JITECS ID 101

by 101 Jitecs

Submission date: 08-May-2019 01:26PM (UTC+0700)
Submission ID: 1126928761

File name: 101-451-1-SM.pdf (667.13K)

Word count: 3770

Character count: 20043

Developing Actor-Based Middleware as Collector System for Sensor Data in
Internet of Things (IoT)

Abstract

The use of Internet of Things (IoT) plays an important role in supporting wireless communication for
middleware in collecting data sensors. An actor-based middleware is designed to bridge protocol differences
between cloud and sensor nodes. This middleware also acts as an initiator in accessing data from several
sensor nodes, and then sending data that has been collected to the cloud. Incorporating the differences of
communication protocols and data formats between sensor nodes and cloud is the responsibility of
middleware. This Middleware acts as an actor by acting proactively accessing data from each sensor node, so
that it can facilitate the completion of sending data from the sensor node to the middleware by avoiding from
"signal collisions” among sensor nodes. After the data is collected in the middl e, the data is sent to the
cloud using the Websocket or HTTP protocol above the TCP / IP protocol. The performance of the system is
evaluated based on the success of the middleware bridging communication between sensor nodes and the
cloud, as well as the readability of IoT data sensors that have been adjusted by cloud. The test results show
that built-in middleware can bridge protocols between cloud and sensor nodes. In addition, the Websocket

usage protocol produces a lower delay value than the MQTT and CoAP protocols.

1. Introduction

The Internet of Things (IoT) paradigm allows
connectivity between various types of devices
such as houschold furniture, environmental
sensors, cameras, motorized vehicles, etc., using
Internet media. IoT is simply a concept in which
things in life can be equipped with sensors,
microcontrollers, actuators, and transceiver
modules and protocol stack, so that they can
communicate with each other and interact with
the surrounding environment (Atzori et al., 2010).

An ToT-based system can consist of several
components of
computing,

components, including
identification, sensing,

communication, service, and semantics. The main
function of the computational component is
processing data generated by the sensing
component. Light computing processes such as
converting analog signals from sensors to digital
signals can be done on microprocessors [/
minicomputers located on the sensor node. Data
processing can also be done in data centers (data
centers) with the concept of cloud computing
(cloud computing), which can support processing
of more complex and larger data. Data processing
carried out in the cloud can overcome the problem
of limited electricity resources, memory and
computing capabilities and service capabilities on
the sensor node.

Sensing data from the sensor node will be sent to
the cloud for processing. Because the format of
data from sensor nodes cannot always be directly
understood by data processors in the cloud due to
the diversity of communication protocols used by
sensor nodes, middleware is needed to bridge
communication between sensor nodes and the
cloud (Rahmani et al., 2015). Because [oT is
composed of intelligent devices in large numbers,
one of the challenges in trying to maintain the
availability of connectivity between these devices
is interoperability between the elements involved
@rsi. 2015). The change in the paradigm on the
nternet from “interconnected computers” to
"interconnected objects" requires no sm
amount of effort, including the need for a
middleware system that can simplify the
development of applications and services needed
(Chagfeh & Mohamed, 2012).

A middleware can provide an abstract layer
between infrastructure and applications (Atzori et
al.,, 2010). Middleware is capable of integrating
applications and services, each of which runs on a
heterogeneous system (Mahmoud, 2005). There
are several types of IoT middleware architecture,
one of which is an actor-based framework, which
emphasizes plug and play loT architecture that is
open (Ngu et al., 2017).

In this study, researchers proposed the title
"Designing an Actor-based Middleware as an
Internet of Things Sensor Data Collection
System". The proposed data collection system is
expected to bridge the differences in systems that
exist in the cloud and sensor nodes. This
Middleware will also act as an initiator to access
data directly to several sensor nodes, then the
middleware sends data that has been collected to
the cloud. The difference between communication
protocols and the different data formats between
sensor nodes and the cloud is the responsibility of
the middleware to synchronize. The advantages of
the middleware can reduce data traffic from the
sensor node directly to the cloud.

