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Abstract. Research on inventory models has been conducted intensively, including the model for stochastic 

demand. However, inventory models for stochastic demand are not easy to solve using an exact algorithm. In 

this paper, we develop a Monte Carlo simulation method to solve inventory problems with stochastic and 

intermittent demand. Simulation is conducted to evaluate continuous and periodic review policies. The 

simulation models are optimized using the evolutionary algorithm. The models are applied to data from one 

bicycle shop in Indonesia for five different items. The result shows that the economic order quantity (R,Q) 

policy is better than the (s,S) policy for two items and it is better than the (S,T) policy for three items. 
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1. Introduction 

 

Continuous and periodic review inventory policies have 

been analyzed by many researchers and applied in many 

organizations. The inventory models were started with 

Economic Order Quantity (EOQ) by Harris in 1913. The 

models were developed by many researchers according to 

the development of industrial systems. Andriolo et al. [1] 

addressed 216 papers to show the evolution of the inventory 

models. They categorized research according to input data 
in three categories, which are deterministic models, 

stochastic models and fuzzy models.  Andriolo et al. [1] 

found that only limited articles were related to uncertain 

parameters. One reason of these limited articles is the 

complexity of algebraic operations among random 

parameters with a probability distribution. However, the 

stochastic approach is more realistic to deal with real 

industry problems. Inderfurth and Vogelgesang [2] 

presented a simple approach for calculating dynamic safety 

stocks for manufacturer’s stochastic production/inventory 

problems. An exact optimal solution for a periodic-review 

inventory model with multiple retailers and stochastic 
demand was developed by Wang [3]. Bean, Joubert, and 

Luhandjula [4] compared (R,Q), (s,S) and a hybrid inventory 

policy in environments characterized by uncertainty 

resulting from extreme points. They showed that the hybrid 

policy is more reliable in an extreme scenario. The 

applications of EOQ for stochastic demands are important in 

practice. Chuang and Chiang [5] investigated the EOQ 

model that was applied for stochastic demands in General 

Motors’ dealerships. Chen, Li and Jin [6] applied EOQ in 

agri-products for stochastic demands. They used a system 

dynamic simulation model to find the optimal lot size and 
replenishment interval.  

Many researchers employed simulation methods to 

handle complexity of stochastic inventory problems. Kochel 

and Nielander [7] used combination of simulation and an 

optimization tool to investigate a multi location inventory 

model. They used simulation since analytical models have 

difficulty to handle various restrictive assumptions. Diaz, 

Bailey, and Kumar [8] solved a stochastic inventory model 

using simulation based optimization. The simulation based 

optimization combined simulated annealing, pattern search 

and ranking selection methods. A single simulation run of 

inventory process to set a target level required for a given 

service level was developed by Betts [9]. He concluded that 

the new model is easy to use by inventory managers in 
practice since the model does not require user modeling of 

functional form or parameters of the demand distributions. 

Do Rego and De Mesquita [10] used a simulation model to 

analyze the best combination of difference alternatives to 

record demand data, demand forecasting models and 

demand distribution during lead times. An (s,S)  inventory 

policy with stochastic demand and lead time was developed 

and solved by Ekren and Ornek [11] using simulation. They 

concluded that they obtained good results within reasonable 

computation times to solve a complex problem by using 

simulation.   
In this paper, the simulation model is optimized using an 

evolutionary algorithm. Arabzad, Ghorbani, and Tavakkoli-

Moghaddam [12] concluded that an evolutionary algorithm 

is capable to solve location-inventory problems by 

considering multi-objective, different transportation modes 

and third-party logistics providers. An evolutionary 

algorithm method was used to solve an inventory problem 

and the solutions were effective. Sadeghi and Niaki [13] 

used an evolutionary algorithm to solve a supply chain 

model with single vendor and multiple retailers, and the 

demand is fuzzy. The literatures above show that the 

evolutionary algorithm is good to solve some inventory 
problems.  

In practice, stochastic and intermittent demand is found 

in many businesses, especially in retail. So, in this paper we 

try to solve inventory problems in real environment where 

demand is stochastic and intermittent. Customer demand 

usually cannot be predicted, random and not everyday 

occurred. This demand structure is not easy to solve 

analytically so we use simulation to solve the problem. 
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Since demand is assumed independent each day, a Monte 

Carlo simulation can be used. An evolutionary algorithm is 

combined with the simulation to get an optimal solution. 

The evolutionary algorithm method is applied to data from 

one bicycle store to find the best variable for some policies. 

In this paper, we use a continuous review policy, which is 

economic order quantity (R,Q), and some periodic review 

policies (s,S and S,T).  

