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Abstract

This paper presents a stabilization control method for “x” configuration quadeopter using PDAFC (Proportional

wative Active Force Control). PD) 15 used to stabilize quadcopter, whereas AFC 1s used to reject disturbance uncertainty
a. wind) by estimating disturbance torque value of quadeopter. Simulation result shows that PDAFC is better than PD and
AFC can mimimize disturbance uncertainly effect. The sensitivity toward disturbance uncertamly ean be set from sensitivity
constant to get best performance of disturbance rejection. Constant disturbance simulation result shows that the best sensitivity
constant (Ceens) 15 0.15, the quadeopter maximum error 15 0.125 radian and can stable in 5 seconds. Fluctuated disturbance
simulation result shows that PDAFC with 0.18 sensitivity constant gives lowest RMS error value, there are 0.074 radian for

sine disturbance, 0,055 radian for sawtooth disturbance, and 0.092 radian for square pulse disturbance

Keywords: “x" configuration quadcopter, PD, AFC.

I. EflxTrODUCTION

Unmanned aerial vehicles (UAVs) have been
developed and used over the last few years.
UAVs can be built not only for a hobby but also
for performing important task such as area
mapping, surveillance, disaster monitoring, air
pollution monitoring, ete. They are capable to
hover without an on-board pilot. UAVs become
good choice because it has low operational cost
and also is safe in important task where risk to
pilot are high.

Quadcopter has a simple structure. It utilises
rotors which are directed upwards and placed at
the end of a crossed frame. It is controlled by
adjusting the angular velocities of eaclfotors.
The quadcopter biggest advantage is that the
blades do not have to be movable. A normal
helicopter has blades that can be tilted up or
down to vary lift. They have complex joints at
the hub of the blade, which makes the blades
hard to manufacture, difficult to maintain, and
very dangeif any failure occurs, Moreover,
quadcopter can take off, land in limited spaces
and hover above targets. These vehicles have
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certain advantages over conventional fixed-wing
aircraft for surveillance and inspection tasks.
There are many researches about quadcopter
control alithm and uncertainty disturbance
rejection. Bouabdallah et al. designed an LQ
controller and PID controller then compared it
[1]. The PID controller result is better than LO)
controller. Jun Li and Yuntang Li designed PID
controller to control angular and linear position,
and succeeded to stabilize quadcopter [2].
Mokhtari and Benallegue applied state parameter
control to quadeopter rotation angle [3]. By using
state observer, quadcopter can measure external
disturbance. Gupte et al described that “x™
configuration quadcopter is more stable than “+”
configuration quadcopter because of the
distribution of rotor force during hover [4]. Bora
and Erdinc have been controlling position of
quadeopter using PD contmb and combined by
using a vision system [5]. Pounds et al
developed independent linear SISO controllers to
ulate quadcopter using PID controller [6]. A.
Tayebi et al. proposed a controller which is based
upon the compensation of the Coriolis and
gyroscopic torques and the use of PD?* feedback
structure [7]. Sumantri et al. designed a sliding
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Figure 1. An “x” configuration quadcopter

mode control using a nonlinear sliding surface
(INSS) to design a robust tracking controller for a
quad-rotor helicopter [8]. Chen and Huzmezan
used linear Hoo controller to achieve stabilization
in angular rates, vertical velocity, longitudinal
velocity, lateral velocity, yaw angle, and height
of a quadcopter [9]. A linear Heo controller can
be designed to obtain stabilization and tracking
performance using a systematical approach [10].

Pitowarno had designed Active Force Control
and Knowledge-Based System for planar two-
joint robot arm to improve performance of Active
Force Control [11]. Katsura et al. have been
modeled force sensing using disturbance observer
without force sensor [12]. Chen et al. designed
disturbance observer control for nonlinear system
to control robotic manipulator [13].

It 1s very mmportant to make a simple control
algorithm to control the quadcopter stability
although get uncertainty disturbance from
environment. Because m real system. control
algorithm will be embed in low speed data
processing unit. PD can stabilize quadcopter but
still not enough to maintain the quadcopter
against uncertainty disturbance such as wind.
AFC has the ability to estimate the force on the
system without using complicated mathematical
computation.