Previous research has been able to bridge sensor
node protocols with protocols recognized by the
cloud, except that data traffic from the sensor
node is sent to the middleware and immediately
forwarded to the cloud in real-time (Anwari,

2017), so there is a potential for collisions. data
traffic that is passing through the communication
media. This actor-based middleware will act
proactively in accessing data from each sensor
node reached by adjusting the protocol supported
by the sensor node. This proactive method can
prevent each sensor node from sending data
simultaneously which results in delivery failure
due to a "collision” of data transmission. After the
data is collected, data is sent to the cloud with
other protocols used, generally with TCP / IP.
Sending data from the sensor node to the cloud
will be carried out periodically by the
middleware. Especially for data with a certain
value, the middleware can forward it to the cloud
as soon as it is received from the sensor node,
without waiting for the scheduled period of
sending data from middleware to the cloud. The
advantage of this proactive method is to prevent
or reduce the problem of data transmission
failure. [llustrations of the whole system are
shown in Figure 1.1.

The performance of the system created will be
evaluated based on the success of bridging
communication between sensor nodes and the
cloud, as well as the success of readability of IoT
sensor data that has been adjusted by cloud.

Figure 1.1. Sistem loT : Sensor node loT -
Middleware - Cloud

Based on the background, the problems in this
study can be formulated as follows:

1. How can e IoT sensor data collection system
(middleware) access data from the sensor node?
2. How does e IoT sensor data collection system
(middleware) authenticate and authorize the
sensor node?

3. How can the IoT sensor data collection system
(middleware) send data to the cloud that has a
different communication protocol?

4. How can ge IoT sensor data collection system
(middleware) send data to the cloud based on time
periods and based on data values?

5. How is the performance of the IoT sensor data
collection system (middleware) seen from the
functionality and quality of service?

2. Literature Review

In the study of this literature discussed earlier
research related to [oT middleware as an
intef@fediary between several different protocols.
In "Challenges in Middleware Solutions for the
Internet of Things" (Mohamed, 2012) there are
some challenges faced by IoT middleware. One of
the challenges is interoperability. Interoperability
is one of the biggest challenges of IoT
middleware, because there are so many and varied
devices that interact with [oT, both now and in the
future.

In "loT Middleware Development as a Gateway
for CoAP, MQTT, and Websocket Protocols”,
sensor node protocols with protocols recognized
by the cloud can be bridged, except that data
traffic from the sensor node is sent to the
middleware and directly forwarded to the cloud in
real-time. time (Anwari, 2017; OASIS, 2014;
HiveMQ, 2015; IETF, 2016). This raises the
potential for collisions / collisions between data
traffic that is passing through the communication
media.

The CoAP protocol and WebSocket operate in the
form of a "client-server". The server will serve
connection requests from other parties, namely
the client. Client as the initiator who will contact
the server. The server must have a specific IP
address where the client can contact him. As
described in the previous sub-chapter.

Unlike the two protocols above, MQTT operates
in a "publish / subscribe" manner as explained in
the MQTT sub-chapter. There are parties as
subscribers, who subscribe (a topic) to brokers.
One party as a publisher (a topic), which will send
/ publish through a third party, the broker. As a
third party, brokers can disseminate information
to each subscriber. Unlike the client-server,
subscribers and publishers do not need to know
their respective [P addresses. However,
subscribers and publishers must contact brokers
so that subscribers and publishers can exchange
information. For this reason, the broker's address
must be known by the subscriber and publisher.
The number of subscribers and publishers is not
limited, as long as they can be handled by
brokers.

Following the next development, the broker at
MQTT needed a database to store the data
received from the publisher and then sent to all
subscribers. Databases that can support the
functionalities of MQTT are usually Redis and
MongoDB. The data can be sent or accessed /
distributed based on certain topics. Only with the
appropriate topic, the subscriber will accept it.
The following example is how communication
runs between publishers and subscribers. Nodes
that as Subscriber register themselves with
Topicl, then when a node publishes with Topicl
the subscriber nodes will be informed. So the
broker receives information based on Topicl, and
will disseminate that information to the nodes that
subscribe to Topicl.

2.1. IoT Middleware

In the cnnt:a of [oT, the existence of middleware
can bridge communication between seffpr nodes
and clouds, because the format of data from
sensor nodes cannot always be directly
understood by data processors in the cloud due to
the diversity of communication protocols used by
[EfAisor nodes (Rahmani et al. 2015).

