KERUNTUHAN PERANCAH SCAFFOLDING SAAT PELAKSANAAN PENGECORAN

Sumargo¹, Ario Raja Nata²

ABSTRACT

In the construction process either for multy story building or structure with large horizontal coverage area, the selection of formwork construction is very essential. The acceleration of assemblying – deassemblying – reassemblying and re-use of formwork become one of the alternatif selection for the type of formwork. Analysis of the formwork subject to service load (self weight and impact load) is compulsory to avoid unexpected failure. Selection of the best construction method and site conditioning according to the design, especially for pouring the concrete in a sloping area, is very crucial since it does not only influence time construction, but also type of material, equipment, and service load during the construction. Analysis method used was comparing service load (self weight and impact load) to scaffolding capacity provided by the manufacture.

Keywords: Scaffolding, Pipe Support, Horry Beam

PENDAHULUAN

Acuan perancah adalah suatu konstruksi pendukung yang merupakan mal atau cetakan pada bagian sisi dan bawah dari bentuk beton yang dikehendaki. Dapat dikatakan pula bahwa konstruksi acuan perancah adalah suatu konstruksi sementara dari suatu bangunan yang fungsinya untuk mendapatkan konstruksi beton yang dikehendaki apabila betonnya telah menjadi keras.

Acuan perancah pada pekerjaan beton merupakan konstruksi yang berperan terhadap hasil akhir pekerjaan. Hal tersebut disebabkan apabila terjadi kegagalan dalam perancangan dan pengerjaannya dapat mengakibatkan kurang baiknya penampilan penampang beton setelah perancah dilepas atau bahkan kesalahan dalam perhitungan dan pemilihan jenis perancah dapat menyebabkan akibat fatal berupa keruntuhan.

Proses pemilihan tipe acuan perancah dilakukan dengan meninjau tipe, jenis dan

luasan bangunan yang akan dibangun, seperti untuk bangunan bertingkat maupun untuk bangunan yang memiliki volume horizontal yang luas. Pemilihan tipe acuan dan perancah lebih ditentukan oleh kemampuan untuk dapat digunakan berulang – ulang dalam jangka waktu yang panjang tanpa mengurangi mutu ataupun kekuatan dari acuan dan perancah tersebut.

STUDI PUSTAKA

Persyaratan acuan perancah

Acuan perancah adalah suatu konstruksi tambahan yang merupakan mal atau cetakan pada bagian sisi dan bawah dari bentuk beton yang dikehendaki. Dengan kata lain acuan perancah adalah suatu konstruksi sementara dari suatu bangunan yang fungsinya untuk mendapatkan konstruksi beton yang dikehendaki setelah betonnya mengeras.

Persyaratan – persyaratan suatu konstruksi acuan perancah adalah :

MEDIA KOMUNIKASI TEKNIK SIPIL

¹ Pengajar Jurusan Teknik Sipil, Politeknik Negeri Bandung

² Mahasiswa Diploma IV Jurusan Teknik Sipil, Politeknik Negeri Bandung

- 1. *Kuat* menahan berat beton segar, getaran vibrator, peralatan yang digunakan, berat sendiri, berat orang yang bekerja dan pengaruh kejutan.
- 2. *Kaku*, terutama akibat dari beban horizontal yang membuat cetakan mudah goyang atau labil. Selain itu acuan perancah tidak boleh melebihi deformasi yang dizinkan.
- 3. Kokoh, sehingga mampu menghasilkan bentuk penampang beton seperti yang diharapkan, tanpa mengalami perubahan bentuk yang berarti, oleh karena itu maka ukuran dan kedudukan cetakan harus teliti atau sesuai dengan gambar perencanaan.
- 4. Bersih, karena dalam pengecoran kotoran mungkin akan naik dan masuk ke dalam adukan beton sehingga akan mengurangi mutu beton, dan jika kotoran tidak naik maka akan melekat pada permukaan beton dan sulit dibersihkan.
- 5. *Mudah dibongkar*, agar tidak merusak beton yang sudah jadi dan dapat digunakan berkali kali.
- Rapat, Sambungan sambungan pada cetakan harus rapat dan lubang – lubang yang disebabkan oleh serangga harus ditutup, sehingga cairan semen dan agregat tidak keluar dari celah – celah sambungan.
- Material atau bahan yang digunakan harus mudah dipaku atau sekrup dan dalam membuat bagian cetakan harus mudah dirangkai sehingga dapat dilaksanakan dengan tenaga kerja minimal yang pada akhirnya akan memperoleh efisiensi waktu yang maksimal.
- 8. *Optimal*, kebutuhan bahan dan tenaga kerja harus seefektif dan seefisien mungkin yang akhirnya menguntungkan semua pihak.