The purpose of this work is modelling and
combining PD and AFC to control “x”
configuration quadcopte n hover even if get
uncertainty disturbance. This paper is structured
as follows. Section 2, presents a quadeo
dynamic modelling. Section 3, deals qundco%
controller design. Section 4, presents the
performance of the controller is shown in
numerical simulations. Finally, in Section 3
conclusions of this work.

II. QuUADCOPTER MODELLING

Before designing the controller, in this section
the mathematical model of the quadcopter will be
presented. This dynamic model as much as
possible same as the real quadeopter. It is contain
the model of the rotor force and torque,
gyroscopic effect, and the derived force model of
“x" configuration quadcopter.

Figure 1 is the design of “x” configuration
quadeopter. The rodx\ﬂ. M2, M3, M4) are
placed in sequence m/d, 3w'4, 54, Tn/4 o
diagonal rotors (M1 and M3) are rotating in the
same direction (counter clockwise) whereas the
others (M2 and M4) in the clockwise direction to
eliminate the anti-torque that caused by rotor
rotation. 2

Absolute position of the quadcopter can be
deseribed by a coordinate position of the body
frame {B} with reference ecarth frame {E}.
Absolute attitude of thgfuadcopter can be
described by three Euler’s angles (¢b, #,3),which
are roll, pitch, and yaw with reference to body
frame {B} when XB, YB, and ZB axis are in
parallel with X, Y, and is rotated 180° Z axis.

To make a movement along XB axis,
quadcopter must produce pitch torque (7,). It
means, quadcopter decreases rotor speed at Ml
and M4, and increases rotor speed at M2 and M3.
Likewise to make movement along YB axis
quadcopter must produce roll torque (7,).
Quadcopter decreases rotor speed at M1 and M2,
and increases rotor speed at M3 and M4. Then, to
change quadcopter heading, quadcopter must
produce yaw torque (1;) by mcreasing M1 and
M3 rotor speed, and decreasing M2 and M4 rotor
speed.

Figure 2 BlBws the force distribution in
quadeopter. “F1, F2, F3, F4” arrows are thrust
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force of each motor, and “m.g" arrow is weight
force of quadrotor, From Li et al., the thrust and
hub  force for each rotor (F;, H;) cbr:
represented in equation (1) and (2) [2]. Thrust
force is the resultant o vertical forces acting
on all blade elements. Hub force is the resultant
of the horizontal forces acting on all blade
elements.

1 2
F;= EPC‘F!}I

= k0% (1)
Hy = pCaQ*

1 2
=Ky E.‘}Crni
= kaf;* (2)

where p is air density; Cp is_thrust constant that
depends on polar lift slop ometric blade,
veloeity through motor, the ratio of the surface
area and rotor disk area [6]. Cy4 is drag constant,
and (}; is propeller rotation speed.

Quadcopter can change its position by
combining translation and rotation . Linear
movement on the quadcopter can be produced by
total thrust force of the four rotors in equation
(3), whereas changes in the angle of rotation
(roll, pitch. yaw) will cause a change in the
direction of quadcopter translational movement.
So, the total forces of the quadcopter can be
decomposed into force elements in each axis
(Fe, Ky, Fz). Figure 3 shows the illustration of
force decomposition to each axis in body frame

{B}.
Frotar = E?=1F[ (3)

Figure 2. Foree distnibution in quadeopter

Equation (4) is rotation matrix of quadcopter.
C, S are cosine and sine function respectively.
CHEO  COSOSY — CYSh  SPSY + CHCYSH

COSP  CHO + SPSOSY  CPSHCO — Chsipr
-5t cosy Cocy

R= (4)

The derived model of quadcopter translational
movement can be represented as equation (5).
Where X,¥,Z are linear acceleration in of
quadcopter in each axis.

i 0 0
m[j} =r| 0 |-|o0 ] (5)
i Fmta.i myg

The model also contains a gyroscopic effect.
Derived torque models of quadcopter are
presented in equation (6), (7), and (8).