Middleware for IoT is needed for several reasons,
including:

1. The difficulty of forming and forcing vendors
to use a standard on a variety of devices
connected in the loT network.

2. The need for an abstract layer can be used on
all types of devices.

3. Middleware provides an Application
Programming Interface (API) for communication
with the physical layer and provides services to
applications.

4. Reducing data traffic directly from the sensor
node to the cloud.

A middleware can provide an abstract layer
between infrastructure and applications (Atzori et
al., 2010). There are several types of IoT
middleware architecture, one of which is an actor-
based framework, which emphasizes plug and
play IoT architecture that is open (Ngu et al.,
2017). While according to Qusay Mahmouh
(2005) middleware can integrate several systems
that run heterogeneous applications and services.

3. System Design

System design in this study consists of system
flow design, middleware design, application
design, and network architecture design for
testing. System design is made by describing the
system architecture based on the results of
analysis of hardware requirements and software

requirements that have been determined. This
design is also based on the theory obtained in the
literature study in the form of middleware
architecture that supports interoperability. The
design of this system is made to facilitate
implementation, testing and analysis.

The built-in system as in Figure 3.1 can represent
the whole system.

Middleware:
Pengumpul Data

.

P

Sensor Node

Sensor Node Sensor Node

| Sensor || Sensor l | Sensor || Sensor } | Sensor || Sensor }

Figure 3.1. Middleware System to

Bridge Protocol Differences

Meanwhile, the functional needs for this actor-

based middleware are as follows

1. Sensor node-sensor nodes that use different
communication protocols, namely CoAP, MQTT
and WebSocket. Each sensor node is considered
able to access the sensor devices installed on it,
such as temperature sensors, humidity, and so on.
Also each sensor node is equipped with a
communication protocol and wireless device to
send the data to the middleware.

2. Cloud uses only one type of communication
protocol, in this study the cloud will use
WebSocket.

3. Middleware can choose the protocol that
corresponds to that used by the sensor node-
sensor node to communicate. Middleware will
read data from each sensor node sequentially
(round robin). Doing round robin avoids from
collision of wireless communication among
sensor nodes.

4. Middleware can arrange data from each sensor
node that has been read, and prepare by
combining all data from each sensor node to be
sent to the cloud.

5. Middleware uses the WebSocket protocol to
send data that has been collected from the sensor
nodes underneath.

6. As a support, the cloud can process and display
combined data sent by middleware.

3.1 System Flow Designing
In the system developed, there are two types of

data transmission. The first shipment is data from
the sensor node (as a data source) to the
middleware. The second shipment is data from
middleware to the cloud (as a data store from all
sensor nodes). Middleware can proactively access
data from sensor nodes. The detailed mechanism
of communication of each sensor node with
different protocols is shown in Figure 3.2 and
devices are with allocated IP addresses.

Middle ware:
Pengumoul Data
I
192.168.0.100

192.168.0.101 192.168.0.102 1921660108

1 H
Sensar Node Sensor Node Sensor Node

| Sensor | Sensor | | Sensor H Sensor | Sensor |[Senmr]

Figure 3.2. Middleware and Other Devices with
IP Addresses

3.2 Designing Middleware

Middleware developed applies a publish /
subscribe pattern. This Middleware consists of
three parts: application gateway, service unit, and
sensor gateway. Application gateways provide an
interface for middleware to send data to the cloud.
The service unit is a part of the middleware that
serves to provide an interface for the sensor
gateway and application gateway. This service

unit connects sensor nodes with brokers, and
connects the cloud with brokers. The gateway
sensor provides an interface for the middleware to
read data from IoT node sensors. The gateway
sensor makes it possible to use different
communication protocols, and this protocol is
adapted to the protocol used by the sensor node
device.

Not only bridging sensor node protocols with
protocols recognized by the cloud, middleware
designed in this study will act proactively in
accessing data from each sensor node reached by
adjusting protocols supported by sensor nodes.
This proactive method can prevent each sensor
node from sending data simultaneously which
results in delivery failure due to a "collision" of
data transmission. After the data is collected, data
is sent to the cloud with other protocols used,
generally with TCP / IP. Sending data from the
sensor node to the cloud will be carried out
periodically by the middleware. Especially for
data with a certain value, the middleware can
forward it to the cloud as soon as it is received
from the sensor node, without waiting for the
scheduled period of sending data from
middleware to the cloud. The advantage of this
proactive method is to prevent or reduce the
problem of data transmission failure.