Tipe konstruksi acuan perancah

Sejalan dengan perkembangan pemakaian beton, konstruksi acuan perancah juga

mengalami perkembangan menjadi 3 sistem:

- 1. Sistem Konvensional / Tradisional, Acuan perancah sistem sederhana biasanya digunakan satu kali pakai. Bahan yang digunakan dapat berupa bahan organis, bahan buatan, dan / atau gabungan keduanya. Depresiasi acuan perancah jenis ini sangat tinggi, karena banyak volume bahan terbuang proses pembuatan pada serta membutuhkan volume tenaga keria cukup besar serta vana berpengalaman.
- Semi Sistem Modern, Sistem ini dirancang untuk suatu pekerjaan dan ukuran – ukuran untuk komponen tertentu dengan masa penggunaan satu kali atau lebih. Karena kemungkinan dapat digunakan secara berulang, maka biaya investasi yang diperlukan dan upah kerja yang tidak terlalu tinggi.
- Sistem Modern, Perkembangan terakhir dalam pemanfaatan acuan perancah adalah perancangan acuan perancah untuk memudahkan penggunaan dalam berbagai bentuk komponen struktur. Sistem ini dapat memudahkan dan mempercepat proses pemasangan dan pembongkaran. Dengan kualitas hasil yang lebih baik dibandingkan dengan sistem lain, acuan perancah dengan sistem ini dapat dimanfaatkan untuk beberapa kali masa penggunaan. Untuk meningkatkan kecepatan kerja, sistem ini telah dilengkapi dengan berbagai alat bantu yang disesuaikan dengan tujuan penggunaan.

Bahan dan Peralatan acuan perancah Bahan acuan perancah

Bahan acuan perancah yang sering digunakan :

Kayu
 Menurut PBBI tahun 1971 bab 5 ayat 1,
 memberikan pedoman bahwa acuan perancah harus terbuat dari bahan –

bahan baik yang tidak mudah meresap air dan direncanakan sedemikian rupa, sehingga mudah dilepas dari beton tanpa menyebabkan kerusakan pada beton. Kayu yang akan digunakan harus memenuhi syarat – syarat sebagai berikut :

- a. Sebaiknya kayu yang dipergunakan dengan kadar air 10 % s/d 20 %.
- b. Partikel partikel yang dikandung kayu reaktif dan tidak merusak beton.
- Perubahan bentuk kayu akibat temperatur maupun kelembaban udara setempat sekecil mungkin.
- d. Kuat dan ekonomis.
- e. Mudah dikerjakan dan mudah dipasang alat sambung.

2. Kayu lapis (plywood)

Untuk pekeriaan vang cukup besar, kayu lapis banyak dipergunakan sebagai bahan papan acuan (cetakan). Pada acuan yang menggunakan kayu lapis diusahakan meminimalisir penggunaan paku. agar pembongkarannya dapat dengan dilakukan mudah dan dapat meminimalisir kerusakan bahan akibat metode pembongkaran yang salah. Keuntungan dari kayu lapis adalah bahwa kayu lapis dapat dibengkokkan dan ditempatkan pada kerangka / cetakan untuk pengecoran, dan dapat digunakan berulang – ulang.

3. Dolken

Dikategorikan sebagai kayu bulat dengan diameter 5 cm - 10 cm.

Keuntungan penggunaan kayu dolken sebagai acuan perancah :

- a. Mudah didapat dipasaran.
- Karena bentuk penampang dolken bulat, maka kekuatan tekuk kearah sumbu potongan melintang batang sama untuk semua arah.
- c. Dapat digunkan berulang ulang.