 

2. Research Methods 

 
The inventory simulation model using Monte Carlo in 

this research uses day by day calculation, where inventory 

level in period t can be formulate as: 

                   (1) 

Where: 

It = inventory at the end of period t 

Qt = order quantity arriving at period t 

Dt = demand at period t  

 

In this paper, continuous review policies and periodic 
review policies are simulated to solve an inventory problem 

with stochastic demand in a bicycle store and to find the 

policy that is suitable to solve the problem. In continuous 

review policies, fixed order quantity (Q) of an item is 

ordered when the stock reach the reorder point (R). The 

policy can be illustrated in Figure 1. A company which uses 

this policy should review its stock continuously and it takes 

time to do this review process every day. Periodic review 

policies are different from continuous review policies. In 

this policy, stock is reviewed in a specific period such as 

weekly or monthly, and an order is set when the stock 

reaches a specific quantity. Figure 2 shows a periodic 
review policy with lead time (L) and review time (T). In a 

deterministic and constant demand, continuous review 

policies have better inventory cost than periodic review 

policies do but they need bigger effort. 

 

 

Figure 1. Continuous review Policy [14] 
 

 

Figure 2. Periodic review Policy [14] 

In this paper, three continuous review policies, which 

are economic order quantity, base stock level and two bin, 

are discussed. The first policy in continuous review policy is 

(Q,R). In this policy, quantity Q is ordered when the stock 

level reaches R value. Value of Q and R can be derived 

using equations (2) and (3): 

   
   

 
                   (2) 

                   (3) 
Where: 

Q = order quantity 

A = setup cost 

   = demand rate 

h = holding cost per unit per period  

s = safety stock 

z = service level  

  = standar deviation 

 

The second continuous review policy is a base stock 
level. In this policy, an item will be ordered immediately 

when the stock level below the base stock value. Ordering 

quantity is equal to the base stock level minus the stock level 

in that period. The third policy is the two bin policy. In this 

policy, an item will be ordered if the first bin is empty. The 

concept of two bin policy is the same as the (Q,R) policy. 

For the periodic review policy, (S,T) and (s,S) policies 

are evaluated in this paper. The periodic review period base 

(T) is derived from: 

   
  

  
          (4) 

 

In the (S,T) policy, every T period the order quantity is 

equal to the maximum stock level (S) minus the stock level 

in that period. The last policy that is evaluated in this paper 

is (s,S) policy. In this policy, inventory is evaluated every T 

period, where T is derived from equation (4). However, 

different from the (S,T) policy, every T period the item will 

be ordered only when the stock level below the s value. The 

order quantity is equal with S minus the stock level at that 

period.   

The model is started from real condition where demand 
is collected for 18 months. Demand is modeled using a 

specific probability. The example of Monte Carlo 

simulation can be seen in Figure 3. Monte Carlo simulation 

is used since the demand is not constant so traditional 

analytic methods cannot be used. An evolutionary algorithm 

at Excel is used to find the optimal solution. 
 

 
 

Figure 3. Monte Carlo simulation in Excel 
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In Figure 3, column A is the simulated date, and column 

B is daily demand that is generated randomly using a 

specific probability such as described in Table 2. Columns C 

and D show calculation of inventory in the beginning and at 

the end of a day. The on hand inventory is equal with initial 

inventory minus demand plus Q in the same period as 

described in equation 1. Column E shows ordering quantity 

that is the same as EOQ for (R,Q) policy. If inventory level 

at the end of a day reach R units or below, then Q units of an 

item will be ordered. The values of R and Q are derived 

from equations 2 and 3. Columns F, G and H are used to 
calculate inventory, shortage and ordering costs. Inventory 

cost is equal with on hand inventory times inventory cost 

per unit, shortage cost is equal with shortage quantity times 

shortage cost per unit, and order cost is equal with ordering 

cost when the store orders Q products and zero if not. The 

simulation model is solved using an Evolutionary Algorithm 

to get the optimal values of R dan Q as shown in Figure 4. 

An evolutionary algorithm is used to solve the problem 

since this metaheuristic method can find near optimal 

solution and this algorithm is provided by Excel.  The only 

constraints are minimum and maximum values of R and Q. 
The minimum values of R and Q are zero and the maximum 

values are set big enough so the optimal decision variables 

of R and Q are not the same as the maximum values. The 

simulation is run up to five years and replicated five times.  

 

 
 

Figure 4.  Evolutionary Algorithm solution using Excel 

 

3. Result and Discussion 

 
The inventory policies were evaluated using data from a 

bicycle store. Five bicycle products were used, where all of 

them are the most favorite products in that store. Daily 

demand data was collected from January 1, 2014 until June 

30, 2015. The ordering lead times varied from 2 to 3 weeks. 

