Perancangan dan Pembuatan Adapter Penghubung Keyboard IBM PS/2 dengan Port USB Personal Computer

Resmana Lim¹, Danny Christanto¹ & Anies Hannawati^{1,2}

 ¹⁾ Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra e-mail: resmana@petra.ac.id ; dctan1980@yahoo.com
 ²⁾ Electrical Engineering Department, Monash University, Melbourne – Australia e-mail: Anies.Purnamadjaja@eng.monash.edu.au

Abstrak

Universal Serial Bus (USB) sebagai suatu interface pada Personal Computer (PC) saat ini banyak digunakan untuk menghubungkan berbagai peralatan dengan PC seperti printer, scanner, mouse, webcam dan lain-lain. Dalam tulisan ini dibuat sebuah adapter untuk menghubungkan keyboard IBM PS/2 agar dapat dikenali dan dijalankan dalam lingkungan USB yang terdapat pada PC. Alat ini menggunakan sebuah IC interface USB yaitu PDIUSBD12 yang akan menangani protokol USB dan sebuah microcontroller yang akan menangani semua data yang keluar ataupun masuk dari dan ke PDIUSBD12 ataupun keyboard. Alat ini telah diuji dan terbukti mampu menangani proses enumerasi dan menyampaikan data yang diterima dari keyboard menuju PC via port USB. Meskipun alat ini tidak mendukung semua fungsi tombol pada keyboard, tetapi fungsi tombol-tombol utama bisa berjalan dengan normal pada penekanan satu tombol ataupun kombinasi beberapa tombol.

Kata kunci : Universal Serial Bus, Adapter Keyboard PS/2 ke USB, PDIUSBD12.

Abstract

Universal Serial Bus (USB) as a new interface especially on Personal Computer (PC) has become a standard for interfacing many devices to PC such as printer, scanner, mouse, webcam, etc. In this paper, a device that can be recognized by USB host and communicate through USB port correctly was developed. It has been implemented by making an adapter therefore IBM PS/2 keyboard could be recognized and operated in a USB environment. The device used a PDIUSBD12 USB interface IC which handle USB protocol and an AT89C2051 microcontroller which handle all incoming or outgoing data from and to PDIUSBD12 or keyboard. The device has been tested and proven capable of handling enumeration process and transfer data from keyboard to PC via a USB port. Although the device didn't support all functions of the keys, but the main keys worked normally on pressing one key or even combination keys.

Keywords : Universal Serial Bus, PS/2 Keyboard Adapter to USB port, PDIUSBD12.

1. Pendahuluan

Universal Serial Bus (USB) sebagai suatu interface yang relatif baru terutama pada Personal Computer (PC) memiliki banyak keunggulan dibandingkan interface pendahulunya. Keunggulan USB antara lain dalam hal kecepatan dan kemudahan penggunaannya [9,11]. USB bersifat host-centric dimana semua transaksi dimulai oleh host. Dengan kemampuan hot-plug, yang memperbolehkan sebuah alat untuk dihubungkan atau dilepas dari PC kapan saja walaupun PC dalam keadaan menyala, membuat protokol komunikasi USB menjadi lebih rumit daripada protokol interface lain. Komunikasi antara *host* (komputer) dan *function* (alat yang dihubungkan) meliputi proses enumerasi yang mengandung serangkaian *request* dan *descriptor*. *Request* dikirim oleh *host* kepada *function* sebagai perintah atau permintaan data balasan. *Descriptor* dikirim oleh *function* kepada *host* sebagai data balasan yang diminta, yang berisi identitas, kemampuan, dan kebutuhan *function* [10].