Kerugian penggunaan kayu dolken sebagai acuan perancah :

- a. Diameter tidak merata dari pangkal sampai ujung batang.
- b. Batang tidak lurus sehingga mengurangi kekuatan kayu bila menerima gaya normal yang sentris akibat adanya gaya asentris pada batang.
- Investasi yang tertanam besar, sebab bila konstruksi selesai, sisa kayu sering tidak dapat digunakan kembali untuk konstruksi yang lain.
- Karena bentuk penampang yang bulat, maka agak sulit dipasang alat sambung dibandingkan dengan kayu olahan lainnya.

4. Aluminium

Karena adanya sifat - sifat tertentu vang lebih menguntungkan seperti berat dan biaya pemeliharaannya yang menvebabkan aluminium ringan, cenderuna lebih digunakan pada konstruksi acuan perancah bila dibandingkan dengan logam lain. Tetapi karena harganya yang lebih mahal, menyebabkan penggunaannya yang sangat dibatasi.

Campuran aluminium yang paling sesuai untuk konstruksi acuan perancah adalah : tipe Al-Mg-Si (campuran dengan kadar silisium yang rendah). Kadar patahnya dapat dikatakan cukup baik (250 N/mm² – 400 N/mm²) dan ketahanan terhadap korosi hampir sama dengan aluminium murni.

5. Baja

Penggunaan baja sebagai acuan perancah pada konstruksi untuk beton dengan syarat tertentu. Pemilihan baja sebagai acuan perancah dikarenakan oleh:

- Pemakaian dalam jumlah yang sangat banyak.
- b. Membutuhkan toleransi kesalahan yang sangat kecil.
- Melibatkan tegangan (*stress*) yang tinggi.

 d. Memerlukan beberapa tingkat mekanisasi pada sistem pekerjaan konstruksi.

Dalam teknik konstruksi acuan perancah, baja digunakan dalam berbagai bentuk, baik sebagai alat sambung maupun sebagai penyangga konstruksi.

Keuntungan penggunaan baja sebagai acuan perancah :

- a. Kekuatan, dan kekerasan yang tinggi.
- b. Ketahanan terhadap keausan yang tinggi.
- Dapat diperoleh dalam berbagai bentuk, baja sangat sesuai untuk pembuatan sambungan, dan untuk digabungkan dengan material lainnya.
- d. Memiliki nilai sisa yang lebih tinggi bila dibandingkan dengan bahan lain.

Kerugian penggunaan baja sebagai acuan perancah :

- a. Berat massa yang tinggi.
- b. Tidak tahan terhadap karat.
- c. Perlu peralatan pendukung.
- d. Hantaran panas yang tinggi.

Peralatan acuan perancah

Peralatan utama yang sering digunakan pada konstruksi acuan perancah adalah:

1. Pipe Support

Pipe support adalah tiang perancah berupa pipa baja yang terdiri dari dua bagian yaitu bagian atas, dan bagian bawah. Pada ujung atasnya dibuat ulir untuk mempermudah penyesuaian ketinggian yang dibutuhkan. Umumnya digunakan sebagai penyangga pada konstruksi balok dan lantai.

Tabel 1. Perpanjangan maksimum dari pipe sopport [Brosur dan Spesifikasi Perancah, 2000]

			Cod	is land	
	Model Height Closed (mm)	Height extended (mm)	Safe load (ton)		(
Model			Closed	Extended	Weight (kg)
TS - 50	1.550	2.750	2	2	12
TS - 60	1.850	3.050	2	1.5	13
TS - 70	2.150	3.350	2	1.5	14
TS - 90	2.700	3.900	2	1.5	16

Tabel 2. Tebal plat maksimum yang dapat ditahan oleh satu pipe sopport

[Brosur dan Spesifikasi Perancah, 2000]