The inventory holding cost, shortage cost and initial on hand 

inventory are shown in Table 1. The ordering cost is equal 

to Rp. 21,000. 

 
Tabel 1. Inventory holding cost, shortage cost, and initial on hand 
inventory 

Product 
Inventory 

Holding Cost (rupiah) 

Shortage Cost 

(rupiah) 

On hand Inven-

tory (units) 

RY828S  3,865  50,000 209 
RY838 4,348 45,000 72 

RY9682CJ    9,180  65,000 88 
16FIB 19,487  80,000 131 
18FIB  21,742  90,000 0 

Table 2. Data probability for 16FIB product 

Daily demand Occurrence Probability Cumulative 

0 256 0.46886 0.46886 
1 144 0.26373 0.73260 
2 51 0.09341 0.82601 
3 42 0.07692 0.90293 
4 21 0.03846 0.94139 
5 14 0.02564 0.96703 

6 4 0.00733 0.97436 
7 4 0.00733 0.98168 
8 1 0.00183 0.98352 
9 1 0.00183 0.98535 
10 3 0.00549 0.99084 
11 4 0.00733 0.99817 
16 1 0.00183 1 

 

Simulation was conducted day by day for five years and 

five replications were used. Demand data was used to set 

demand probability for each day. Demand probability was 

used to generate data for the next five years. The example of 

data probability for 16FIB product is shown in Table 2. 

The optimal values of s and S were derived using the 

Evolutionary Algorithm, where the base value of T was 

derived using equation 4. The evolutionary algorithm was 

used since the model is a nonlinear model. The optimal 

values of s and S for every item can be seen in Table 3.  
 
Tabel 3. The optimal values of s and S  

Items s (unit) S(unit) 

RY828S 270 327 
RY838 230 275 
RY9682CJ 115 142 
16FIB 45 59 
18FIB 46 58 
 

Since simulation method was used and demand quantity 

could be different in every replication, performance of each 

method was compared using inventory cost per unit. The 

total inventory cost per unit for every method for 16FIB 
product is shown in Table 4, where the total inventory cost 

per unit is total inventory cost derived from the simulation 

divided by total item sold.    
 

Table 4.  Total inventory cost per unit for 16FIB product 

Policy 
Replication 

1 2 3 4 5 

S,T  11,475,600  11,394,804   11,439,144   11,486,664   11,607,792  

s,S  10,277,792     9,547,328     9,344,088   11,264,204     9,778,748  

Q,R   9,075,504     8,862,084      8,967,768      9,532,248    10,696,076  

Base Stock  24,658,652   24,768,192    25,101,768    24,579,480    26,220,776  

Two Bin   9,075,504     8,862,084     8,967,768     9,532,248   10,696,076 

 

The best policy for every product using simulation is 

shown in Table 5. Table 5 shows that (Q,R) policy is the 
best policy for all product. The result in this case study 

supports the previous research’s result that continuous 

review policies have smaller inventory cost than periodic 

review policies. However the continuous review policies 

need more effort by checking inventory level continuously. 

For some products, the periodic review policies are not 

significantly different than the continuous review ones, 

except for product RY9682CJ. In some products, (s,S) 

policy has better performance than (S,T) policy but not for 
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RY828S, so the store prefers to use (s,S) policy than (S,T) 

policy. 

   
Table 5. Best policy for every product 

Product Best Policy  

RY828S S,T; Q,R 
RY838 S,T; s, S; Q,R  
RY9682CJ Q,R  
16FIB s, S; Q,R 
18FIB s, S; Q,R 

 

4. Conclusion 

 

Inventory cost varies depending on the business field, 

however inventory cost is quite high. Due to this reason, 

many research focus on inventory to minimize the cost, 

however not many research emphasize on solving stochastic 

inventory problems. In this paper, we analyze performance 

of some inventory policies with stochastic and intermittent 
demand. Simulation and evolutionary algorithm were used 

to solve the problem since the problem is difficult to solve 

using an analytical solution. 

Comparison of different policies was conducted using 

data from a bicycle store in Indonesia. Five products that 

have high selling frequencies were used. Demand data was 

collected to be used as demand prediction for the simulation. 

Simulation was conducted for five years and five replica-

tions.  

The result shows that the performance of (Q,R) policy is 

the best for all products, however the policy is not signi-
ficantly different than (s,S) policy for three products and 

(S,T) policy in two products. The result can give recom-

mendation for managements to use a continuous review 

policy to reduce their inventory cost. However, they still can 

use a periodic inventory policy if they cannot review their 

stock level daily due to the big variety of products or lack of 

inventory systems. This paper can be extended by including 

some conditions that are found in real environments such as 

defect products or warranty.  
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