Dalam paper ini, dibangun sebuah adapter untuk *keyboard* IBM PS/2 agar *keyboard* tersebut bisa dikenali oleh komputer (sebagai *keyboard* USB) dan beroperasi dengan *interface* USB (dikenali sebagai *Human Interface Device*). Sebuah *microcontroller* Atmel AT89C2051 [1] diguna-kan untuk mengartikan *request* yang diterima, menentukan *descriptor*, dan mengubah *scancode* AT *keyboard* IBM PS/2 menjadi *Human*

Catatan: Diskusi untuk makalah ini diterima sebelum tanggal 1 Juni 2004. Diskusi yang layak muat akan diterbitkan pada Jurnal Teknik Elektro volume 4, nomor 2, September 2004.

Interface Device (HID) Usage ID. Microcontroller tersebut berpasangan dengan USB Interface Device PDIUSBD12 [5,8] yang menangani protokol pengiriman dan penerimaan data meliputi pengubahan dalam kode Non-Return to Zero Invert (NRZI), bit stuffing, proses Cyclic Redundancy Check (CRC), Packet Identifier (PID), dan handshake.

Selanjutnya paper ini membahas tentang desain sistem secara keseluruhan baik dari sisi perangkat keras maupun perangkat lunaknya, lantas dilanjutkan dengan pengujian sistem serta diakhir dengan diskusi.

2. Deskripsi Sistem

Sistem yang dibuat terdiri dari sebuah mikrokontroler yang mehubungkan keyboard IBM PS/2 dengan port USB pada PC. Gambar 1 menunjukkan blok diagram *adapter* yang telah dibuat.

Gambar 1. Blok Diagram Adapter

Pada proses enumerasi, *request* dari komputer (PC) diterima USB *Interface* PDIUSBD12 yang diteruskan ke *microcontroller* AT89C2051 untuk diartikan. Setelah mengartikan dan menentukan data balasannya, data tersebut dikirim ke PC melalui USB *Interface*.

Keyboard baru bisa digunakan setelah proses enumerasi berjalan lengkap dan tepat (sistem dikenali PC sebagai *keyboard* USB). Data *scancode* dari *keyboard* dibaca oleh *microcontroller* dan diubah ke HID *Usage* ID [10,11,12]. Data HID tersebut dikirimkan ke PC melalui USB *Interface*. Data dari PC (status LED) akan dikirimkan ke *microcontroller* melalui USB *Interface*. *Microcontroller* melalui USB *Interface*. *Microcontroller* akan bertindak sebagai *host* bagi *keyboard* dan mengirimkan perintah untuk menyalakan atau mematikan LED.

3. Perangkat Keras

Meskipun USB memberikan kemudahan untuk mengambil arus dari *host* hingga 500 mA, tetapi *adapter* yang dibuat harus masih bisa mendapat tegangan dari sumber luar sehingga dirancanglah rangkaian seperti pada gambar 2 yang menggunakan LM7805 untuk mendapatkan tegangan 5 V.

Gambar 2. Rangkaian Power Suply

Gambar 3 menunjukkan rangkaian *clock* dan PDIUSBD12. Nilai komponen didapat dari rangkaian D12SMART *evaluation board* Philips [4]. PDIUSBD12 dan AT89C2051 dihubungkan oleh 8 jalur data (DATA0 – DATA7) sebagai jalur transakasi data; 3 jalur *strobe* (A0, WR_N, dan RD_N) sebagai penanda proses pengiriman/ pembacaan data/perintah; 1 jalur *interrupt* (INT_N) sebagai penanda adanya *interrupt* pada PDIUSBD12; dan 1 jalur *clock* (CLK_OUT) sebagai masukan *clock* bagi AT89C2051. PDIUSBD12 tidak memerlukan resistor *pull-up* eksternal sebagai penanda kecepatan karena telah memiliki SoftConnect, resistor terintegrasi yang bisa dinyalakan melalui program.

Gambar 4 menunjukkan rangkaian sistem mikrokontroler menggunakan AT89C2051. Antara AT89C2051 dan *keyboard* dihubungkan oleh 1 jalur data (sebagai jalur transaksi data) dan 1 jalur clock (sebagai penanda data *valid* pada saat pengiriman atau penerimaan data).

