
(IJID) International Journal on Informatics for Development

 Vol. 7, No. 1, 2018, Pp. 13-19

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

13

A Scanner and Parser for Z Specifications

Maria Ulfah Siregar

Informatics Department

Faculty of Science and Technology, UIN Sunan Kalijaga

Yogyakarta, Indonesia

maria.siregar@uin-suka.ac.id

John Derrick

Department of Computer Science

The University of Sheffield

United Kingdom

Abstract—Coding either a scanner or a parser from beginning has many disadvantages such as tedious, could raise many errors, needs

much times and effort, etc. All of these could result less scanner or parser. This paper describes our research on implementing a scanner

and parsers for Z specifications. Rather to code them from scratch, we use tools that have specialities on creating such tasks. These tools

generate several Java files which can be integrated with a main program in Java. Our research produces a scanner and parser for Z

specifications. These tools may benefit Z specifications to be studied further.

Keywords-Z2SAL; Scanner; Parser; JFlex; BYACC/J

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

(IJID) International Journal on Informatics for Development,

Vol. 7, No. 1, 2018

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

14

I. INTRODUCTION

Z2SAL is a translator for Z specification documents into
SAL specification documents. It has been known also as a
scanner and parser for Z specifications, specifically a hand-
written scanner and a hard-coded parser. It is since Z2SAL
researchers wrote their scanner and parser by using Java
language; it is a language that is not specialized for writing
scanners and parsers.

Thus, it is one reason for us not to reuse the Z2SAL scanner
and parser to implement our Z scanner and parser. Other reason
is that it will take time and be an effort to hand-write such a
scanner and hard-code such a parser, such as to define regular
expressions, and Z operators' precedencies and associativity, to
match a sequence of tokens to one of the Z rules, and others.

Another reason is that a JFlex lexer has been known to be
faster than a hand-written scanner/ lexer. Although a BYACC/J
parser is not as fast as a hard-coded parser, the BYACC/J parser
is easy to write and modify.

Moreover, to learn code of somebody else is more difficult
rather than to write code from scratch. More importantly,
Z2SAL scanner and parser were integrated into the design of
other parts of Z2SAL.

II. LITERATUR REVIEW

A. A Z Scanner

A Z scanner will scan Z tags in Z specifications. A successful
scanning will pass tokens, which are obtained from accepted Z
tags, to a parser for further process. Otherwise, a lexical error on
an involved line will be reported.

One of scanner generator that can be used to produce a
scanner for Z specification documents is JFlex. JFlex is a Java
lexical analysis generator (scanner generator) [1]. JFlex 1.6.1 is
the current stable version which was released on 16 March 2015.
It is free software which is published under a BSD-style license.

JFlex will generate a .java file from a JFlex specification
which has an extension .flex. Thus, this generator has an input
which is the JFlex specification.

The Java file has one class that consists of code for the
scanner. This code is a lexer that reads input, matches the input
against the regular expression, and runs an associated action. A
lexer is a part of a compiler, specifically the first front-end of it.

The lexer will match keywords, comments, operators, etc.
Then it will generate a stream of input tokens for a parser.
However, it can also be used for other intentions.

Built on a deterministic finite automaton (DFA), a JFlex
lexer is fast since backtracking is not performed. Several parser
generators can be integrated with this lexer. For example: the
LALR parser generator Construction of Useful Parsers (CUP)
by Scott Hudson, the Java modification of Berkeley Yet Another
Compiler Compiler (YACC), BYACC/J, by Bob Jamison [2].

To interface a generated scanner with BYACC/J, the
command %byacc is used. It is will be discussed later on.

B. A Z Parser

This section describes the Z parser. The parser will read
tokens passed by the scanner, and try to process whether these
tokens match any rule in Z grammar specified in the Z parser.

This section contains several sub-sections, which begins
with an introduction to the BYACC/J parser generator.

An extension to the Berkeley 1.8 YACC-compatible parser
generator can be used to implement a parser for Z specification
documents [2]. It is BYACC/J, which is available in Microsoft,
Linux, Macintosh, and SUN Solaris platforms [3], with version
1.15.

By a flag "-J", the standard YACC tool will generate one or
more Java parser files from a YACC source file .y. However,
BYACC/J can also generate C/C++ parsers [3]. These Java files
can be compiled to produce a LALR-grammar parser.

