
International Journal of Robotics and Automation (IJRA) 
Vol. 3, No. 2, June  2014, pp. 139~150 
ISSN: 2089-4856      139 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJRA 

Optimizing Hexapod Robot Reconfiguration using Hexa-Quad 
Transformation 

 
 

Addie Irawan, Yee Yin Tan 
Robotics & Unmanned Research (RUS) group, Faculty Electrical & Electronics Engineering, Universiti Malaysia Pahang 

 
 

Article Info  ABSTRACT

Article history: 

Received Mar 8, 2014 
Revised May 3, 2014 
Accepted May 19, 2014 
 

 This paper presents a leg reconfigurable technique to optimize the hexapod 
robot reconfiguration flexiblity. A hexapod-to-quadruped (Hexa-Quad) 
transformation technique is proposed to optimize hexapod legs on certain 
situation that need some legs to be disabled as a leg to do other tasks and 
operations. This proposed method used the factor of center of body (CoB) 
stability in the support polygon and its body shape. The reinitialized leg’s 
shoulder method is proposed to ensure the support polygon is balanced and 
confirmed the CoM nearly or at the center. This method is modeled and 
simulated in a real-time based model of hexapod robot with 4-DOF/leg 
control architecture. The model is verified in numerical model and presented 
using separated 3D simulators. 
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1. INTRODUCTION 

Multi-legged robot or so called active suspension vehicle (ASV) has significant advantages if 
compare to the wheel type robot especially on facing irregular and mountainous terrain. The advantages of 
multi-legged or legged robot can be seen obviously on inspired life living form; legged creatures. Raibert in 
his book has mentioned that only about half of the earth ‘s landmass is accessible to existing  wheeled and 
tracked vehicles ,whereas a much larger fraction can be reached by animals on foot[1].  In multi-legged robot 
research and development, several studies have been done to achieve good adaptability, function, high 
flexibility and extensibility with extreme and unknown terrain. The progress emphasized in all expects and 
hierarchy of multi-legged system such as system mechanism, structure design/configuration, software 
development/control technique and electronics unit design. In control technique level, reconfiguration 
technique is one of the important parts in legged robot control, which is emphasized on recovery action [2] 
and multi-tasking. Therefore stability become a main point in this research that involving center of mass 
(CoM) of the legged robot and its support polygon. The larger the support polygon developed by the robots 
the bigger the probability for the robot to remain upright without overturning when it stops walking at any 
moment during the walking period, and this is called statically stable walking or static stability. Static 
stability occurs when CoM lies completely within the support polygon and the polygon’s area is greater than 
zero, and hence static stability requires at least three points of ground contact [3]. Robot’s CoM represented a 
significant aid in maintaining the stability[4] and as additional source of information in identified process and 
stability indicator. Moreover, CoM is calculated to provide critical to access rehabilitation success in 
pathology detection and in describing gaits[5]. In reconfiguration aspect, the CoM’s of legged robot is will be 
reallocated since the changing of in the structure or leg configuration of the robot.     

 



                ISSN: 2089-4856 

IJRA  Vol. 3, No. 2,  June 2014 :  139 – 150 

140

 Therefore in this study, determination on hexapod configuration to quadruped configuration for a 
hexapod robot (Hexa-Quad) is proposed. Hexapod is one of the statically stable configurations of multi-
legged robot that has potential to be reconfigured into less than six legs such as quadruped and bipedal 
configuration. Transforming hexapod to bipedal configuration is considered as critical configuration for 
hexapod unless there have a special design on leg configuration and robot body’s shape itself (other than 
common hexapod’s body shapes; square, trapezium, round or hexagon body). The quadruped configuration is 
selected since this configuration is in between statically and dynamically stable and suitable for any common 
shape of hexapod robot’s body. Static stability assumes the vertical projection of the CoM always remain 
inside the support polygon with an adequate stability margin during all phase of movements [6]. On the other 
hand, dynamically stable depends on the stability during the robot is moving which demands on active 
actuation to maintain the balance and performing faster motion[7]. As part of dynamically stable 
configuration, quadruped legged robot configuration also practical on performing locomotion for complex 
terrain according to the several practical achievement reported in [8, 9].   