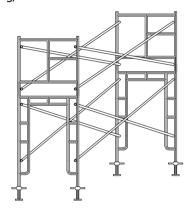
	Maximum slab thickness when props fully extended (mm)				
Prop grid size (mm)	TS - 50	1S - 60	TS - 70	1S - 90	
2.438 × 1.295	177	101	101	101	
2.134 × 1.295	228	140	140	140	
1.829 × 1.295	254	190	190	190	
1.524 × 1.295	330	228	228	228	
1.219 × 1.295	432	305	305	305	

Keuntungan penggunaan pipe support:

- a. Mudah disesuaikan sesuai dengan ketinggian yang dibutuhkan.
- b. Perawatan yang mudah
- c. Cocok digunakan untuk perancah pada balok dan lantai yang mempunyai berat persatuan panjang maupun luas yang besar, sehingga jarak perancah dapat diperlebar dan memberikan keleluasaan gerak bagi para pekerja.

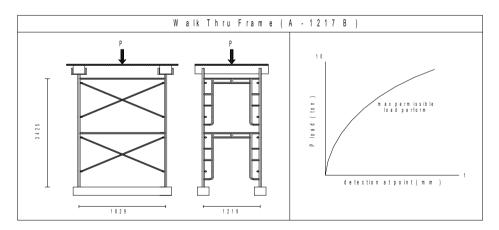
Kerugian penggunaan pipe support:

- a. Sulit digunakan untuk kebutuhan perancah yang pendek.
- b. Membutuhkan biaya investasi yang besar.
- c. Bila terjadi kerusakan pada pipa maka akan sulit untuk diperbaiki, dan bila akan digunakan kembali maka reduksi kekuatan yang dirancang harus lebih besar dari sebelum terjadi kerusakan.



Gambar 1. Pipe Support
[Brosur dan Spesifikasi Perancah, 2000]

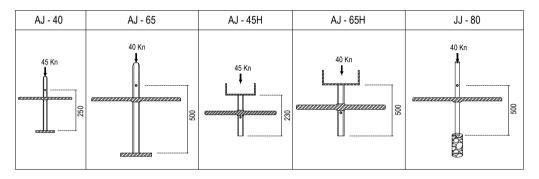
2. Scaffolding


Scaffolding adalah suatu bagian dari perancah yang berfungsi untuk menyangga acuan pelat dan acuan balok. *Scaffolding* terdiri dari beberapa tiang baja yang dirangkai menjadi satu kesatuan dan ketinggian yang dapat disesuaikan dengan kebutuhan.

Data teknis *scaffolding*: *scaffolding* terbuat dari baja karbon bermutu tinggi. *Scaffolding* mempunyai diameter luar 42,7 mm (1,25") dengan ketebalan 2,4 mm dan memiliki kuat tarik 51 kg/mm².

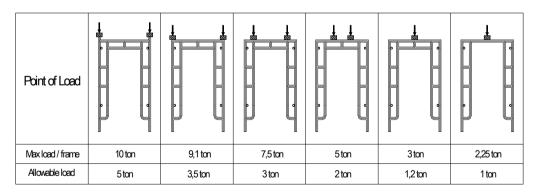
Gambar 2. Rangkaian Scaffiolding [Brosur dan Spesifikasi Perancah, 2000]

a. Tes beban


Gambar 3. Pengetesan Beban [Brosur dan Spesifikasi Perancah, 2000]

b. Beban maksimum *scaffolding* (FK = 2)

Tabel 3. Tabel kekuatan main frame [Brosur dan Spesifikasi Perancah, 2000]


MF A – 1217B	- 2500 kg perkaki	
MF 0917		
MF A - 1219	2250 kg perkaki	

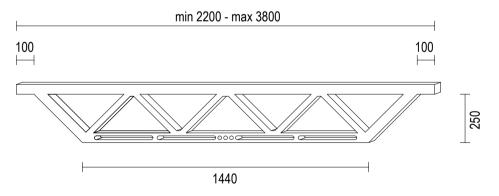
c. Beban kerja aman pada komponen jack

Gambar 4. Beban Komponen jack [Brosur dan Spesifikasi Perancah, 2000]

Reduksi kekuatan Reduksi kekuatan tergantung posisi penempatan beban diatas *frame*.