One of these files, which is usually generated, is the
Parser.java. By reading this file, a user can see how a parsing
algorithm of YACC works. This Java file generates a class
which is an extension of Thread.

Another Java file is the ParserVal.java. The current version
of BYACC/J allows a user to define an int, a double, a String,
or an Object values.

C. Z2SAL

The idea of translating Z into the SAL input language was
due to Smith and Wildman [4] at the University of Queensland,
Australia. However, since the basic idea given in [4], the idea
was implemented in a tool set, and the current Z2SAL is
extended in a different direction. In doing so, it has also had to
tackle optimization issues [5], and thus is quite different from
the ideas as originally envisaged.

Z2SAL translates a Z specification into a SAL module. This
module will group a number of definitions including types,
constant and modules for describing a Z states transition system
[6].

Currently, the tool has two operating modes which it will
either translate a single Z specification into the input format of
SAL for model checking purposes, or translate a pair of Z
specifications for refinement checking purposes [7]. The
translated output is placed in the same directory as the source.

Regarding model checking, it is possible to add theorems at
the end of this automaton, to check whether certain properties
always hold, or eventually hold. However, Z2SAL is able also
to translate properties which are added on the Z specification.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

(IJID) International Journal on Informatics for Development,

Vol. 7, No. 1, 2018

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

15

III. METHOD

This section describes briefly our method on this research.
After study literature, we designed a system which has functions
such as a scanner and a parser. Next is to implement such a
system. This implementation is described here.

A. The Implementation of Our Scanner

After two above sub-sections about a brief introduction to
JFlex, a scanner generator which was used to implement our Z
scanner, and a brief description on lexical specifications, this
sub-section discusses our Z scanner.

Thus, our Z scanner was implemented using JFlex. Our Z
scanner was implemented so it can scan several Z tags. In other
words, our Z scanner does not support all Z tags. For a complete
list of Z tags which can be scanned by our Z scanner, please see
[8].

As mentioned earlier, our scanner does not scan all Z tags as
well as not all of our Z tags were accompanied by actions.
Reasons behind the first statement are to be in line with Z2SAL
as the translator does not support all Z tags.

Thus, there is no point here to be able to scan a token
represents a Z tag which is not supported by Z2SAL and
sometimes it is not available also on [9].

Other reason for us not to include all Z tags is that it is not
difficult to add a new token. Another one is our Z specifications
could be scanned by our Z scanner, though this scanner does not
support all Z tags.

In other words, this scanner has implemented a list of Z tags
which are suitable to our Z specifications.

Several Z tags which were not specified in our Z scanner are:

- \nexi, \nexists for representing "∃";

- \bool for "B";

- \iter for "iter";

- \pred for "pred";

- \post for "post";

- \items for "items";

- \bagcount for "count";

- \buni for "⊎";

- \varsdef for "≙";

- R+ for transitive closure;

- R* for reflexive-transitive closure.

Let us move to three parts of our scanner. There was no user
code which was put in the first part of our JFlex specification.
The name of our JFlex specification is Lexer.flex.

For the second part, the %byacc directive was added.
Another directive was added in this part, a directive to indicate

a name of the generated Java file. In this scanner, it was defined
as ScannerCl.

At first, Scanner was chosen, but then it turned out that the
latter is one of Java class names. There are two methods
specified in the second part.

The first method is a constructor for the generated Java class.
The second one is a method to get the line number of a particular
line of our Z specification. This method is called by actions of
"." of our regular expression to indicate a lexical error.

There were also declarations of two variables in this part.
Both methods and these two variables were enclosed by "%{"
and "%}".

Z tags were specified in the third part. Several Z tags that
have actions in them, these actions are quite similar in all these
tags. The first action is to assign a matched tag which is returned

by yytext() as a semantic value for the associated parser, shown
as follows:

The JFlex must store this value in yylval before it is returned.
The routine yyparser() is the parser generated by YACC.

The second action is to return a token of the matched tag to
the parser.

The above is an example of the action to return the BZED token
to the parser. This token indicates \begin{zed} tag. Among these
tags, not all of them were implemented with the first action.

JFlex matches input texts to patterns constructed by regular
expressions based on a set of simple disambiguating rules as
follows [10]:

 JFlex patterns only match a given input character or string
once.

 JFlex executes the action of the longest possible matched
input texts.