Gambar 3. Rangkaian PDIUSBD12

Gambar 4. Rangkaian AT89C2051

4. Perangkat Lunak

Program yang dibuat ditulis dengan menggunakan bahasa assembly untuk keluarga MCS-51. Program dibuat agar *microcontroller* bisa menangani proses inisialisasi PDIUSBD12 dan *interrupt* dari PDIUSBD12 maupun *keyboard*. Gambar 5 menunjukkan *flowchart* dari program yang dibuat.

Proses pertama yang dilakukan adalah inisialisasi semua variabel termasuk inisialisasi PDIUSBD12. Inisialisasi PDIUSBD12 digunakan antara lain untuk menentukkan frekuensi keluaran CLKOUT dan menyalakan Soft-Connect.

Pada langkah berikutnya, *microcontroller* akan menunggu datangnya *interrupt*. Pada proses enumerasi, *interrupt* datang dari PDIUSBD12. Lalu *microcontroller* memeriksa sumber *interrupt* (apakah dari *suspend change*, *bus reset*, atau *endpoint*). Jika berasal dari *endpoint* 0 *out* (*host* mengirim data), maka *request* diperiksa untuk menentukan balasan yang sesuai. Data tersebut dikirim melalui *endpoint* 0 *in* agar bisa diambil *host* pada saat *polling* berikutnya (semua transaksi dimulai oleh *host*).

Pada penekanan *keyboard*, *interrupt* yang muncul digunakan oleh *microcontroller* untuk menerima data. Jika data yang diterima lengkap (*scancode* untuk penekanan atau pelepasan satu tombol), data tersebut diubah ke HID *Usage* ID dan dimasukkan ke variabel. Variabel tersebut dipindah ke *buffer endpoint* 1 *in* agar bisa diambil *host* pada saat *polling* berikutnya. Protokol keyboard PS/2 secara lengkap dapat diakses pada referensi [2,3,7], sedangkan protokol USB secara lengkap disajikan pada referensi [9,10,11].

Gambar 5. Flowchart Program

4. Pengujian Sistem

Sistem yang telah dibuat diuji dengan menggunakan *keyboard* PS/2 *New Touch* Logitech. Pengujian yang dilakukan terdiri dari: pengujian inisialisasi chip PDIUSBD12, pengujian transaksi enumerasi, pengujian fungsi keyboard dan pengukuran arus dan tegangan adapter.

4.1 Pengujian Inisialisasi PDIUSBD12

Setelah *adapter* dihubungkan ke PC dan inisialisasi PDIUSBD12 selesai dengan lengkap dan tepat (untuk menyalakan SoftConnect), PC mendeteksi bahwa ada alat yang dihubungkan ke *port* USB. PC segera mengirimkan *request* untuk memulai proses enumerasi yang muncul pada *adapter* sebagai *interrupt* disertai nyala LED GoodLink berkedip. Karena pada tahap ini tidak ada request yang didukung maka proses enumerasi tidak bisa dilaksanakan dan *System Properties Microsoft Windows* 98 Second *Edition* tampak seperti pada gambar 6.

4.2 Pengujian Transaksi Enumerasi

Pada tahap ini semua *request* untuk enumerasi bisa dilayani dan balasannya sudah ditentukan. PC akan melakukan proses enumerasi yang muncul pada *adapter* sebagai serangkaian *interrupt* yang disertai nyala LED GoodLink berkedip-kedip.

Di tengah proses enumerasi terdapat proses dimana sistem operasi meminta dan memasang

file driver yang dibutuhkan. Pada layar monitor muncul tampilan seperti pada gambar 7.

