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 There are rising interests in developing techniques for data mining. One of 

the important subfield in data mining is itemset mining, which consists of 

discovering appealing and useful patterns in transaction databases. In a big 

data environment, the problem of mining infrequent itemsets becomes more 

complicated when dealing with a huge dataset. Infrequent itemsets mining 

may provide valuable information in the knowledge mining process.  

The current basic algorithms that widely implemented in infrequent itemset 

mining are derived from Apriori and FP-Growth. The use of Eclat-based in 

infrequent itemset mining has not yet been extensively exploited. This paper 

addresses the discovery of infrequent itemsets mining from the transactional 

database based on Eclat algorithm. To address this issue, the minimum 

support measure is defined as a weighted frequency of occurrence of an 

itemsets in the analysed data. Preliminary experimental results illustrate that 

Eclat-based algorithm is more efficient in mining dense data as compared to 

sparse data. 
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1. INTRODUCTION  

Big data concerns the large volume and complex structured and unstructured data [1, 2].  

The primary key of big data is to obtain valuable information or knowledge for future action.  

The information or knowledge mining process has to be very efficient and speedy in runtime during  

the process of storing all observed data. Big data possess many challenging issues of data mining and 

information processing. For most of the applications such as e-commerce, industry, and medicine,  

the challenge is to discover and extract valuable knowledge from big data for prediction services support.  

Data mining [3, 4] plays an essential role in big data solutions since it can extract valuable 

knowledge from the complex systems. It is a subfield of computer science which blends many techniques 

from statistics, data science, database theory, and machine learning. The objective of data mining is to predict 

the future or to understand the past. Prediction is essential to estimate future work by analyzing the existing 

data. However, several data mining techniques aim at discovering patterns. Approaches for identifying 

patterns in data can be classified by the types of patterns that they discover. Some common types of patterns 

found in databases are clusters, itemsets, trends, and outliers. 

Itemset mining [3-5] is one of the well-known tasks in discovering valuable correlations among 

data. There are two types of itemset mining that usually can be found in a database such as frequent and 
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infrequent. Frequent itemset mining focuses on patterns that frequently occurred, while the infrequent itemset 

mining, highlights on patterns that rarely occurred. Usually, the itemset mining algorithms target  

the extraction of frequent itemsets that have a high frequency in the transactional database. However,  

the infrequent itemsets with low support also can produce potential vital association rules among itemsets.  

It may contribute a significantly reliable decision support system. In the infrequent itemset mining, the first 

stage is to find out the infrequent itemsets from the transaction database. Followed by the second stage is to 

search out the association rules according to infrequent itemsets. 

Any algorithm shall find the same set of rules, although their computational efficiencies and 

memory requirements may be different. The two basic algorithms of infrequent mining are Apriori and  

FP-Growth. Two types of data layouts which are usually employed in itemset mining to represent databases. 

They are the horizontal and vertical layout. In the horizontal database layout, each transaction consists of  

a set of items whereby the database is a set of transactions. Most Apriori-based algorithms employ this type 

of layout while FP-Growth uses both data layout for the mining purpose. 

In this article, analysis performance on the infrequent mining using the R-Eclat algorithm will be 

discussed. Each variant of R-Eclat algorithm has a different work-flow. Thus, through experimentation,  

the difference of achievement in running time allows the determination of the fastest R-Eclat variant in 

mining infrequent itemset. According to the experimentation, IF-Diffset demonstrates the fastest performance 

with the lowest running time during the mining processing in both sparse and dense data. 

 

 

2. RESEARCH METHOD  

In the past few years, infrequent mining has made a leap in data mining. Infrequent patterns usually 

applied in diverse areas comprising biology, medicine, and security. In the medical domain, by analysing 

clinical databases of patients' diseases, the discovered infrequent patterns or trends will assist the medical 

officer to make decisions about the medicine prescribe or clinical care. 

This paper addresses the problem of mining infrequent itemsets from transactional datasets.  