Thus, if our scanner returns a lexical error while scanning a
particular Z specification, this error can inform us several cases
after a further check on this Z specification.

The first case, the error means that the associated Z tag has
not been specified in our scanner. Having this error, a solution is
to add this tag to our scanner.

yyparser.yylval = new

ParserVal(yytext());

return Parser.BZED;

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

(IJID) International Journal on Informatics for Development,

Vol. 7, No. 1, 2018

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

16

As an example is shown by the below output:

It was generated by our system during running the modified
Cars Park specification (see [8]).

The first line of this specification has been changed to:

Our scanner only recognizes 12pt as the font size.

The second case, the error means the tag, which is available
in our scanner, has been written wrongly. Thus, the associated
tag will be rewritten precisely.

Using the same example as above, below is the output
generated by our scanner:

It is because the example has also been modified. Its fourth line
is misspelt into:

This lexical error should be fixed since the error will push the
system to stop immediately.

In order to proceed to the Z parsing, it indicates no lexical
error which means all Z tags on associated Z specification are
recognized as true Z tags and specified in our Z scanner.

By using the JFlex scanner generator, there were 1,746 states
during a Non-Deterministic Finite Automaton (NFA)
construction of our scanner. This large number of states was
reduced to 778 states in a DFA construction before minimization
and it was reduced again to 566 states in minimized DFA.

There was neither error nor warning detected by the JFlex
scanner generator.

This is shown by Fig. 1.

Figure 1 The JFlex scanner generator

In a case the scanner generation is successful; the generated Java
file will be generated.

This Java file is located in the same place as the JFlex
specification. This generation will generate the ScannerCl.java
file from our scanner.

B. The Implementation of Our Parser

Our Z parser can be seen in [8]. It was represented by a
BYACC/J specification, which was named as Parser.y.

Our parser does not implement all Z rules. The Z grammar
in our BYACC/J specification refers to [9].

Several Z rules that were not specified by our BYACC/J
specification are given in Table 1. Z rules, which were listed in
Table 1, have not been implemented because of several reasons.

The first reason is our examples do not contain any
declaration or predicate which match one of those rules. Another
reason is several of those rules caused the number of shift/
reduce or reduce/ reduce conflicts is even higher. Since then they
were not included in our Z grammar.

Table 1 A list of unspecified Z rules

LHS RHS

schema.exp1 pre schema.exp1

run:

file parse: E:\Google

Drive\Tesis\program\JavaCode\Thesis\src

\carspark.tex

Lexical error on line: 1 : \

C:\Users\MUS\AppData\Local\NetBeans\Cac

he\8.2\executor-snippets\run.xml:53:

Java returned: 1

BUILD FAILED (total time: 3 minutes 5

seconds)

\documentstyle[11pt,oz]{article}

run:

file parse: E:\Google

Drive\Tesis\program\JavaCode\Thesis\src

\carspark.tex

Lexical error on line: 4 : \

C:\Users\MUS\AppData\Local\NetBeans\Cac

he\8.2\executor-snippets\run.xml:53:

Java returned: 1

BUILD FAILED (total time: 1 minutes 2

seconds)

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

(IJID) International Journal on Informatics for Development,

Vol. 7, No. 1, 2018

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

17

pred let Let-

Def.list.pred

Let-

Def.list
Let-Def Let-

Def.list

Let-Def ident == expr

(op.name) ==

expr

op.name _in-sym decor_

pre-sym decor_

_post-sym decor

⦇⦈decor
_decor

pred1 PREREL decor

expr

pre schema.ref
expr0 μ spot.tail

μ
word.schema.text

let Let-

Def.list.expr

expr if pred then

expr else expr
expr4 expr4expr

in-sym INFUN | INGEN |

 INREL

pre-sym PREGEN | PREREL

post-sym POSTFUN

If a Z specification, which has a declaration or predicate
statement does not match any of our Z rules, is given to our
parser, then our Z parser will generate a syntax error. This error
can fall into several sources.

The first source is our grammar does not have a rule of such
a declaration or predicate statement. Solving this problem is by
adding this new rule. This might be necessary to check also
relevant tokens to specify the rule since it can be such a token
has not been specified in our scanner.

The second source is indeed the rule of the declaration or
predicate statement has been specified in our Z grammar.
However, there were conflicts on either declaration or predicate.
For this case, a solution requires a further check on available
grammars and solve any shift/ reduce or reduce/ reduce conflict
if it exists.