Hence, this middleware device is designed to
have three parts. The internal parts of the
middleware along with the protocol or function in
each part are shown in Figure 3.3.

WebSocket
Cloud/Gatewsy

‘WebSocket

Application Gateway

Middleware JDatsbase . R service unit

m\[;\l’ebSockt'-‘:‘ T Sensor Gateway

4 NN

Coap ‘WebSocket
Sensor Node Sensor Node Sensor Mode

Figure 3.3. Internal Parts of Middleware Systems
and their Functions

Sensor gateways in middleware use protocols that
are in accordance with the protocol used by the
sensor node. Therefore, the communication
protocol registration process from each sensor
node in the middleware is needed.

The sequences diagram of communication
between middleware and sensor nodes with
different protocols, agzetween middleware and
cloud are shown in Figure 3.4, Figure 3.5 and
Figure 3.6. It also describes of how the
middleware operates to accessing data from all
sensor nodes with different protocols, and then to
delivering all collected data to cloud.

Nevertheless, before system is running every
sensor node’s address/ ID must be registered to
middleware. Middleware can recognize every
node and its in-use protocol.

Sensor Node Sensor Gateway Redis

Request

-

Reply (data)

Save(node,data)

.

Figure 3.4. Middleware Sequence Diagram to
Sensor node with CoAP or WebSocket (Gateway
Sensor).

By round robin, middleware directly accesses to
every available and registered sensor node
provided with either CoAP or WebSocket. Each
sensor node can inform middleware its data. Each
sensor node with this protocols has to wait for
Middleware to access and eventually reply with
its data.

The data collected by middleware are stored in
data base of Redis (database broker)

Sensor Node Sensor Gateway Redis

subscribe(NODEID)

[———=]

subscribe(DATA)

L —e—— |

publish{"NODEID":node#)

publish|"DATA :data|

—

Save(node,data)

[———]

Figure 3.5. Sequence Middleware Diagram to
Sensor node with MQTT (Gateway Sensor).

While for a sensor node with MQTT, sensor node
needs to send “suberibe” to middleware to inform
its existance, and middleware also sends
suberibes to sensor node. Subcription messages
allow both devices to publish its data. The
subcription of middleware to sensor enables to
trigger sensor node to send its data, while sensor
node is prohibited to proactively send its data
until it gets a trigger of “publish message” from
middleware. Thus, the natural characterics of
sensor node with MQTT by sending or publishing
its data by itself is restricted.

The data collected by middleware are stored in
data base of Redis (database broker)

Redis Application Gateway Gatew ay/Cloud
Request()
Reply(allData)
Send (allData)

Figure 3.6. Middleware Sequence Sequence to the
Cloud with WebSocket (Application Gateway

After getting data from all sensor nodes,

eventually the middleware composes and
deliveres all data under Redis to the cloud using
WebSocket protokol.

3.3. System Requirements
The middleware and sensor nodes are forms of

a. Hardware
i) Raspbian Jessie
ii) NodeMCU
b. Software
i) Framework of Node.js
ii) Database broker Redis
iii) Firmware LUA with protocol
MQTT, CoAP or WebSocket.

4. Result and Analisis

4.1. Integration Testing

This test is done to get information whether a
component can interact with each other when
performing certain functions. The test uses two
clients, by way of: client A with a protocol
subscribing to a particular topic, then client B
with another protocol publishing information with
the topic, then testing whether client A can
receive information on opic.

The results are shown in Figure 4.1 and Figure
4.2 which represent integration testing with
different protocols.

4.1.

0w COTE CHON)

Testing (WebSocket and

Integration

Figure
CoAP)

Figure 4.2. Integration Testing (WebSocket and
MQTT)

From Figure 4.1 and Figure 4.2. it is concluded
that the integration between two components (in
this case are 2 nodes with different protocols) that
can communicate from one component (node) to
another (node).

4.2. Interoperability Testing.

This test is intended to determine the level of
interoperability of the middleware designed. The
middleware and node sensor devices are tested by
using wireless networks whether the successful
communication from sending data from the sensor
node to the middleware 1is successful. If

successful, how much success should be
considered.