Gambar 5. Reduksi kekuatan beban frame [Brosur dan Spesifikasi Perancah, 2000]

3. Horry Beam


Horry beam adalah perancah horizontal biasanya digunakan mendukung acuan perancah pelat lantai dimana tumpuan pembebanannya terletak pada balok. Bentuk dari horry beam itu boleh menyerupai dikatakan konstruksi rangka jembatan dan bentangnya dapat diset sesuai dengan panjang yang diperlukan. Desain yang khusus dari *horry beam* ini bertujuan untuk memperoleh kekuatan dan daya dukung yang baik sehingga menjadi kelebihan dalam pemakaian dan penggunaannya.

Manfaat lain dari penggunaan *horry beam* adalah :

- a. Efisiensi kerja dapat ditingkatkan karena beratnya yang ringan dan konstruksinya yang kaku sehingga memudahkan pelaksanaan pemasangan.
- b. Pelaksanaan pekerjaan tidak rumit sehingga tidak memerlukan keahlian khusus dalam pelaksanaannya.
- c. Kemudahan dalam pemasangan dan pembongkaran.

Tabel 4. Data teknis horry beam
[Brosur dan Spesifikasi Perancah, 2000]

Тіре	Panjang (mm)	Panjang efektif struktur (mm)			Berat (kg)	Momen (kgm)
		SRC	W	S	Ber	Мот
HBSX - 14	1400 - 2200	1445 - 2295	1505 - 2355	1320 - 2170	14,7	460
HBSX - 22	2200 - 3800	2245 - 3895	2305 - 3955	2120 - 3770	24,7	800

Gambar 6. Horry Beam tipe SX - 22 [Brosur dan Spesifikasi Perancah, 2000]

Analisis kekuatan acuan perancah

Peraturan yang digunakan

- a. Peraturan Konstruksi Kayu Indonesia (SNI Kayu 2002, *Bahan Konsensus*).
- b. Standar Kehutanan Indonesia (SKI.C bo 002;1987).
- c. Standar Australia.
- d. Brosur dan spesifikasi perancah "Slab & Beam, Formwork & Scaffolding" by :
 Beton Concrete Form specialist. 2000.

Pembebanan

Beban – beban [sumber dari F. Wigbout Ing., Bekisting (*kotak cetak*)] yang diperhitungkan adalah:

- 1. Beban Vertikal
 - Beban vertikal diakibatkan oleh berat sendiri campuran beton, bahan bekisting, beban peralatan dan beban pekerja.
- 2. Beban tambahan (campuran beton)
 Secara umum dapat disebut bahwa
 berat beton berkisar antara 1,8–2,7
 ton/m³. Namun berat beton pada saat
 pengecoran mempunyai berat yang
 lebih besar, karena untuk volume
 beton 1 m³ diperlukan air antara 180
 –220 liter yang digunakan pada proses
 pencampuran, tingkat kemudahan
 pekerjaan, proses hidrasi pasta semen,
 dan kebutuhan pemeliharaan intern
 campuran.
- Beban getaran
 Getaran yang mungkin timbul selama
 pengecoran beton disebabkan oleh

alat

penggunaan

pergerakan peralatan kerja, dan pekerja itu sendiri.

4. Beban kejut

Beban kejut diakibatkan oleh proses pengangkutan campuran beton, dan tindakan mengaktifkan mesin – mesin yang digunakan.

5. Beban Horizontal

Beban horizontal yang mungkin bekerja selam proses pengerjaan adaalah beban angin, tarikan kabel, kemiringan perancah, dan pengaruh ketinggian pencurahan campuran beton.