For example, is given by the output shown in the right
column. It was generated from the same example used in [8].

This time, the statement in line 5 has been modified
incorrectly into:

Our scanner counts the number of line from 0. Thus, the real
number of line should be added with 1.

The suspicious line is a declaration part in a schema. Our
parser expected that there is “:” between name and type of a
variable.

In the first part of our BYACC/J specification, several
imported packages were declared. The first half of tokens were
declared having string values, whereas the second ones have not
had any values. Tokens were specified using capital letters. All
types of terminal symbols in our parser have also string values.

Precedencies and associativity of several Z operators, which
were formulated in our parser in this first part, can be seen in
Table 2.

These precedencies and associativity follow ones specified
in [9], but not the last two lines. Both these lines were specified
by us.

Table 2 Precedencies and associativity of Z operators

The second part of our parser contains almost Z rules which were
obtained from [9]. However, several of them have been rewritten
to avoid shift/ reduce and reduce/ reduce conflicts. Although
these conflicts exist on our parser, the numbers are less than the
numbers of the same conflicts on original Z grammar.

Not all our rules were accompanied by actions. These actions
store information which will be used on further process.

run:

file parse: E:\Google

Drive\Tesis\program\JavaCode\Thesis\sr

c\carspark.tex

syntax error

Please check line: 4

\nat with length: 4

BUILD SUCCESSFUL (total time: 34

seconds)

count \nat \\

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

(IJID) International Journal on Informatics for Development,

Vol. 7, No. 1, 2018

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

18

One example of our Z rules is discussed here. It is a Z rule to
parse a schema calculus definition. Our parser supports also
many lines in one schema calculus definition box. It is since our
parser passes information about a separator on each different
schema calculus definition.

A separator which separates each line containing different
schema calculus will be put on the llSchCal list. This list will be
used later in the schema calculus operation.

The associated Z rules to process the separator is shown as
follows:

schema.exp non-terminal can be matched by two rules. One of
them is word.schema.exp1 and it will match with either
schema.exp1 or WORD. The latter is a terminal, in this parser,
it is a Z token which a firing on it will store the token information
on llSchCal list.

On the other hand, schema.exp1 non-terminal will store
information to the list shown in the right column. "..." can be
seen in [8].

The third part of our parser consists of declarations of several
variables which were used on our actions. There is also a
reference to our scanner.

There are several functions specified in this part. The first
function is to establish an interface to our scanner. The second
one is to report any syntax error that has been found.

Tokens Precedencies Associativity

PIPE 11th Left

SEMI 10th Left

HIDE 9th Left

PROJECT 8th Left

BIMPLIES 7th Left

IMPLIES 6th Right

OR 5th Left

AND 4th Left

NOT 3rd Non-
association

(2nd Non-
association

) 1st Right

schema.def.horz: WORD SDEF

 {

 schCal = true;

 if (separator){

 llSchCal.add("separator");

 separator = false;

 }

 }

 schema.exp

 | WORD gen.formals SDEF

 {

 // has the same code

as for WORD SDEF

 }

 schema.exp

 ;

schema.exp1: LSBRACK

 {

 llSchCal.add($1);

 }

 word.schema.text RSBRACK

 {

 llSchCal.add($4);

 }

 | schema.ref

 ...

 | NOT word.schema.exp1

 ...

 | word.schema.exp1 AND

word.schema.exp1

 ...

 | word.schema.exp1 OR

word.schema.exp1

 ...

 | word.schema.exp1 IMPLIES

word.schema.exp1

 ...

 | word.schema.exp1 BIMPLIES

word.schema.exp1

 ...

 | word.schema.exp1 PROJECT

word.schema.exp1

 | word.schema.exp1 HIDE '('WORD

"'"')'

 ...

 | word.schema.exp1 HIDE

'('word.decl.name.list')'

 ...

 | word.schema.exp1 SEMI

word.schema.exp1

 ...

 | word.schema.exp1 PIPE

word.schema.exp1

 | '(' schema.exp ')'

 ...

 ;

word.schema.exp1: schema.exp1

 | WORD

 {

 llSchCal.add($1);

 }

 ;

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

(IJID) International Journal on Informatics for Development,

Vol. 7, No. 1, 2018

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

19

This function will call another function to perform this job.