System Properties
General Device Manager Hardware Profiles Performance
Miew devices by type O View devices by connection
Hard disk controllers Hard disk controllers Keyboard
B ∰ Monitors
⊕ ∰ Network adapters ⊕ Ø Ports (COM & LPT) ⊕ ∰ Sound, video and game controllers
B→■ System devices Conversal Serial Bus controllers Conversal Viel(R) 82801BA/BAM USB Universal Host Controller - 24
Unknown Device
Properties Refresh Remove Print
OK Cancel

Gambar 6. Tampilan System Properties untuk Inisialisasi yang Berhasil

New Hardware Found					
Philips Semiconductors CICT USB Keyboard					
Windows is installing the software for your new hardware.					
Gambar 7. Sistem Operasi Meminta dan					

Memasang File Driver

Setelah semua *request* dibalas, LED GoodLink menyala terus. *System Properties* akan tampak seperti pada gambar 8.

System Pr	operties					? ×
General	Device Manager	Hardware	Profiles	Performa	nce	
• Vie	w devices by type	ΟV	iew devid	ces by <u>c</u> onr	nection	
LEERSE MUNUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	CD-ROM controll Disk drives Display adapters Display adapters Hard disk control Keyboard HID-compliar HID-compliar Honitors Network adapter: Sound, video and System devices	ollers ollers it keyboard onductors (/102-Key o s T) d game con	CICT USI or Microso trollers	8 Keyboard oft Natural I	Keyboard	
Pro	perties R	efresh	Re	move	Pri <u>n</u> t	
				OK	Ca	ancel

Gambar 8. Tampilan *System Properties* Setelah Enumerasi Berhasil

Urutan *request* yang diminta *host* dapat dilihat seperti terdapat pada tabel 1.

Urutan	bm	b	W	w	w	w	w	w	Arti
	Request	Request	Value	Value	Index	Index	Length	Length	
	Type	-	low	high	low	high	low	high	
1	80H	6H	OH	1H	OH	OH	40H	0H	Device Desc.
2	OH	5H	2H	0H	OH	OH	OH	0H	Set Address
3	80H	6H	OH	1H	OH	OH	12H	OH	Device Desc.
4	80H	6H	0H	2H	OH	OH	9H	0H	Config. Desc.
5	80H	6H	OH	2H	OH	OH	FFH	0H	Config. Desc.
6	80H	6H	OH	1H	0H	0H	12H	0H	Device Desc.
7	80H	6H	OH	2H	0H	OH	FIH	3H	Config. Desc.
8	80H	6H	OH	2H	0H	0H	22H	OH	Config. Desc.
9	OH	9H	1H	0H	0H	OH	OH	0H	Set Config
10	21H	AH	OH	0H	OH	0H	0H	0H	Set Idle
11	81H	6H	OH	22H	OH	0H	7FH	0H	Get Class
									Descriptor
12	21H	9H	OH	2H	0H	0H	1H	OH	Set Report
13	21H	9H	OH	2H	0H	0H	1 H	0H	Set Report
14	21H	9H	0H	2H	0H	0H	1H	OH	Set Report
15	21H	9H	OH	2H	0H	0H	1H	0H	Set Report

Tabel 1. Daftar Request

4.3 Pengujian Fungsi Keyboard

Setelah proses enumerasi selesai dan *adapter* dikenali oleh sistem operasi sebagai *keyboard* USB, selanjutnya *keyboard* sudah bisa digunakan untuk mengetik. Tabel 2 menunjukkan hasil pengujian dengan cara menekan satu per satu tombol dan melihat reaksi *keyboard* pada program aplikasi. Dalam pengujian ini digunakan beberapa program aplikasi yaitu *Microsoft Word*, *Microsoft Excel*, *Notepad*, dan MCS51 *Assembler*. Di sini terlihat bahwa keyboard berfungsi dengan baik yaitu memberikan reaksi sesuai dengan yang diharapkan.