4.2.1. Testing of Hardware and Software
This test covers the needs of all hardware and

software, especially in the middleware and sensor
nodes, as well as a litle discussion in the cloud.
Figure 4.3 shows the middleware hardware that
uses the Raspberry Pi. Next Figure 4.4 shows the
sensor node device using NodeMCU

Figure 4.4. Sensor node Using NodeMCU along
with the Sensor

Physically and electronically, the hardware can
operate properly, meeting the expected functional
objectives.

4.2.2. Success Rate of Delivery on Wireless
Networks

Testing the success of data transmission between
sensor nodes and middleware on wireless
networks using wireless devices is indicated by
packet loss rates and delay levels. The
measurement results are shown in Table 4.1,
where "Expected" is the amount of data sent at
the sender, and "Actual" is the amount of data
received at the recipient. While the results of

measuring the delay in delivery are shown in
Table 4.2. Measurement delay is based on the
percentage of packet loss that is different. This is
a representation of the state of wireless networks
where packet loss is more likely to occur than
using a wired network.

Table 4.1. Measurement of Packet Loss from the
Sensor node to Middleware

CoAP WebSocket MQTT

Expecud | Actal | Socceis | Faccet | Cipacie | Actal | Seccens | Fakoet | Expectes | fucoml | Buocens | Fikoet

e | e P - onn

rate rate. rate.
b TRV EEEIReL] NN RN R FR® 1113 v
T 05 L 1) % | 130 T R4 TT% X0 1§ L0y
TR [T [k [S [10 TR [F537% | e | 1 T Th%
[T To5 [t [317 [T30 L IR 1LY TS T T

Table 4.2. Delay Measurement from Sensor to
Middleware

Rara-Para Delay
Packet Loss
CoAP WebSocker MOTT

Q0694422 00142248 00395457
21 5 00136770

37334771 00132845

62471699 00141067

E3159735 00136134 GH17142
1.06825006 0.00173441 077042744

From Table 4.2. a graph can be created as shown
in Figure 4.5.

Delay to Packet loss

- 08 / e
i /
]
< o4
—
o
o A
]
0% 3% 100 15% 0% 5% 30%
Packel loss ratle
—a—Mgtt —e—CoAP Websockst

Figure 4.5. Delay Chart Against Packet Loss on
Measurement
Sensor node to Middleware

From the results of measurement of packet loss,
the MQTT protocol packeloss is the smallest
compared to the other two protocols. This
happens probably because the size of the packet
data formed by MQTT is smaller, so the success
of reading the data packet is greater.

From the results of delay measurements on
percentage of packet loss, WebSocket shows a
small delay compared to the others. This is
probably due to the delay measurement process
starting when "immediately” the packet data is
sent until it is processed by the recipient.
"Immediately" sent this data packet to WebSocket
faster than others.

The data sent by the sensor is proven to be
compatible with the data received and stored by
the application, including data that has been

received by the application to be displayed and
stored in the mongoDB database. The data
displayed[ij the web-app is seen and compared to
the data sent by the sensor. The results of these
observations are shown in Figure 4.6.

Figure 4.6. Data Display in Web Applications

5. Conclusion

Thus some conclusions can be taken from the
results of the design and testing that have been
done:

1. As planned, that this middleware is actor-
based, that is, middleware can provide "decisions
locally”, which can serve as a bridge between
protocol differences from the cloud and sensor
nodes.

2. Communication between the CoAP, MQTT
and Websocket protocols in the middleware can
be achieved by creating a gateway for each
protocol, then connecting with a broker.

3. The use of the Websocket protocol produces a
lower delay value than the MQTT and CoAP
protocols.

References

Anwari, H. 2017, Pengembangan loT Middleware
Sebagai Gateway untuk Protokol CoAP,
MQTT, dan Websocket. Skripsi Fakultas
Ilmu Komputer Universitas Brawijaya.

Atzori, L; Iera, A; Morabito, G. 2010. The
Internet of Things: A survey. Computer
Networks 54.15 (2010): 2787-2805.

Chagfeh, M A.; Mohamed, N. 2012. Challenges
in Middleware Solutions for the Internet of
Things. Collaboration Technologies and
Systems (CTS), 2012 International
Conferenceon (2012): 21-25.

gersi, G. 2015. Middleware for Internet of
Things: a study. International
Conferenceon Distributed Computing in
Sensor System (2015): 230-235.