Another function is a constructor of the generated Java file

later.
Before a parser generation is performed, a BYACC/J

specification must be copied to the place at which JFlex
generator is located. The command to generate our parser is as
follows:

Our Z parser generated two Java files at the end of this
generation. In our case, they are Parser.java and

ParserVal.java. Then, both these files are copied again to
the place at which the BYACC/J specification is defined.

In addition to both Java files, inevitably, our Z parser
generated also several warnings. These warnings relate to
conflicts with our parsed Z grammar.

The warnings are:

These warnings have not been solved. It requires time and an
effort to an elaborate check on the grammar and a rewriting in it.

However, all of our examples could be parsed by our parser.
Based on information gathered from actions defined in our
parser, the way our parser was designed is sufficient and it could
be said that our parser parses the input correctly. Thus, these
warnings are left as future works.

Fortunately, YACC provides also an output file during the
parser generation. To obtain the output file, the above generation
command is modified as follows:

A file named y.output as default is generated after the above
command is executed. This file contains the parse table of the
parser. The parsed table could be checked if there is conflict with
the grammar. Our parsed table contains 382 states, 86 terminals,
95 non-terminals, and 220 grammar rules.

The above conflicts are informed also as follows:

 State 69 contains 1 shift/ reduce conflict.

 State 137 contains 1 reduce/ reduce conflict.

 State 151 contains 1 reduce/ reduce conflict.

 State 159 contains 1 reduce/ reduce conflict.

 State 199 contains 1 reduce/ reduce conflict.

 State 202 contains 1 reduce/ reduce conflict.

However, it is possible that there are errors in gathered
information if further type-checker or processing is added to our
parser. Furthermore, it might these conflicts make our system
fails to run other Z specifications. This case is beyond our
expectation now.

IV. CONCLUSION AND FUTURE WORK

Our research has been able to produce a scanner and parser
for Z specifications. We have also integrated them with our main
program to redefine and expand Z specifications. Although our
scanner does not recognize all of Z tags, all of the implemented
Z tags are suitable for our research. Nevertheless, our parser,
warning that it has, could be ignored for the running of our
program.

ACKNOWLEDGMENT

The first author would like to thank John Derrick, Siobhan
North, and Anthony J.H. Simons for giving the author a chance
to work with their Z2SAL, discussions in this tool, and
supervision in the first author doctoral study. A lot of thanks are
dedicated to MORA The Republic of Indonesia for its financial
support during this study.

REFERENCES

[1] G. Klein, “JFlex – The Fast Scanner for Java,” Accessed from
http://www.jflex.de/index.html, 2015.

[2] T. Hurka, “BYACC/J,” Accessed from http://byaccj.sourceforge.net,
2008.

[3] A. J. D. Reis, “Compiler Construction Using Jva, JavaCC, and YACC,”
Wiley-IEEE Press, 2012.

[4] G. Smith and L. Wildman, “Model Checking Z Specifications Using
SAL,” in ZB 2005: Formal Specifications and Devvelopment in Z and B,
Springer, 2005, pp. 85–103.

[5] J. Derrick, S. North, and A. J. H. Simons, “Z2SAL: A Translation-based
Model Checker for Z,” Formal Aspect of Computing, Springer, 2011, pp.
43--71.

[6] J. Derrick, S. North, and A. J. H. Simons, “Issues in Implementing a
Model for Z,” Formal Methods and Software Engineering, Springer, 2006,
pp. 678--696.

[7] A. J. H. Simons, “The Z2SAL User Guide,” Accessed from
http://staffwww.dcs.shef.ac.uk/people/A.Simons/z2sal/userguide.html,
2012.

[8] M. U. Siregar, “Support for Model Checking Z Specifications,” A PhD
Thesis of the University of Sheffield, Accessed from
etheses.whiterose.ac.uk/17776/1/thesis_acp12mus_rev.pdf, 2017.

[9] J. M. Spivey, “The Z Notation,”Prentice-Hall: New York, 1989.

J. R. Levine, T. Mason, and D. Brown, “Lex & YACC,” O’Reilly & Associates,
Inc., 1992.

C:\jflex-1.6.1\bin>yacc -J Parser.y

yacc: 1 shift/reduce conflict, 5

reduce/reduce conflicts.

C:\jflex-1.6.1\bin>yacc -v -J Parser.y

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

(IJID) International Journal on Informatics for Development,

Vol. 7, No. 1, 2018

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

20

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