Let itemset I= {i1, i2, …, im} be a set of data items. More specifically, k-itemset denotes as a set of k items in 

I. A transactional dataset T= {t1, t2, …, tn} is a set of transactions, where each transaction tq (q  [1, n]) is  

a set of items in I and is characterized by a transaction ID (tid). The support (frequency of occurrence of an 

itemset) of an itemset is the number of transactions containing I in T. An itemset I is infrequent if its support 

is less than or equal to a minimum support threshold. Otherwise, it is called to be frequent. Given  

a transactional dataset T and a minimum support threshold, the infrequent itemset mining problem involves 

determining all infrequent itemsets from T. 

Apriori [6, 7] algorithm is the most commonly itemset mining algorithms that uses a breadth-first 

search and the downward closure property. It is usually adopted horizontal layout to represent the transaction 

database and the frequency of an itemset is computed by counting its occurrence in each transaction. Apriori 

discovered rules by exploiting support and confidence requirements and using the threshold to prune  

the search space. But, it is not efficient to find a low-support rules. Using Apriori, it needs to wade through 

thousands of itemsets (often having high support) to find the infrequent itemsets. 

Another algorithm is to use a tree-based approach. Most tree-based infrequent pattern mining 

approaches follow the traditional FP-Growth algorithm [8]. FP-Growth [4] employs a divide and conquer 

strategy and a FP-tree data structure to achieve a condensed representation of the transaction database. 

It is a two-pass approach and is only affordable when mining a static dataset.  

Liu et al. [9] proposed Multiple Support Apriori (MSApriori) to deal with the infrequent itemset 

by using multiple minimum support in a transactional database. In their research premise, they note that 

several itemset are rarely occurs in dataset. They cannot contribute to rules generated by Apriori, even though 

they may participate in rules that have a very high confidence. They overcome this problem with a technique 

whereby each item in the database can have its own minimum item support (MIS). By providing a different 

MIS for different items, a higher minsup can be set for rules apply on frequent items and lower minsup is 

rules that include infrequent items. Rahman [10] has designed the Online Apriori-Infrequent algorithm.  

This algorithm considers the support value but does not use the confidence value. It efficiently uses support 

to compute an anomaly score for the record. It determines whether this record is anomalous or not on the fly. 

An anomaly score is assigned to each packet (record) based on whether the record has more frequent or 

infrequent patterns. This algorithm improves the join and prune step of the traditional Apriori algorithm with 

a constraint. The constraint avoids joining itemsets not likely to produce frequent itemsets as their results, 

thereby improving efficiency and run times significantly.  

Haglin and Manning [5] introduced an algorithm known as MINIT (Minimally Infrequent Item set) 

for mining minimal infrequent items by sorting and ranking items based on the support. The items that hold 

support less than minsup are selected. Then, only the transactions which contain those items are chosen for 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 9, No. 6, December 2019 :  5446 - 5453 

5448 

further processing. A ranking list of items is prepared by calculating the support of each items and then 

created a list of items in ascending order of support. MINIT is suitable for a small size of dense dataset. 

Extension to MINIT, Gupta [11] has proposed a technique called minimally infrequent itemsets that is also 

mentioned as MII.  

MII This technique is designed based on Inverse FP-Tree (IFP). The IFP-Tree recursively mines 

minimally infrequent itemsets by separating the IFP-tree into two subtrees called as projected and residual. 

The projected database corresponds to the set of transactions that contains a particular item. A potential 

minimal infrequent itemset mined from the projected tree must not have any infrequent subset. This is 

because the itemset itself is a subset. A residual tree for a particular item is a tree representation of  

the residual database corresponding to the item. The use of residual trees reduces the computation time and 

suitable for large dense datasets. 

The RP - Tree algorithm was developed by Tsang et al. [12] to avoid the expensive itemset 

generation and pruning steps by using a tree data structure. It is designed based on FP-Tree and utilized  

a two-pass approach to find the infrequent patterns. RP-Tree executes a database scan to count the item 

support. Then, during the second scan, only the transactions which include at least one rare item will be used 

to build the initial tree and prunes the others. The proposed RP-Tree algorithm is an improvement over these 

existing algorithms in three ways as follows:  

 RP-Tree avoids the expensive itemset generation and pruning steps by using a tree data structure, based 

on FP-Tree, to find rare patterns.  

 RP-Tree focuses on rare-item itemsets which generates interesting rules and does not consume much 

time looking for uninteresting non-rare-item itemsets.  

