using a fix mtry, the training data fitted a single 

random forest model. Next, the algorithm looped 

over the threshold values to obtain prediction from 

the same random forest model. It then fitted the 

model independent of the threshold parameter. To 

evaluate data across thresholds, it created multiple 

versions of the probabilities. Using the current 

candidate value of the probability threshold, it use the 

area under the ROC curve and the sensitivity and 

specificity values. At the end, it selected the 

threshold where the distance between sensitivity and 

specificity is minimum.  

 

Averaging Probabilities  

We randomly split immunogenic data in the 

training set into three partitions. Into each partition, 

we added all non-immunogenic in the training set. 

These steps generated three sub-groups of training set 

where each sub-group has different immunogenic 

data but same non-immunogenic ones. The sub-

groups then trained different random forest learners 

to yield three models of HTL immunogenicity. Each 

model was applied on the test set and resulted in 

immunogenicity probabilities. We then averaged 

probabilities outcome from each test set data point. 

The final class follow the average result. 

 

Position-Based Amino Acid VHSE Descriptors 

Analysis 

We transformed amino acids at peptide binding 

registers into the VHSE descriptor set using R 

statistical software (R Core Team 2015). Next, we 

calculated and plotted the mean descriptors at each 

binding register residue between immunogenic and 

non-immunogenic peptides. In addition, we 

performed a Wilcoxon rank-sum test to position-

based residues of between immunogenic and non-

immunogenic peptides at their binding registers for 

each descriptor element.   

 

 

 

Performance Metrics 

Here we adopted some metrics to the model 

performance. They are an area under ROC curve 

(ROC), sensitivity or recall, specificity, positive 

prediction value (PPV) or precision, Mattew’s 

correlation coefficient (MCC), Kappa, harmonic 

mean of precision and recall (F1), and. These metrics 

are defined as follows: 

 

  
 

 
 

 
 

 
 

 
 

 
  

 Where TP is true positive, FN is false negative, TN 

is true negative, and FP is false positive. The ROC 

curve is obtained by plotting the false positive rate 

(1-specificity) against the sensitivity. The O 

constructing a Kappa metric is the observed 

accuracy, whereas E is the expected accuracy based 

on the marginal totals of the confusion matrix (Kuhn 

& Johnson 2013). 

 

Structure and Sequence Conservation 

Visualization  

The crystal structure of ternary complex of TCR, 

influenza HA antigen peptide, and HLA-

DRB1*01:01 with a code 1FYT was retrieved from 

RCSB Protein Data Bank (Burley et al. 2018). The 

structure was visualized using Biovia Discovery 

Studio 2016 (Systèmes 2016). Meanwhile, sequence 

conservation of binding registers in data set was 

generated using WebLogo (Crooks et al. 2004). 

 

RESULTS AND DISCUSSIONS 

Screening of Descriptor Sets 

Previously, Chowell et al. (2015) analyzed 

biochemical properties among immunogenic and 

non-immunogenic CD8+ peptides related to HLA-

A2. They observed hydrophobicity differences at 

specific TCR contact residues P4, P6, P7, and P8. 

Using the hydrophobicity property, they built a 

neural network model to complement the IEDB 

approach in predicting immunogenic CTL epitopes. 

Khan and Ranganathan (2011) proposed that the 

molecular surface electrostatic potential (MSEP) 

contributes in pMHC recognition by TCR. Zhang et 
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al. (2015) applied various combination of 

physicochemical descriptors to distinguish 

immunogenic and non-immunogenic CTL epitopes. 

In the case of HTL epitopes related to HLA-

DRB1*01:01, we evaluated hydrophobicity, steric, 

and electrostatic properties in a VHSE descriptor set 

(Mei et al. 2005) to build an immunogenic epitope 

prediction model. The VHSE is derived from 

experimental physicochemical properties of amino 

acids in an AAindex (Kawashima et al. 2008). 

 

Feature Selection 
Extraction of VHSE from binding register data 

resulted in 72 descriptors. These descriptors explain 

binding register residues in terms of hydrophobicity, 

steric, and electrostatic properties. During the antigen 

recognition event, only particular residues at the 

binding register interact with complementarity 

determining regions (CDRs) of a TCR (Sant’Angelo 

et al. 2002). Some residues at binding register might 

be more contribute in hydrophobicity, whereas others 

could participate through different physicochemical 

properties such as electrostatic or even do not interact 

with the TCR. Involving inappropriate properties, as 

descriptors, in predictive modelling may be 

redundant and decrease model performance (Kuhn & 

Johnson 2013; Guyon et al. 2006). Hence, we 

performed feature selection steps on the extracted 

descriptors to choose only the important ones. 
Using a selection by filter (SBF) method, we 