.—C(E)_
ki C(é}
O 2+ 09,y — L) (©)
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Ty = F__‘ SE%)"' (zz_xx) ()
LF,
T s

T, = Kyl(—F, + F, —F3 + F,)

+0 (I ﬁ (8)
Te T

3Tz are roll, pitch, and yaw torque
respectively. [ is I.ancc of rotor between center
of mass. cﬁ':-, 8,1 are roll, pitch, and ya'.algu]ﬂr
body speed respectively. .., [y, [;; are roll,
pitch, and yaw body inertia respectively. Ky is
force resistance constant in equation (2).

Let us define the control inputs of quadcopter
are iy, Uy, U, ty. Where uy 18 total force to
control input. Total force control input can be

-
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3
7
=
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Figure 3. Total forces illustration that decomposed into each
axis
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derived by substituting equation (1) to (3). u, is
roll torque control input, uy; is pitch torque
control input, and w4 is yaw torque control input
can be derived by substituting equation (1) to (6)-
(7) and equation (2) to (8). Where, k, and k, are
constant values from equation (1) and (2).

U = Feotal
4
=k ) 8
i=1
Uy = Ty
=kl ZL, 0" cosGi- 1)+ D) (9)
uz =1,

—kiiﬂz‘ S 1 +E
= :H i sm(zti ) 4)

u.| = t:
=k BE,(-1)'0

By substituting equation (9) mto (5) to (8), the
derived model of quadcopter in (10).

2= (SpSip + CHCPSOu,
- m
(CpspCo — Chsuy,
e m
cospu,
£ = m gq
QE = “z"’gﬁt’[f!z“fzz] (10)
Lz
é = Uz + ‘f)'j'(!zz = fxx)
IJ"J’
Ij; = “4"'@&’(&.2_!)-)-)
"ZZ

where ¢,8, are roll, pitch, yaw, angular
acceleration at quadcopter body.

II1. QuUADCOPTER CONTROLLER
DESIGN

In this section, the control algorithm of
quadcopter is presented. The purpose is to
combine PD and AFC as rotational controller to
stabilize gquadcopter. Figure 4 shows quadcopter
control structure. Figure 3 shows the proposed
rotational controller to stabilize quadcopter. In
this simulation, translational movement are
neglected. The controller design is focused to
stabilize th€ljuadcopter toward disturbance. PD
controller is used to stabilize quadcopter and
AFC to reject uncertainty disturbance from
environment. In this simulation, quadcopter get
constant and fluctuated disturbance.

From Figure 4, the relationship of each input
and each state can be represented as:

X =AX + BU

X=lp 6 o ¢ 6 PI7 (11)
U=[u uy uy uy"

X=lp 6 ¢ ¢ & §I

The system matrix (A) can be represented as:

o 0 0 1 0 0
0o o0 0 0 1 0
0 0 0 0 0 1
Pllyy=lzz)  Ollyy—=lgs)
Ylywlae)  Tloyy—les)
a=|? 90 0 T 2, | (12)
0 0 0 w_,,-r"} 0 Blzz=tex)
zr,., 2]'}.}.
Ollx=tyy)  Dlex=
00 0 0; Ly} aw-[r;,‘ lyy) 0

The control matrix (B) can be represented as:
Do 0 o0

00 0 0
0 0 0 0
0~ o o
Ivx

[x v 2] =

}

B= (13)
0 L 0
Iyy
0 0 0 —
Iz
Quadecopter lvnamics
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L
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Figure 4. Quadcopler control structure
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Figure 5. The proposed rotational controller

A. Disturbance Model

In this subsection. the model of disturbance
will be presented. Figure 1 shows disturbance
position of quadcopter, disturbance mass located
at (Lpxe. Love) from the center of quadcopter in
(XB, YB) axis. State equation (11) can be written
as follows:

X = AX + BU + Dis (14)
The simulation disturbance is:
Dis =[0 0 0 Disy.Lpyg Disy.Lpyg 0]7 (15)

B. PD Controller Design

PD controller will be presented to stabilize
quadcopter. The reason is this controller very
simple and easy implemented. In this section, PD
control algorithm is designed without disturbance
parameter. The controller design is focused to
stabilize quadcopter when hovering without get
uncertainty  disturbance, The model that
presented at seetion 2 is completed by gyroscopic
effect. Gyroscopie effect can be ignored because
it does not have significant effect on quadecopter
system [14]. The model can be simplified:

_ kel iy wg® 003(% (i—1)+ %)

¢
I.'l'.\'
- P 4 1
g i kel ¥y rof&m(;(:—lh:} (16)
lyy
§ = kal B, (1) w?

fzz

The simulation purposes to stabilize roll,
pitch, and yvaw angle. Integrating twice about
time and introducing s operator in equation (16),
the model can be rewritten as:

B kel Bl o c:}s(%(i -1) +%}

I,.st
Kkl Zh, e sin(i- 1)+
8= Toos? (17)
= kal Th (1) w;?