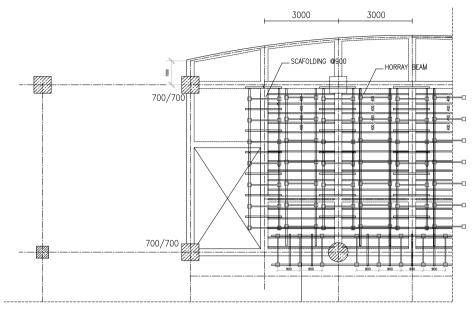
PEMBAHASAN

Kondisi struktur yang ada di lapangan,

Data umum struktur:

Balok
 30/50
 Kolom
 70/70
 Tebal plat
 15 cm
 tebal anak tangga
 25/2 cm

Data umum acuan / bekisting:


Tebal Multiplek
 Jarak antar perancah
 Jarak spasi acuan
 18 mm
 90 cm
 6,54 cm

Data umum perancah:

- 1. Main frame 190 (kapasitas maksimum 2500 kg / tiang).
- 2. Leader frame (type 120, type 150).
- 3. U head iack.
- 4. Horry Beam.

penggetar,

Perhitungan kekuatan scaffolding

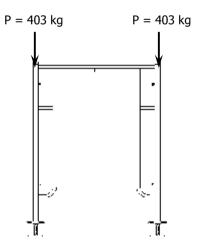
Gambar 7. Letak penggunaan perancah scaffolding

Perhitungan beban struktur

Beban mati:

- 1. Plat dan anak tangga = 0,275 × 3 × $2400 \text{ kg/m}^3 = 1980 \text{ kg/m}^1$
- 2. Balok ukuran $30/50 = 0.3 \times 0.5 \times 2400$ kg/m3 = 360 kg/m^1
- 3. Beban Bekisting, Perancah = 100 kg/m^1 Total Beban mati = 2440 kg/m^1

Beban hidup (
$$pekerja$$
) = 300 kg/m^{I}
Kombinasi beban = $(1,2 \times D_{L}) + (1,6 \times L_{L})$
= $(1,2 \times 2440) + (1,6 \times 300)$
= 3408 kg/m^{I}
($sepanjang 3m$, $untuk 8 titik$)


Besar beban titik (*beban struktur*) yang harus dipikul oleh tiap tiang *scaffolding* adalah sebesar:

$$P = \frac{3408 \times 0.9}{8} = 383.4 \text{ kg}$$

Besar total beban yang harus ditahan oleh tiap tiang scaffolding :

- 1. P_{awal} (beban total struktur) = 383 kg
- 2. Beban kejut (*beban penuangan*)= 20 *kg*

TOTAL BEBAN =
$$403 \ kg$$

Gambar 8. Beban tiap tiang scaffolding

Analisis Perhitungan

Akibat kondisi lapangan yang sulit diprediksi, maka nilai reduksi dari kekuatan scaffolding yang digunakan sebesar 0,6. Dengan demikian, maka besar kekuatan tiap tiang scaffolding untuk menahan beban adalah:

Dengan kondisi demikian, maka dapat disimpulkan bahwa konstruksi perancah (*scaffolding*) yang ada, *kuat* untuk dapat menahan besar beban struktur yang ada.

ANALISIS DAN PENCEGAHAN KERUNTUHAN

Berikut analisis kemungkinan penyebab keruntuhan dari penggunaan perancah scaffolding:

- 1. Ketidakmampuan dalam acuan menerima beban. Untuk mendapatkan hasil yang maksimal sesuai dengan vana dirancang, maka penggunaan bahan baku dengan kualitas baik menjadi mutlak diperlukan. Selain itu juga diperlukan biaya pemeliharaan yang (maintenance) cukup, agar seluruh alat dan bahan yang digunakan dapat sesuai dengan kualitas yang diharapkan (sesuai perancangan).
- Kesalahan pemilihan metode kerja Pemilihan metode kerja pada proses pelaksanaan pembangunan, juga memegang peranan penting, termasuk dalam efisiensi dan efektifitasan waktu kerja, bahan bangunan, tenaga kerja, penggunaan alat kerja (ringan dan berat), yang berujung pada biaya yang harus dikeluarkan.