screened important descriptors from the binding-

register-extracted VHSE. The method evaluates the 

relevance of the predictors outside of the predictive 

models using univariate statistics (Kuhn & Johnson 

2013). In this work, we used analysis of variance 

(ANOVA) score. The SBF method retains twelve 

descriptors (SBF1). Subjecting these descriptors to a 

random forest training increase the ROC to 0.701 

(Table 1). The selected descriptors also increased the 

specificity (0.330), the precision/PPV (0.808), the 

Kappa (0.266), and the MCC (0.284), whereas the F1 

(0.854) is unchanged. 

We also carried out another feature selection, a 

recursive feature elimination (RFE) (Guyon et al. 

2006). It is a backward selection algorithm that 

prevents refitting models at every search step. Its 

implementation in the caret package incorporates 

resampling to obtain performance estimates with 

variation due to feature selection (Kuhn & Johnson 

2013). The use of the RFE method on the VHSE 

descriptors generated 15 descriptors (RFE1). 

Training these descriptors to a random forest 

algorithm increase the ROC to 0.723 (Table 1). The 

other increased performance metrics are the 

specificity (0.262), the precision/PPV (0.799), the 

Kappa (0.249), the F1 (0.865), and the MCC (0.299).  
Separately, we applied a collinearity removal 

procedure to the extracted VHSE descriptors. This 

procedure retained 55 collinearity-free descriptors. 

Further SBF method selected 8 descriptors (SBF2). 

These descriptors increased the ROC to 0.663 (Table 

1). In addition, they also increased Specificity 

(0.263), Precision/PPV (0.789), Kappa (0.170), F1 

(0.836), and MCC (0.182). 
With prior collinearity removal, recursive feature 

elimination retained 25 descriptors (RFE2). The use 

of the RFE2 increased the ROC to 0.727 (Table 1). 

The selected descriptors also increased Specificity 

(0.190), Precision/PPV (0.788), Kappa (0.209), F1 

(0.870), and MCC (0.289). 
The Figure 1 compares the performance of HTL 

epitope predictive models trained using different 

selected VHSE descriptors. The RFE2, VHSE 

descriptors selected by RFE method after collinearity 

removal, generated a model with the best average 

ROC performance (0.727). Thus, we selected the 

RFE2 for further modelling. 

 

Table 1. Average performance metrics of different feature selection methods on the VHSE descriptor set. These 

metrics were estimated through a resampling of a ten-repeated ten-fold cross-validation during a random forest 

training. 

 

 
ROC 

Sensitivity/ 

Recall 
Specificity 

Precision/ 

PPV 
F1 Kappa MCC 

Full VHSE 0.672 0.954 0.144 0.775 0.854 0.124 0.176 

SBF1 0.701 0.907 0.330 0.808 0.854 0.266 0.284 

RFE1 0.723 0.946 0.262 0.799 0.865 0.249 0.299 

SBF2 0.663 0.891 0.263 0.789 0.836 0.170 0.182 

RFE2 0.727 0.973 0.190 0.788 0.870 0.209 0.289 
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Figure 1. Average performance metrics of different feature selection methods on the VHSE descriptor set. 

 

Table 2. Performance metrics of three sub-models and probabilities average model trained using the best 

selected VHSE descriptors. 

 

Model ROC Sensitivity/ 

Recall 

Specificity Precision/ 

PPV 

F1 Kappa MCC 

Sub-model1 0.664 0.671 0.550 0.850 0.750 0.171 0.185 

Sub-model2 0.616 0.724 0.500 0.846 0.786 0.186 0.194 

Sub-model3 0.692 0.658 0.600 0.862 0.746 0.194 0.214 

Ensemble 0.661 0.724 0.600 0.873 0.791 0.261 0.277 

Optimized probability threshold 0.672 0.750 0.600 0.877 0.809 0.291 0.304 

 
 

Probability Average and Probability Threshold 

Optimization 

The binding register data set contains an 

imbalance class where the immunogenic is three 

times of the non-immunogenic in number. To balance 

the data in the training set, we split the immunogenic 

into three different sub-groups and added all non-

immunogenic data. Hence, each sub-group has 

different immunogenic data but same non-

immunogenic ones. 

We used the best selected VHSE descriptors 

(RFE2) in each sub-group to train three random 

forest sub-models. Averaging probabilities of all sub-

models gave the ROC of 0.661, the sensitivity of 

0.724, and the specificity of 0.600. The majority 

performance metrics of the average model are 

superior to those of the sub-models (see Table 2). 