Izz5?

Frcm:[unliou (17), the model is second order
form, in order to make it possible to design
multiple PD controllers for this system. one can
neglect gyroscopic effec thus remove the
cross coupling [1]. This is PD controller for each
orientation angle.

Uz, Ug, Uy = Pwmt'a a,4) + D¢.,g,¢pﬁ¢‘.9.lﬁ) (18)

where us, U3, 14 are control input for roll, pitch,
yvaw torque rcsp::cti Py (. 0,1p) are
roportional control for roll, pitch, and yaw
Hzctivcly; Dyoy(p.6,90) are derivative
control for roll, pitch, and yaw respectively.

C. AFC Controller Design

AFC  controller 1s designed to reject
uncertainty disturbance from environment. Figure
6 shows AFC block diagram that used in
simulation. This block has two inputs, they are
measured angular velocity and applied propeller
speed.

Let us define y as rotation angle roll and

pitch axis (¢, ),

ar

o= (19
ﬂ¢:ﬂl +ﬂ£ _ﬂ:s _ﬂ4
Qg =0,-10, -0 +10, (20)

: 0.5pCriny |0y
Vref = it b e | @n

Fexyy
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Figure 6. AFC block diagram

Varc = Frep — ¥ (22)
Parelsxyy &
Dope = Cse'ns( O,Sp:':—i ) s
with 0 < ?APC =1
= Karc (]-';rcf -7) (23)

First input is measured angular velocity that
differentiated into actual angular acceleration in
equation (19). Second input is applied propeller
speed that converted into angular acceleration
reference in equation (21). J4pc is estimated
disturbance acceleration. To get estimated
disturbance, actual angular acceleration s
compared by angular acceleration reference in
equation (22) [11]. Last, convert the disturbance
acceleration into propeller speed in equation (23)
then add the result with PD controller result.
Ceons 18 a constant value to set AFC sensitivity
output toward disturbance, then simplified to
Kare. Qapcis propeller speed caleulation of AFC
controller output.

IV. SimuLATION RESULT

The sim n test was performed using
SIMULINK to evaluate the performance of the
controller. The simulation model (10) was used
in S-Funetion block, In this simulation, the model
contain disturbance that has been modeled in
section 3, there are constant and fluctuated
disturbances.

Before doing some simulation process, the
parameters of quadcopter must be collected from
real data. This simulation used quadcopter data
obtained from [16]. They are listed in Table 1.
SYAD coefficients that used for simulations were
derived by trial and error to get best performance,
the PD parameter are listed in Table 2. First
simulation compared PD  and PDAFC
performance when they constant disturbance.

Second, third, and fourth simulation compared
PD and PDAFC performance when they fluctuate
disturbance using sinusoid disturbance, sawtooth
disturbance, and pulse disturbance. Then, Root
Mean Square (RMS) method was used to
determine the controller performance analysis.
Lower RMS error value means better
performance of controller. Figure 7 shows the
simulation result of PD method and PDAFC

method with constant disturbance. In  this
simulation, PDAFC was tested with three
Table 1
Quadcopter simulation parameter
Parameter Unit Value
M ke 1.025
L meter 0.270
k, Ns® 3.122¢-06
k, Nms® 1.759¢-08
Lax, Iyy kgm® 0.012
lzz kgm® 0.048
Diissy N Amp x Waveformi{Freq)
1. 0.2
2 0.2% S (200 4t)
3. 0.2 x sawtooth (0.4 Hz)
4. 0.2 x square (0.4 Hz)
Love mm 0
Lywe mm 190
Table 2.
PD coefficients sumulation parameter
Parameter Value
KProll 0.097
KDroll 0.036
KP pitch 0.097
KD pitch 0.036
KF vaw 0.0001368
KD vaw 0.0000684
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sensitivities constants (C,.p¢) In equation (23),
they were 0.13, 0.15 and 0.18. By using PD,
maximum error is 0.326 radian with RMS valued
18 0.060. PDAFC with 0.13 constant, maximum
error 18 0.153 radian and RMS value is 0.029.
Then with 0.15 constant, maximum error is 0.125
radian and RMS value i1s 0.017, it can stable in 5
seconds. Last is PDAFC with 0.18 constant,
maximum error is 0.090 radian and RMS value is
0.018, but still noisy because of the controller
became more sensitive with disturbance.