Tabel 2. Hasil Uji Penekanan Satu Tombol

Nama Tombol	Reaksi pada Program Aplikasi			
F1	<i>Help</i> pada banyak aplikasi			
F2	Mengganti sebuah sel pada Excel			
F3	Search pada Notepad			
F4	Mengulangi tindakan terakhir pada Word			
F5	Memunculkan jam dan tanggal pada			
	Notepad			
F6	Berpindah antara split window pada Word			
F7	Pemeriksaan kata pada Word			
F8	Mengaktifkan extending selection pada			
	Excel			
F9	Compile pada MCS51 Assembler			
F10	Mengaktifkan menu pada Excel dan Word			
F11	Menciptakan chart pada Excel			
F12	Menampilkan Save As pada Word			
Print Screen	Menyimpan gambar yang muncul di layar			
	pada <i>Clipboard</i>			
Scroll Lock	Menyalakan/mematikan LED Scroll Lock			
Tab	Memberi jarak tabulasi pada Word			
Caps Lock	Menyalakan/mematikan LED Caps Lock			
	dan mencetak huruf kapital			
Num Lock	Menyalakan/mematikan LED Num Lock			
	dan mengunci tombol keypad agar			
	memunculkan angka atau fungsi lain pada			
	keypad			
GUI (berlogo	Menampilkan menu Start pada Windows			
Windows)				
Esc	Menghilangkan (non-aktif) menu			
Alt	Mengaktifkan menu pada banyak aplikasi			
Insert	Menyalakan/mematikan fasilitas			
	insert/overwrite pada Word			

Nama Tombol	Reaksi pada Program Aplikasi
Delete	Menghapus karakter pada aplikasi
	pengolah kata
Home	Memindah kursor pada posisi awal baris
	pada Word
End	Memindah kursor pada posisi akhir baris
	pada <i>Word</i>
Page Up	Memindah kursor beberapa baris ke atas
	pada <i>Word</i>
Page Down	Memindah kursor beberapa baris ke bawah
	pada <i>Word</i>
Tombol Panah	Memindah kursor satu baris ke atas/bawah
	atau satu karakter ke kiri/kanan pada Word
Backspace	Menghapus satu karakter di depan kursor
	pada <i>Word</i>
Enter	Memindah kursor ke baris baru di bawah
	posisi sebelumnya
Tombol huruf (qwerty)	Memunculkan huruf yang bersangkutan
	pada program pengolah kata
Tombol angka (12345)	Memunculkan angka yang bersangkutan
	pada program pengolah kata
Tombol karakter	Memunculkan karakter yang bersangkutan
(space,./`)	pada program pengolah kata
Tombol aplikasi	Menampilkan menu pada program
(sebelah tombol ctrl	
kanan)	

Uji kombinasi tombol dilakukan dengan menekan beberapa kombinasi tombol yang umum digunakan pada sistem operasi *Microsoft Windows* 98 *Second Edition* dan beberapa program seperti pada pengujian satu tombol. Hasil uji terdapat pada tabel 3.

Tabel 3. Hasil Uji Penekanan Kombinasi Tombol

Kombinasi Tombol	Reaksi pada Program Aplikasi
Ctrl + Huruf	Melakukan perintah (Save, Copy,
	Paste, Cut, dll) pada aplikasi yang
	mendukung
Ctrl + Panah	Memindah kursor satu kata ke
	depan/belakang atau satu paragraf ke
	atas/bawah
Shift + Huruf	Menampilkan huruf kapital
Shift + Karakter (;'./)	Menampilkan karakter lain pada
	tombol
Shift + Panah	Memilih (blok) satu huruf ke
	depan/belakang atau satu baris ke
	atas/bawah pada Word
Alt + Tab	Berpindah window pada Windows
Alt + Huruf	Mengaktifkan menu atau tombol
	dengan huruf yang bergaris bawah
Alt + Space	Mengaktifkan menu window
Alt + F4	Mematikan program pada Windows
GUI + Huruf	Mengaktifkan aplikasi Windows
	(Windows Explorer, Find, Run)
Ctrl + Shift + Esc	Menampilkan menu Start pada
	Windows
Ctrl + Shift + Panah	Memilih (blok) satu kata ke
	depan/belakang atau satu paragraf ke
	atas/bawah pada Word
Ctrl + Alt + Del	Menampilkan menu Close Program
	pada Windows