To handle the class imbalance issue, we also 

carried out another approach. We optimized 

probability threshold to get an appropriate balance 

between sensitivity and specificity. Such 

optimization tunes the model using a resampling 

procedure; hence no additional data set is required. 

Interestingly, it also automatically applies the 

optimized probability threshold in predicting unseen 

data. The threshold probability threshold procedure 

exhibits better performance metrics than the 

ensemble one, except for the specificity (Table 2). Its 

ROC is 0.672, whereas the sensitivity is 0.750. 

 

Analysis of Position-Based VHSE Descriptors 

To elucidate the important residue positions as 

well as the related physicochemical properties within 

the peptide binding register interacting with the TCR, 

we performed a Wilcoxon rank-sum test. The test 

result (Table 3) indicates statistical differences 

between the VHSE at binding registers of 

immunogenic and non-immunogenic. It suggests that 

the majority of important residues located at the 

center of the binding register.  
The Table 3 indicates statistical differences 

between immunogenic and non-immunogenic peptide 

binding registers at positions P3, P4, P5, and P6. At 

these four positions, the hydrophobic principal scores 

(VHSE1 and 2) show statistical differences between 

immunogenic and non-immunogenic peptides. The 

immunogenic peptides have lover average VHSE1 

scores at P5 (p = 2.82×10-2) than the non-
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Table 3. Residue-by-residue analysis of each VHSE descriptor vector between immunogenic and non-

immunogenic HTL peptides at their binding registers. The analysis was determined by using the Wilcoxon rank-

sum test. 

 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

VHSE1 8.10×10-1 3.68×10-1 5.46×10-1 7.60×10-1 2.82×10-2 8.79×10-1 7.97×10-1 7.20×10-1 6.70×10-1 

VHSE2 7.13×10-1 7.58×10-1 3.07×10-2 8.89×10-3 2.42×10-1 4.89×10-4 5.43×10-1 7.81×10-1 1.56×10-1 

VHSE3 4.35×10-1 9.94×10-1 5.52×10-2 9.20×10-2 3.30×10-1 6.61×10-4 6.46×10-1 8.81×10-1 5.75×10-1 

VHSE4 6.28×10-1 6.46×10-1 2.93×10-2 9.58×10-1 6.45×10-3 7.65×10-2 6.01×10-1 1.16×10-1 3.14×10-1 

VHSE5 3.09×10-1 5.85×10-1 1.35×10-1 6.88×10-1 5.58×10-1 1.33×10-1 7.30×10-1 6.98×10-1 9.69×10-1 

VHSE6 8.33×10-1 7.00×10-1 4.78×10-2 5.02×10-1 2.50×10-2 5.83×10-2 9.33×10-1 7.42×10-1 1.93×10-1 

VHSE7 6.47×10-1 1.43×10-1 7.77×10-1 1.76×10-1 2.03×10-1 1.28×10-2 8.94×10-1 1.55×10-1 4.05×10-1 

VHSE8 7.79×10-1 5.73×10-1 6.20×10-1 4.90×10-1 6.26×10-2 4.30×10-2 8.34×10-1 5.39×10-1 2.35×10-1 

 

 

 
 

Figure 2. Comparison of average of VHSE scores representing hydrophobic properties between immunogenic 

and non-immunogenic at binding registers. The green, turquoise, and purple lines indicates the non-

immunogenic peptides, whereas the red line is the immunogenic ones. 
 

 
 

Figure 3. Comparison of average of VHSE scores representing steric properties between immunogenic and non-

immunogenic at binding registers. The green, turquoise, and purple lines indicate the non-immunogenic 

peptides, whereas the red line is the immunogenic ones. 
 

 

immunogenic ones (Figure 2). For the VHSE2, the 

average scores of immunogenic peptides are higher at 

P3 (p = 3.07×10-2) and P4 (p = 8.89×10-3), but they 

are lower at P6 (p = 4.89×10-4). 

The importance of residues at middle positions is 

also exhibited by steric principal scores, the VHSE3 

and 4. The average VHSE3 scores of immunogenic 

peptides are higher than that of non-immunogenic 

ones at P6 (p = 6.61×10-4) (Figure 3). In contrast, the 

immunogenic peptides have lower average VHSE4 

scores at P3 (p = 2.93×10-2) and P5 (p = 6.45×10-3). 