Figure 8 shows second simulation result to
compare PD method and PDAFC method with
sine function disturbance. In this simulation,
disturbance maximum amplitude was 0.2 with
frequency 0.4 Hz. PDAFC was tested with three
sensitivities constant (Cgopns) in equation (23),
which were 0.13, 0.15 and 0.18. PD maximum
error is 0.394 radian with RMS value of 0.255.
PDAFC with 0.13 constant, maximum error was
0.210 radian and RMS value i1s 0.121. Then with
0.15 constant, maximum error is 0.161 radian and
RMS value is 0.098. Last is PDAFC with 0.18
constant, maximum error is 0.130 radian and

035 :
N -
ozl N == PDAFC 0,13
l" - POAFG 0,15
025 '= POAFC 0.8
n
oz 1y
1y
R oas }'II
-t
-
\

Time (second)

Figure 7. Constant disturbance simulation result
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Figure 8. Sine disturbance simulation result

RMS value is 0.074, PDAFC with 0.18 constant
give lowest RMS error value.

Figure 9 shows third simulation by using
sawtooth function disturbance. In this simulation,
disturbance maximum amplitude is 0.2 with
frequency 0.4 Hz. PDAFC was tested with three
sensitivities constant (Cyeps). they were 0.13,
0.15 and 0.18. PD maximum error is 0.241 radian
with RMS valued 1s 0.186. PDAFC with 0.13
constant, maximum emror is 0.241 radian and
RMS value is 0.092. Then with 0.15 constant,
maximum error 15 0.199 radian and RMS value 1s
0.073. Last is PDAFC with 0.18 constant,
maximum error is 0.156 radian and RMS value is
0.055. PDAFC with 0.18 constant give lowest
RMS error value.

Figure 10 shows fourth simulation by using
square function disturbance. In this simulation,
disturbance maximum amplitude was 0.2 with
frequency 0.4 Hz. PDAFC was tested with three
sensitivities constant (Cgepg). they were 0.13,
0.15 and 0.18. PD maximum error is 0.575
radian, RMS value 158 0.317. PDAFC with 0.13
constant, maximum emor is 0.315 radian and

05 :
—=—=FD
== PDAFC 0.13
0Al i H ] == POARC 015 ||
ﬂl n :: ——— PDAFG 018
o
o —f & 8 e
i 1 I‘ i 11
- i 1 i
g 0.2} || - :
3 - .
g o} 1 1
0
R e
I v
‘\/r uJI '.‘b' ‘\' \“l "\‘
oz 5 10 15
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Figure 9. Sawtooth disturbance simulation result
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Figure 10. Square disturbance pulse simulation result
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RMS value is 0.170. Then with 0.15 constant,
maximum error is 0.272 radian and RMS value is
0.128. Last i1s PDAFC with 0.18 constant,
maximum error is 0.190 radian and RMS value is
0.092, PDAFC with 0.18 constant give lowest
RMS error value.

V. CONCLUSION

An *x” configuration quadcopter has been
successfully modeled. Then, simulation results
have been paented to show the controller
performance. By adding PD with AFC, better
result was obtained. From the simulation,
PDAFC controller can minimize the effect of
disturbance. Inconstant disturbance simulation,
the best sensitivity constant (Cgape) was obtained
when the wvalue was 0.15, the quadcopter
maximum error 0.125 radian and could stable in
5 seconds. In fluctuated simulation result,
PDAFC with 0.18 constant gave lowest RMS
error value, 0.074 radian for sine disturbance,
0.055 radian for sawtooth disturbance, and 0.092
radian for square pulse disturbance.
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