 RP-Tree is based on FP-Growth, which is efficient at finding long patterns, since the task is divided into 

a series of searches for short patterns. This is especially beneficial since infrequent patterns tend to yield 

longer path than frequent patterns.  

Generally, Apriori and tree-based algorithms are developed to find infrequent itemsets. Tree-based 

approaches are more efficient as they do not require a candidate generation and multiple data scanning  

as Apriori. However, building the tree for rare pattern mining is more complicated. Recently,  

Jusoh et.al [13, 14] proposes a vertical data representation, called R-Eclat algorithm, an Eclat-based 

approaches using intersecting transaction ID. Eclat-based [15] takes a depth-first search and adopts a vertical 

layout to represent databases, in which each item is represented by a set of transaction IDs (also called  

as tidsets).  

The remainder of this paper is organized as follows: Section 3 discusses the R-Eclat algorithm in 

details. The results of the performance analysis will be presented in Section 4. Section 5 sums up the paper 

with conclusions. 

 

 

3. R-ECLAT ALGORITHM 

In [15], Zaki proposes Equivalence Class Transformation (ECLAT) algorithm, which transforms  

the original dataset into a vertical database format. Each single item is stored in the dataset together with  

a list of transaction-ids (tidset) where the item can be found. ECLAT considers the frequency of a pattern P 

as the length of the transaction-ids list. This algorithm determines that any itemset is frequent if it lists at least 

fmin transaction-ids, i.e. |t (P)|≥ fmin. An important feature of ECLAT is the fast intersecting tids list, thus  

the size of tids list is one of the main factors affecting the execution time and memory usage of ECLAT. 

Nevertheless, its execution time is less than Apriori algorithm. ECLAT is the first algorithm that uses  

a vertical data layout and very efficient for large itemsets but less efficient for small itemsets. The frequent 

itemsets are determined using simple tids list intersections in a depth-first search graph. A variation of  

the Eclat algorithm that is implemented using different structure are called tidset (Eclat) [15], diffset [16], 

sortdiffset [17] and iEclat [13, 18]. Motivating from the fast intersections of tids list in ECLAT as well as 

how does it affects the running time and memory usage, it brings the author to explore and discover a further 

research in this algorithm especially for mining infrequent patterns.  

The R-ECLAT algorithm is a novel technique that specially generated for infrequent patten 

mining [14, 19]. It is designed based on the traditional ECLAT algorithm. This algorithm uses a depth-first 

search to achieve a condensed representation of the transaction database. It utilizes column-based (vertical) 

rather than row-based (horizontal) to represent the dataset. R-ECLAT counts the support through determining 

support of any k-itemsets on the intersecting tid-lists of its k-1 subsets. In the R-ECLAT algorithm, 

the traditional tidset, diffset and sort-diffset variants are enhanced to ensure that it is appropriate for mining 

an infrequent pattern. The Figure 1 illustrates the model of R-Eclat division formats which are named 

as IF-Tidset, IF-Diffset and IF-Sortdiffset where IF is represented as infrequent. 
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Figure 1. R-Eclat algorithm model [16] 

 

 

The main steps in R-Eclat over the dataset are listed as follows: 

Step 1 (Generation): scans the database to generate k-itemset candidates from two frequent (k-1)-itemsets 

and its support is counted.  

Step 2 (Prune): if its support is greater than the minimum support threshold, then it will be discarded, 

otherwise it is denoted as infrequent itemsets and used to generate (k+1)-itemsets. 

Step 1 is repeated until no candidate itemset can be generated. Subsequently, the minimum support 

threshold value (MSTV) is considered as a benchmark to discover a low occurrence in each dataset. In [18], 

MSTV is determined in terms of the percentage,  

 
 

100
∗   

 

where 

  = User specified minimum support value 

  = Total of records in datasets. 

In each loop, starts with the first loop, if the support is less than or equal (<=) to min_supp, then, 

 In IF-Tidset, obtain the result of intersection between ith column and ith+1 column and save to  

the database  

 In IF-Diffset, instead of using intersection, it acquires the result of diffset (difference intersection set) 

between ith column and ith+1column and saves the result to the database 

 In IF-Sortdiffset, itemsets are first sorted in descending order which depends upon the highest to lowest 

value of itemset’s equivalence class. Then the diffset value between ith column and ith+1 column will be 

encountered and saved to the database. 