Reconfiguration issue become one of the small sections in robotic issue that has potential to be 
explored in order to optimize the use of the default mechanism of the robot itself and increased its flexibility.  
CONRO from Polymorphic Robotics Laboratory of USC Information Science Institute is one of the 
examples of hexapod robot that performing proposed hormone-based distributed control to implement its gait 
reconfiguration between caterpillar and spider gait mode[2]. Shen et. al. mentioned that the number of 
supported leg must meet the stability criteria according to the number of leg that available for walking used. 
It is different to the hybrid wheel-legged robot, namely Hylos is designed and developed by Laboratoire de 
Robotique de Paris (LRP), Universit´e de Pierre et Marie Curie, France whereby to optimize both the balance 
of traction forces and the tipover stability. A specific trajectory and posture control is designed to overcome 
both robot’s locomotion itself and orientation of the main body and sideway wheelbases [10].   On the other 
hand, OSCAR from University Lübeck has proposed the organic self-configurable in hexapod robot as its 
name implied. The aim of the development is to overcome the malfunction leg(s) and optimizing the overall 
energy during locomotion by performing self-amputation [11].   

According to the study goal, both hexapod and quadruped robot stabled walking pattern is crucial. 
This is a fundamental problem need to be solved for every walking robot in moving operation. The 
development of walking pattern of a walking robot is a challenging task because the consideration the degree 
of freedom (DoF) with the support polygon is important for the stability of the robot [12].  Yang J.M. et. al in 
their studies has considered the analysis of the joint failure based on the manipulator kinematics and gait 
patern. Thus proposed the periodic quadruped and hexapod gait to overcome any fault tolerant caused by 
joint failure and to maintain the stability of the robot [13]. On the other hands, Tsujita K. et. al has overcome 
the timing problem between transverse, rotary, pace, bounce and trot gait pattern for quadruped robot studies 
considered the analysis on the suitable gait pattern for the quadruped robot by proposed the adaptive control 
[14]. Other effort has been done by proposed the Gait regulation technique to increase the robustness in 
multi-legged robot walking pattern. For a single duty of a developing gait pattern, need just ignore the 
kinematic mapping and the consideration of keep more legs contact with the surface. Due to the limitation 
recirculation speed, the trot and tripod gait pattern can perform signification faster than other[15]. According 
to the lift and release probabilistic events [3]  for each leg of legged robot, tripod pattern for hexapod robot is 
less and producing faster movement. Quadruped robot on the other hand having between dynamic and static 
stability range which is required good combination of suitable walking pattern. Therefore, in this article, the 
combination of traverse and trot walking pattern has been proposed for the robot model in quadruped mode.  

The proposed Hexa-Quad transformation for hexapod robot is designed with two different forms 
namely center legs disable (CLD) and side legs disable (SLD). The form is decided based on common 
application for the hexapod robot such as converting legs to the free manipulators or disabling the leg for 
energy saving. The proposed transformation technique is created by inspired from the CoM in support 
polygon and leg shoulder angle symmetrical concept proposed previous in [16]. The proposed 
transformation, tripod pattern and traverse-trot pattern are modeled in a hexapod robot real-time model with 4 
DoF leg configurations. 

 
 

2. HEXA-QUAD TRANSFORMATION TECHNIQUES METHOD 
Most of the proposed transformation techniques for multi-legged walking robot are due to the specific 

configuration of the robot itself. In this study, the transformation is proposed for general hexapod robot configuration 
with any number of DOF legs. The proposed Hexa-Quad transformation technique is designed by considering the support 
polygon or stability area of the robot as shown in Figure 1 and Figure 2. The larger the support polygon developed by 
the robots the bigger the probability for the robot to remain upright without overturning when it stops walking at any 
moment during walking period, and this is called statically stable walking or static stability [3].  
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(a) 
 

 
(b) 

 
Figure 1. The proposed forms of Hexa-Quad transformation;   (a) CLD form, (b) SLD form. 