Hasil uji kecepatan pada tabel 4 menunjukkan kemampuan *adapter* untuk menangani transaksi data yang relatif cepat untuk penggunaan seharihari tanpa mengacaukan sistem meskipun harus menangani dua *interrupt*. Pengujian ini dilakukan dengan cara pemberian input keyboard

dengan variasi kecepatan pengetikan. Di sini terlihat bahwa sistem mampu menangani kecepatan yg bervariasi sampai dengan maksimal 27 karakter/detik.

Tabel 4.	Hasil	Uji '	Variasi	Kecepatan	Pengetikan
----------	-------	-------	---------	-----------	------------

Pengujian	Kecepatan Pengetikan (Karakter Per Detik)	Keterangan
1	12	Berhasil
2	21	Berhasil
3	27	Berhasil
4	30	gagal

4.4 Pengukuran Arus dan Tegangan

Tabel 5, 6, dan 7 menunjukkan hasil pengukuran arus dan tegangan pada *adapter*. Hal ini dilakukan utamanya untuk memeriksa kebutuhan arus *adapter* yang diminta dari *host* dan memeriksa agar tegangan tetap berada dalam kisaran 5 V.

Tabel 5. Hasil Pengukuran Arus pada Vbus

Kondisi	Percobaan	Percobaan
	1 (mA)	2 (mA)
Belum Terenumerasi (Booting)	35,9	36
Sesaat Setelah Terenumerasi dan	41,9	42
sesaat setelah mendapat output		
report		
Mengirimkan data (Tombol	38	38,1
ditekan)		
Tidak mengirimkan data	41,4	41,5
(tombol dilepas)		
LED Caps Lock menyala	53,3/52,9	53,4/53
LED Num Lock menyala	53,4/53	53,5/53,1
LED Scroll Lock menyala	53,8/53,4	53,9/53,5
LED Num Lock dan Scroll Lock	64,6/64,2	64,8/64,4
menyala		
LED Num Lock dan Caps Lock	64,2/63,8	64,4/64
menyala		
LED Caps Lock dan Scroll Lock	64,6/64,2	64,8/64,4
menyala		
Semua LED menyala	74,9/74,5	75/74,8

Tabel 6. Hasil Pengukuran Arus pada VCC Keyboard

Kondisi	Arus (mA)
Normal	1
LED Caps Lock menyala	13,4
LED Num Lock menyala	13,5
LED Scroll Lock menyala	14
LED Num Lock dan Scroll Lock menyala	25,7
LED Num Lock dan Caps Lock menyala	25,3
LED Caps Lock dan Scroll Lock menyala	25,7
Semua LED menyala	36,8

Tabel 7.	Hasil	Pengukuran	Tegangan	pada	Vbus
----------	-------	------------	----------	------	------

Kondisi	VCC (volt)
Normal	5,02
1 LED menyala	5,01
2 LED menyala	5
Semua LED menyala	4,98

5. Kesimpulan

Dari hasil pengujian yang telah dilakukan, maka dapat diambil kesimpulan bahwa:

- Adapter mampu berkomunikasi dengan PC secara lancar melalui port USB termasuk pada saat proses enumerasi dari host. Keyboard IBM PS/2 yang dihubungkan ke adapter mampu beroperasi layaknya keyboard biasa baik dalam penekanan satu tombol maupun penekanan kombinasi tombol.
- Alat mampu dikenali oleh sistem operasi *Microsoft Windows* 98 *Second Edition* sebagai Philips CICT USB *Keyboard*, dengan demikian fungsi utama keyboard bisa berjalan.
- Dari semua tombol yang ada pada *keyboard* PS/2 *New Touch* Logitech, hanya tiga tombol *power* (*Sleep, Wake Up*, dan *Power*) yang terletak di sisi kanan atas yang tidak didukung oleh adapter ini.