Hal-hal khusus yang perlu diperhatikan ketika melakukan pengecoran dengan kondisi miring adalah :

a. Pengecoran dilakukan dari bagian bawah, hal tersebut untuk

- menghindari pergeseran acuan akibat beban beton saat penuangan.
- Untuk menghindari keruntuhan guling dari konstruksi perancah, maka penuangan beton campuran disarankan dengan cara vertikal atau tegak lurus plat acuan.
- c. Hindari adanya pembebanan titik akibat penumpukan penuangan pada satu titik, karena dapat menyebabkan lendutan yang berujung pada keruntuhan.
- d. Kondisi campuran beton lebih kental (menggunakan admixture bila diperlukan) dari saat pengecoran biasa, hal tersebut untuk mempercepat proses pengerasan dan menghindari kelongsoran campuran.
- e. Untuk syarat—syarat campuran beton yang lain, sama dengan aturan campuran pada umumnya.
- Kondisi lahan yang kurang mendukung Kondisi lahan yang kurang baik juga mempengaruhi pada proses pelaksanaan pembangunan, terutama pada pelaksanaan konstruksi perancah. Kondisi lahan yang tidak rata, dapat mempengaruhi ketegakan, dan kesamarataan ketinggian dari konstruksi perancah. Meskipun pada konstruksi perancah ketinggian dapat diatur sesuai keinginan, tapi kondisi lahan yang tidak rata harus mendapat perhatian lebih dari pihak pelaksana.

Selain itu penggunaan tanah urug yang belum sepenuhnya padat, juga turut mempengaruhi hasil dari pekerjaan konstruksi perancah. Kurangnya pemadatan pada saat pengurugan menyebabkan tanah, akan dapat keruntuhan struktur pada saat pelaksanaan pengecoran konstruksi. Hal itu disebabkan karena tambahan beban (beban bahan dan beban kerja) yang cukup besar dan datang secara tiba – tiba pada saat pengecoran, dapat berdampak pada penurunan ketinggian konstruksi perancah, yang kemudian berujung pada keruntuhan struktur.

Lain – lain Hal – hal lain vang harus diperhatikan pada pelaksanaan konstruksi perancah adalah tingkat kemampuan pekeria. Hal berhubungan dengan kualitas pekerjaan dan tingkat kesadaran pekeria akan keselamatan diri selama proses pembangunan berlangsung. Untuk itu usaha yang berkala dan terus untuk menerus meningkatkan kemampuan diri pekerja, akan menjadi nilai lebih dari suatu pekerjaan konstruksi.

Tindakan Pencegahan

Beberapa tindakan yang dapat menjadi alternatif pencegahan pada pekerjaan konstruksi perancah *scaffolding* :

- Konstruksi perancah harus direncanakan dan dihitung dengan faktor keamanan dan satu unit perancah scaffolding dengan satu kaki < 1,5 ton (spesifikasi teknis material pabrik).
- 2. Perancah harus cukup kuat dengan pemberian meja scaffolding dan bracing / crossing dalam menerima gaya momen, lintang maupun normal (lateral).
- 3. Bahan bahan perancah harus menggunakan bahan yang baik sebelum dilakukan pemasangan perancah.
- 4. Perancah harus diperiksa oleh seorang tenaga ahli yang berwenang.
- Kerangka siap pasang (Pre-fabricated frames) yang digunakan untuk perancah harus memenuhi jepitan sambungan sempurna pada kedua muka.
- Perancah harus diberi penguat (diagonal / horizontal) untuk memberikan kekakuan dan kekuatan.
- 7. Perancah harus didirikan di dasar tumpuan yang kuat dan rata.

- 8. Kejutan gaya yang besar (beban titik) tidak boleh dibebankan pada perancah.
- 9. Semua perancah tempat tenaga kerja bekerja, harus dilengkapi dengan platform untuk bekerja dan cukup kuat.
- 10. Setiap bagian dari tempat bekerja yang dimungkinkan tenaga kerja terjatuh dari bagian yang terbuka 2 m atau lebih diberi pagar pengaman.
- 11. Hal hal yang harus perhatikan bila menggunakan perancah kayu :
 - a. Bahan yang digunakan harus baik (*mutu kayu kelas II*).
 - Desain dimensi, dan jarak perancah kayu harus dihitung sesuai dengan gaya meksimum yang diterima.
 - Paku harus mempunyai panjang, dan diameter yang cukup.
 - d. Paku harus ditancapkan penuh pada kayu.
 - e. Perancah kayu harus diberi palang penguat untuk memberikan kekakuan, dan kekuatan.
 - f. Dimensi, dan jarak kayu melintang harus mampu menahan beban yang dipikulnya.
 - g. Pada konstruksi yang mempunyai sudut / miring, balok melintang harus terpasang kestabilannya pada penerimaan beban lateral / horizontal.
 - h. Tiang tiang kayu yang berdiri bebas harus dikopel secara diagonal / horizontal dengan menggunakan palang penguat.