 
 

Therefore in proposed Hexa-Quad transformation technique, two forms of transformation are 
proposed by considering the support polygon and CoM as shown in Figure 1. CLD is realized by lifting up 
two center legs as in sit down mode. This form is not critical to control if compare to the SLD (Figure 1(b)) 
that required a proper initial standing position for other legs. Therefore, this proposed technique introduced 
separated calculation for CLD and SLD as shown in Figure 2 and Figure 3 respectively.  

       As shown in Figure 2, the CoM is at the center of the body (CoB) of the robot and the support 
polygon is followed by the shape of the standing legs. The shape of support polygon is depends on the 
number of touching leg on the ground (red dotted line) as shown in Figure 2 and Figure 3. Thus the new 

maximum extended angle of shoulder for each supporting legs (enabled legs) ( a ) after transformation can 

be determined by using is the length ( l  ) and width ( w ) of the robot body as follows; 
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Figure 2. Shoulder angle determination for CLD transformation mode. 

 
 

 
 

Figure 3. Shoulder angle determination for SLD transformation mode. 
 
 
This rule is applied with reference to the shoulder-based coordination system (SCS)  and CoB-based 
symmetrical approach [16]. Moreover, the rule is very important for the proposed SLD form mode which is 
side legs are disabled from walking used. The other legs need to be reinitialized its shoulder’s angle using 
Eq.1. As shown in Figure 3, example situation of two side legs (leg 1 and leg 4) is disabled and other four 
legs (leg 2,3,5 and 6) is reinitialized. The full transformation sequence of proposed Hexa-Quad is presented 
as finite state machine (FSM) as shown in Figure 4.   

Robot body shape also the important factor that need to be considered on selecting proposed Hexa-
Quad transformation form. Commonly, for default hexapod robot, the body design will considered the stable 
position for the leg to move and standing to ensure the CoM always at center of its support polygon. As 
shown in Figure 5, there are three different common shape of hexapod robot’s body that possible to be 
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designed. Moreover the figure also shows that each shape has different support polygon size, sl  and sw , 

with different body size, l and w . Figure 5(a) and 5(b) shows the l w  and w l  makes SLD method 

almost instable to be applied unless the support polygon size is tuned s sl w  to better a  value such as 

Figure 3. It is same to the round body shape with the size l w . Therefore it makes CLD method most 
likely suitable transformation form for common shape of hexapod robot such as existed established hexapod 
robots reported in [17, 18].   
 

 
 

Figure  4. FSM of proposed Hexa-Quad transformation for hexapod robot model. 
 

 

 
(a)                                                           (b)                                                          (c) 

 
Figure 5. Fundamental shape for hexapod robot, (a)hexagon body shape, (b) Rectangular body shape, (c) 

Round body shape. 
 
 

3. WALKING PATTERN AND SHOULDER-BASED COORDINATION SYSTEM  
The sequences of the legs for quadruped and hexapod walking are presented in finite state machine 

(FSM) as shown in Figure 6. On hexapod configuration or hexapod mode as shown in Figure 6(a), tripod 
walking gait pattern is used since it performs fastest walking with minimum area of support polygon in 
hexapod robot stability. On the other hand, traverse-trot gait pattern is selected for quadruped mode as shown 
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in Figure 6(b). This proposed quadruped mode gait pattern performing maximum two legs at a time during 
locomotion which is the fastest for this configuration. Furthermore transverse-trot gait patterns is used and 
designed with SCS kinematics reference as shown in Figure 7 since both hexapod and quadruped 
configuration modes are applied in the same hexapod robot model. In addition the force effective trajectory 
motion as shown in Figure 8 [19] is applied for both walking modes, thus the support phase and swing phase 
equations are generalized as expressed as Eq. 2 and Eq.3. Both positions including vertical leg position ( z ) 
is determined differently in each support and swing phase by using those equations respectively.    

 

 
(a) 

 

 
 

(b) 
 

Figure 6. FSM for (a) tripod gait pattern and (b) traverse-trot gait pattern in hexapod robot model with Hexa-
Quad transformation. 
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where, 

cT = walking cycle time (s),  

t = update time (real-time) (s),   

ext = additional period for applying extra force (s),  

0S = distance of foot placement for one cycle (m), and  

0H = height of leg lift from the initial position (m). 
 