The detail experimentation regarding the IF-Tidset, IF-Diffset and IF-Sortdiffset format via different 

data characteristics are presented in the next section. 

 

 

4. RESULTS AND DISCUSSION 

All experiments are performed on two different processors: - 1) LENOVO Ideapad, Intel ® Core ™ 

® i5-4210U CPU @ 2.40 GHz with 8GB RAM in a Win10 64-bit platform and 2) HP Notepad, Intel ® Core 

™ ® i7-3520M CPU @ 2.90 GHz with 8GB RAM, in a Win10 64-bit platform. The raw benchmark datasets 

are retrieved from Frequent Itemset Mining Dataset Repository (http://fimi.ua.ac.be/data/) in a *.dat file 

format. For the ease of the uses, the selected benchmark data sets are transformed to Structured Query 

Language (SQL) format. All R-ECLAT variant algorithm formats are implemented in PHP programming. 

For the experimentation purposes, the datasets are first ‘cleaned’, where the instances consist of incomplete 

data and attributes of only one categorical value is removed. In this experiment, a thousand rows of itemsets 

have been randomly processed for mining purposes.  

In order to evaluate the performance of the R-ECLAT algorithm, four datasets are used. They are 

datasets chess, retails, mushroom and T40I10D100K. Table 1 depicts the characteristics of the chosen 

datasets. For the experimental purpose, the minimum support threshold value is set at 3%. 
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Table 1. Datasets characteristics 
Datasets Records (Transaction) Length (Attribute) Size (KB) Data Characteristic 

Chess 3196 37 335 Dense 

Mushroom 8125 43 558 Dense 
Retails 88162 68 5143 Sparse 

T40I10D100K 100001 32 15116 Sparse 

 

 

The experimentation involves all R-ECLAT algorithm variants consist of IF-Tidset, IF-Diffset and 

IF-Sortdiffset. The performance between two processors (Intel core i5 and Intel core i7) is measured in terms 

of its runtime in both dense and sparse datasets. Figure 2 until Figure 5 shows the performance evaluation on 

execution time of each datasets for the R-ECLAT via serial processing. 

Based on the observation of performance analysis for both processors as illustrated in Figure 2 to 

Figure 5, the runtime via Intel core i5 seems to drastically lose its performance over Intel core i7 in both 

dense and sparse datasets. In those datasets experimentation, IF-Diffset is extensively outperforms in mining 

infrequent itemsets with the lowest execution times as compared to IF-Tidset and IF-Sortdiffset. The results 

also illustrate that the next best performance are IF-Sortdiffset and IF-Tidset respectively. The result of these 

experiments can be concluded that there are two factors contribute to the overall performance of  

the infrequent itemset mining. First, the processor architecture and the second is the nature of datasets in 

terms of how many times the occurrence of itemsets. Nevertheless, in serial processing, different speed of 

processors does not show any significantly impact in mining the data. The experimental result only shows  

a slightly difference between Intel Core i5 and Intel Core i7 which are in average of 6% in sparse dataset and 

12% in dense data. This may suggest that the parallel processing approach is relatively surpass  

the performance of a serial processing. 
 

 

 
 

Figure 2. Intel core i5 vs Intel core i7: performance evaluation for mushroom 
 
 

 
 

Figure 3. Intel core i5 vs Intel core i7: performance evaluation for chess 
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Figure 4. Intel core i5 vs Intel core i7: performance evaluation for retails 
 

 

 
 

Figure 5. Intel core i5 vs Intel core i7: performance evaluation for T10I4D100K 
 

 

5. CONCLUSION  

In this paper, R-Eclat is presented as a potential solution in the infrequent itemset mining issues as 

mentioned in the earlier section. The experimentation results show that the data characteristic can greatly 

impact the running time. There are many other measurement parameters that can be imposed on  

the R-ECLAT algorithm to demostrate either the performance result between its variants remain the same or 

otherwise. In support measure, the IF-Diffset is found to be a better algorithm format in encountering  

the infrequent itemsets of the transactional database. The experimentation results also show that the data 

characteristic can greatly impact the running time. At present, R-Eclat is still undergoing a continuous 

enhancement in accelerating the mining process of infrequent itemset in order to be a preferred solution for  

a parallel or serial processing. 
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