Hal-hal teknis yang dapat menyebabkan keruntuhan perancah⁽¹⁾

- Tidak adanya tangga penghubung antara elevasi – elevasi frame scaffolding, hal itu dapat menyebabkan kesulitan bagi pekerja yang berujung pada kurang stabilnya kondisi perancah.
- Tata letak perancah harus diperhatikan, agar tidak mengganggu pergerakan dan aktivitas pekerja.

- Construction Bullettin,
 Occupational Safety and
 Health Service, Department of
 Labour, Wellington, New
 Zealand, No 11 December 1999.
- 3. Penggunaan pengamanan bagi pekerja menjadi penting untuk struktur perancah yang tinggi.
- Masa perawatan perancah pasca pemakaian, mutlak diperlukan agar kondisi perancah tetap terjaga baik sesuai dengan asumsi perancangan.
- 5. Adanya beban tambahan (beban kejut) diluar perancangan yang dapat menyebabkan struktur kelebihan beban kerja.
- Khusus untuk mobile scaffolding, rasio ketinggian dengan lebar alas adalah 3:
 1.

KESIMPULAN

Beberapa kesimpulan yang dapat diambil dari uraian diatas :

- 1. Secara perhitungan kekuatan, penggunaan perancah scaffolding cukup kuat untuk menahan beban layan (beban struktur dan beban kejut) yang ada.
- 2. Pemeriksaan / penyesuaian kondisi lapangan dan tingkat kemampuan pekerja dalam melakukan pekerjaan konstruksi perancah menjadi mutlak diperlukan, agar hasil pekerjaan yang ada dapat sesuai dengan perancangan.
- 3. Perawatan bahan acuan dan perancah mutlak diperlukan agar kondisi bahan dapat terkendali dan sesuai dengan asumsi perancangan.
- Pengecekan / pengendalian kualitas pekerjaan konstruksi perancah harus dilakukan berkala agar dapat

- meminimalisir hal hal yang tidak diinginkan.
- 5. Pemilihan metode kerja yang tepat harus dipikirkan dengan baik, karena tidak hanya mempengaruhi waktu / lama pekerjaan tapi juga pada jenis bahan, alat dan beban kerja yang ada pada pelaksanaan pembangunan.
- Pemahaman terhadap tindakan pencegahan keruntuhan konstruksi perancah, sebaiknya dikuasai / dipahami dengan baik oleh kontraktor agar dapat meminimalisir dampak dari keruntuhan konstruksi perancah tersebut.

DAFTAR PUSTAKA

Construction Bullettin. (1999). *Occupational Safety and Health Service*. No. 11 – December. Department of Labour. Wellington, New Zealand.

PEDC Politeknik ITB. (1982). *Pedoman Acuan Perancah*. Bandung.

Badan Standardisasi Nasional. (2000). *Peraturan Konstruksi Kayu Indonesia (SNI Kayu 2002, Bahan Konsensus)*. Jakarta.

Departemen Kehutanan Republik Indonesia. Rektorat jenderal Pengusahaan Hutan. (1987). *Standar Kayu Lapis Struktural Indonesia (SKI.C – bo – 002;1987)*. edisi pertama. Jakarta.

Brosur dan spesifikasi perancah. (2000). Slab & Beam, Formwork & Scaffolding by: Beton Concrete Form specialist.

Yaldi, G. Datu, I.K. (2001). *Efisiensi Pemanfaatan Bekisting Sistem Kayu dan Sistem Peri pada Bangunan Gedung Bertingkat*. Tugas Akhir D-IV. Politeknik Negeri Bandung.