 

 
 

Figure 7. SCS trajectory kinematics motion for a 4-DOF leg of hexapod robot model with proposed Hexa-
Quad transformation 
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Figure 8. A leg motion shape used in hexapod robot model with proposed Hexa-Quad transformation 
 
 

4. RESULTS AND ANALYSIS 
Several simulations running have been setup and run to analyze the potential of the proposed 

method to be implemented in the real-time system. The first simulation in done on the proposed CLD method 
by simulating the real-time hexapod robot model with the 3D model that designed separately [20] as shown 
in Figure 9. Figure 9 shows the center legs (Leg 2 and 5) are disabled after robot stop walking in hexapod 
mode. In this case of transformation, side legs become main legs and ready for quadruped mode walking. The 
initial angle of each main leg for quadruped mode doesn’t change much due to the calculation using Eq.1.  

It is different to the SLD transformation whereby certain steps of initialization needs to be done on 
the remained legs that will be used in quadruped mode walking.  As shown in Figure 10, center legs (Legs 2 
and 5) and side legs are reinitialized (Figure 10(b) and (c)) to appropriate angle before another side legs (Leg 
1 and 4) flipped to the front and disabled (Figure 10(d)).  

 
 

 
(a)                                                                (b) 

Figure 9. 3D model simulation result for CLD transformation, (a) hexapod walking stop, (b) center legs 
disabled 
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            (a)                                                                                  (b) 
 

                                       (c)                                                                                       (d)   
 

Figure 10. 3D model1 simulation result for SLD transformation, (a) hexapod walking stop, (b) center legs 
shoulder angle reinitialized, (c) side legs shoulder angle reinitialized, (d) target legs disabled. 

  
 

This step is important to make sure robot is in stable range and overturning is avoided. Since the 
hexapod model with l w , CLD is used to simulate hexapod mode to quadruped mode transformation. As 
shown in Figure 11, full walking from hexapod mode to quadruped mode is presented.  The tripod walking is 
presented from Figure 11(a) to 11(b) and it stop for CLD transformation as shown in Figure 11(c). The robot 
continued walking in quadruped mode using proposed traverse-trot gait pattern from Figure 11(d) to Figure 
11(f) in reverse path. As shown in Figure 11(c) center legs are disabled and all remaining leg done the 
traverse-trot walking gait pattern as shown detail in Figure 12 via foot motion sample results (z-axis). As 
shown in Figure 12(a), the foot motion started different support phase length after changing mode from 
hexapod mode to quadruped mode. Moreover for center represented by Leg 5 sample results in Figure 12(b) 
shows that foot motion is identically retain in initial position (sit down mode). On the other hand, body mass 
coordination (BMC) in Figure 13 shows stable line for both walking modes although in quadruped mode the 
path of walking is reversing hexapod robot. 

 
 

                                                           
1 3D model simulator is courtesy of Nonami Lab, Chiba University, Japan 
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Figure 11. 3D model simulation results for full walking from hexapod mode to quadruped mode with 

proposed CLD Hexa-Quad transformation, (a) tripod cycle 1, (b) tripod cycle 2, (c) CLD transformation, (d) 
traverse cycle 1, (e) traverse cycle 2 and (f) trot cycle. 
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Figure 12. Position of the foot point on the z axis: (a) sample of leg 1, (b) sample of leg 5. 
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Figure 13. BMC results for hexapod mode to quadruped walking 

 
 
 

5. CONCLUSION 
The performance of both proposed Hex-Quad transformation methods have been presented. Through 

the series of simulations, it was shown that the proposed CLD method is suitable for common hexapod robot 
body with l w   or w l  dimension unless the body is flexible enough to balance the disabled legs 
postion after transformation if SLD is applied. Therefore on the next step progress, the research and 
development will be focused on enhancing the flexibility of the robot body to make sure hexapod body 
always at l w  so that SLD is stable to be used. 
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