Of four electrostatic kind descriptors, three 

VHSEs (VHSE6, 7, and 8) show significant 

differences at middle positions of the binding 

register. At positions P3 and P5, average VHSE6 

scores of immunogenic peptides are higher than that 

of non-immunogenic ones (P3, p = 4.78×10-2; P5, p = 

2.50×10-2) (Figure 4). Both kinds of peptides also 
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Figure 4. Comparison of average of VHSE scores representing electrostatic properties between immunogenic 

and non-immunogenic at binding registers. The green, turquoise, and purple lines indicate the non-immunogenic 

peptides, whereas the red line is the immunogenic ones. 

 

 
 

Figure 5. Interactions of a peptide epitope with residues of TCR in a crystal structure of ternary complex of TR, 

influenza HA antigen peptide, and HLA-DRB1*01:01 (1FYT). 
 

 

Immunogenic 

 

Non-immunogenic 

 

Figure 6. Sequence logos of immunogenic and non-immunogenic HTL epitopes. 
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have significantly different average VHSE7 and 8 

scores at P6. The immunogenic VHSE7 scores are 

lower at this position (p = 1.28×10-2), whereas the 

VHSE8 are lower (p = 4.30×10-2). 

The notion that important positions are at center 

of binding registers and the P8 is supported by a 

crystal structure of ternary complex of TR, influenza 

HA antigen peptide, and HLA-DRB1*01:01 (1FYT). 

This crystal structure shows that interactions occur on 

the peptide epitope at its center of binding register, at 

position P3, P5, P6, and P8. The residue at the 

position P3 (K310) forms a salt bridge interaction 

with E102 from the CDR3 of the TR, similarly the 

residue at P8 (K315) also interact through a salt 

bridge with D28 and E30 (CDR2) and a hydrogen 

bond with T98. However, unexpected hydrophobic 

interaction occurs at the P2. In addition, a hydrogen 

bond at flanking residue is also observed. 

The Figure 6 depicts sequence logos of 

immunogenic and non-immunogenic HTL epitopes. 

Despite having high similarity at the position P1 and 

resemblance at other anchor residues (P4, 6, and 9), 

the immunogenic HTL epitopes exhibit some 

differences with the non-immunogenic ones at 

positions P4 and P6. At the position P4, an acidic 

residue E is the second highest occurrence in 

immunogenic epitopes (10.59%), whereas it only has 

a probability 2.41% in non-immunogenic ones. 

Meanwhile at the position P6, the immunogenic 

epitopes have higher amino acid variation (17 

residues) than the non-immunogenic epitopes (12 

residues). They also have high occurrence of polar 

residues G (20.39%) and S (15.29%), whereas in 

non-immunogenic are 9.64% for G and 6.02% for S. 

Conversely, another polar residue, T, is 15.66% in 

the immunogenic. It is higher than the non-

immunogenic epitopes have (5.49%).  
Other differences are also observed on suggested 

important positions for peptide-epitopes-TCR 

interaction. The P5 in immunogenic show high 

probability of charge amino acids (K and E, 11.76 

and 8.63% respectively), whereas the non-

immunogenic are common with hydrophobic amino 

acids. At the position P8, slight differences are 

observed. For example, immunogenic has a high 

probability of K 14.51%, whereas the K 

immunogenic is 9.64%. 

 

CONCLUSIONS 

In this work, we screened amino acid descriptor 

sets extracted from the peptide binding registers for 

immunogenicity modelling of HTL epitopes. The 

best performance given by VHSE suggests that 

hydrophobic, steric, and electrostatic properties of 

amino acids at the peptide binding register are 

sufficient for immunogenic modelling of HTL 

epitopes. Combination of these physicochemical 

properties at the center of binding register –

particularly positions P3, 4, 5 and 6– and the positon 

P8 may play important role in the recognition of 

immunogenic HTL epitopes by the TCR.  
In this predictive modelling of immunogenic HTL 

epitopes, the effect of class imbalance was persistent 

issue to eliminate. To alleviate this negative effect, 

we found that the approach of probability threshold 

optimization approach is better than the probabilities 

average. 
Finally, we have developed a model for screening 

the immunogenic HTL epitopes from predicted 

peptide MHC-binders. The model helps to reduce 

non-immunogenic peptide MHC-binders from the 

result of two existing prediction webservers, 

NetMHCIIpan and TEPITOPEpan. Currently, the 

immunogenicity model is restricted to HLA-

DRB1*01:01. This human MHC allele is protective 

against developing multiple sclerosis and association 

with autoimmune diseases. Thus our model is able to 

assist a rational development of vaccines as well as 

immunotherapeutic agents related to those diseases. 

Furthermore, the methodology can be applied to 

develop predictive models of immunogenic HTL 

epitopes restricted to another human MHC alleles. 
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