Daftar Pustaka

- [1]. "Atmel AT89C2051 8-bit Microcontroller with 2K Bytes Flash". Rev. 0368E. Februari 2000. 15 hal. <u>Atmel Corporation</u>. 10 Desember 2001. <<u>http://www.atmel.</u> com/atmel/ acrobat/doc0368.pdf>
- [2]. Chapweske, Adam. "PS/2 Mouse/Keyboard Protocol". 25 Juli 2002. <<u>http://panda.cs.</u> <u>ndsu.nodak.edu/~achapwes/PICmicro/PS2/</u> <u>ps2.htm</u>>
- [3]. Chapweske, Adam. "The AT-PS/2 Keyboard Interfacing". 25 Juli 2002. <<u>http://panda.cs.ndsu.nodak.edu/~achapwes</u> /PICmicro/keyboard/atkeyboard.html>
- [4]. "D12SMART Evaluation Board". <u>Philips</u> <u>Semiconductors</u>. 10 Agustus 2002. <<u>http://</u> <u>www.semiconductors.philips.com/files/bus</u> <u>es/usb/eval_kits/d12.smart/schematics.zip></u>
- [5]. "FAQ PDIUSBD12". 1 Oktober 1998. 9 hal. <u>Philips Semiconductors</u>. 12 Juni 2002. <<u>http://www.semiconductors.philips.com/a</u> <u>crobat/various/ FAQ_PDIUSBD12.pdf</u>>

- [6]. "Firmware Programming Guide for PDIUSBD12" Version 1.0. 23 September 1998. 22 hal. <u>Philips Semiconductors</u>. 12 Juni 2002. <<u>http://www.semiconductors</u>. philips.com/acrobat/various/PDIUSBD12_ PROGRAMMING GUIDE.pdf>
- [7]. "Keyboard Scan Code Specification". <u>Windows Platform Design Notes</u>. Revision 1.3a. 16 Maret 2000. 35 hal. Microsoft Corporation. 19 Juni 2002. <<u>http://download.</u> <u>microsoft.com/download/whistler/hwdev3/</u> 1.0/WXP/EN-US/scancode.exe>
- [8]. "PDIUSBD12, USB interface device with parallel bus" Rev. 08. 20 Desember 2001. 35 hal. <u>Philips Semiconductors</u>. 12 Juni 2002. <<u>http://www.semiconductors.philips.</u> <u>com/acrobat/datasheets/PDIUSBD12-</u> <u>08.pdf</u>>
- [9]. Peacock, Craig. "USB in a Nutshell, Making Sense of the USB Standard". Second Release. 9 Mei 2002. 30 hal. <u>Beyond Logic</u>. 12 Juni 2002. <<u>http://www. beyondlogic.org/usbnutshell/usb-in-a-nut</u> <u>shell.pdf</u>>
- [10]. "Universal Serial Bus (USB) Device Class Definition for Human Interface Device (HID)". Version 1.11. 27 Juni 2001. 98 hal. <u>USB Implementers Forum</u>. 19 Juni 2002.
 <<u>http://www.usb.org/developers/data/devclass/hid1_11.pdf</u>>
- [11]. "Universal Serial Bus Specification" Revision 1.1. 23 September 1998. 327 hal. <u>USB Implementers Forum</u>. 5 Juni 2002. <<u>http://www.usb.org/developers/data/usbsp</u> <u>ec.zip</u>>
- [12]. "USB HID to PS/2 Scan Code Translation Table". Revision 1. 17 Juni 1999. 5 hal. <u>Microsoft Corporation</u>. 19 Juni 2002. <<u>http://www.microsoft.com/hwdev/downlo</u> <u>ad/tech/input/translate.pdf</u>>