HiveMQ. 2015. MQTT Essential Part 2 : Publish
& Subscribe. Dipetik February 28, 2016,
dari HiveMQ:
http:/fwww.hivemg.com/blog/mgtt-
essential-part2-publish-subscribe

1
IETF, 1. E. 2016. The Constrained Application

Protocol (CoAP) RFC7252. Internet
Engineering Task Force.

Mahmoud, Q. 2005. Middieware for
Communications. Wiley; June 2005.

Mohamed, M. A.]l Challenges in
Middleware Solutions for the Internet of
Things. 2012 International Conference on
Collabgggmion Technologies and Systems
(CTS). 21-26.
doi:10.1109/CTS.2012.6261022.

gu, A H.; Gutierrez, M; Metsis, V; Nepal, S;
Sheng, Q Z. 2017. loT Middleware: A
Survey on Issues and Enabling
Technologies. IEEE Internet of Thnigs
Journal 4.1 (2017): 1-20.

OASIS. 2014. MQTT Version 3.1.1.

ahm@ A-M.; Thanigaivelan, N K.; Gia, T N.;
Tenhunen, H.. 2015. Smart e-
healthgateway: Bringing intelligenceto
internet-of-things based ubiquitous health
care systems.12th Annual [EEE Consumer
Communications and Networking
Conference (CCNC) (2015): 826-834.

JITECS ID 101

ORIGINALITY REPORT

£

5% 7% %

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

link.springer.com

Internet Source

1o

Abubakar Sadiqg Sani, Dong Yuan, Jiong Jin,
Longxiang Gao, Shui Yu, Zhao Yang Dong.
"Cyber security framework for Internet of
Things-based Energy Internet”, Future
Generation Computer Systems, 2018

Publication

1o

Goshi Sato, Yoshitaka Shibata, Noriki Uchida.
"Chapter 48 Platform System Based on LoRa
Mesh Network Technology", Springer Nature,
2019

Publication

1o

techpublications.org

Internet Source

1o

Adeniyi Onasanya, Maher Elshakankiri. "Smart
integrated loT healthcare system for cancer
care", Wireless Networks, 2019

Publication

1o

www.joules.de

Internet Source

1o

eerj.com
IFr?terne’[J Source < 1 %
n Ipsita Koley, Tuhina Samanta. "Mobile sink <1 o
based data collection for energy efficient °
coordination in wireless sensor network using
cooperative game model", Telecommunication
Systems, 2018
Publication
"Enterprise Interoperability VIII", Springer <1 o
Science and Business Media LLC, 2019 °
Publication
Chih-Min Chao, , and Yi-Wei Lee. "A Quorum- <1 y
Based Energy-Saving MAC Protocol Design for °
Wireless Sensor Networks", IEEE Transactions
on Vehicular Technology, 2010.
Publication
www.skb.se
Internet Source < 1 %
repository.up.ac.za
Inteﬁlet Sourcey p < 1 %
"Proceedings of the 3rd International <1 o
(0]

Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA)
2014", Springer Nature, 2015

Publication

Michael Walker, Douglas C. Schmidt, Jules <1 o
White. "chapter 12 An Elastic Platform for °
Large-scale Assessment of Software
Assignments for MOOCs (EPLASAM)", IGI
Global, 2016
Publication

"Advances in Mobile Cloud Computing and Big <1 o
Data in the 5G Era", Springer Nature, 2017 °
Publication

Sqma Bandyopadhyay. "A Su.rvey of <1 o
Middleware for Internet of Things",

Communications in Computer and Information
Science, 2011
Publication

"A Practical Evaluation of a High-Security <1 o
Energy-Efficient Gateway for loT Fog °
Computing Applications", Sensors, 2017
Publication

Chagfeh, Moumena A., and Nader Mohamed. <1 o
"Challenges in middleware solutions for the °
internet of things", 2012 International
Conference on Collaboration Technologies and
Systems (CTS), 2012.

Publication
Modeling and Optimization in Science and <1 o

Technologies, 2016.

Publication

Exclude quotes Off Exclude matches Off
Exclude bibliography Off

	JITECS ID 101
	by 101 Jitecs

	JITECS ID 101
	ORIGINALITY REPORT
	PRIMARY SOURCES

