
IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 3, No. 2, 2014

Minimum Spanning Tree for the Implementation of

Kruskal’s Algorithm

Paryati

Department of Informatics Engineering

Faculty of Industrial Engineering

Universtas Pembangunan Nasional “Veteran” Yogyakarta

Jl.Babarsari No.2 TambakBayan Yogyakarta 55281. Telp

(0274) 485323

yaya_upn_cute@yahoo.com

Ahmad Subhan Yazid

Informatics Department

Islamic State University (UIN) of Sunan Kalijaga

Yogyakarta, Indonesia

yazid.anfalah@gmail.com

Abstract—Kruskal’s algorithm is an algorithm used to find a minimum spanning tree in graph connectivity which gives an option to keep

processing the edge limit with the least weight. In a Kruskal’s algorithm, the weight sorting of edge value will ease the finding of the
shortest path. This algorithm has independent nature which will ease and enhance the path track making.

Keywords-Algorithm; Graph; Kruskal’s; Spanning Tree.

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 3, No. 2, 2014

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

30

I. INTRODUCTION

The theories about graphs began in 1736 and several
important discoveries in graph theory were obtained in the 19th
century, but not until the 1920s that the interest in graph theory
bloomed. The first text about graph theory emerged in 1936.
Undoubtedly, one of the reasons for interest in graph theory is
due to its application in many fields, including computer science,
chemistry, operation research, electrical engineering, linguistics,
and economy [1].

The research will address the definition of a graph and some
terminologies along with a basic example of a graph. The
shortest path algorithm which will be used is Kruskal’s
algorithm. It will show us how to find the shortest path between
two given points.

Fig 1. shows a highway system that must be supervised by
the investigator officer. Particularly, this investigator must make
trips to all roads and make reports about their condition, the
clarity of roads path, the condition of traffic signs, and so on.
Because she lives in Semarang, the most economical way of
examining all roads must be started in Semarang.

Figure 1. The Highway System that must Be Supervised

II. LITERATURE REVIEW

A. Graph and Digraph

A graph (G) is a set of nodes/ vertices/ points (V) joined by
a set of lines or arrows [2]. In a directed graph, arrows join
nodes. On the other hand, in an undirected graph, undirected
lines join nodes. Both of the arrows and undirected lines are
called edges (E).

In undirected graph, every edge is a member of set E, e ϵ E
and is associated with the unordered vertex pair. If there is an e
edge that connects vertices v and w, it is written as e = (v, w) or
e = (w, v). In this context, (v, w) suggests an edge between v and
w is in an undirected graph and not an ordered pair.

A directed graph or digraph G consists of a set V from
vertices (nodes or points) and an E set from edge as such that

every edge of e ϵ E connects the ordered vertex pair. If there is a
single e edge that connects the ordered pair (v, w) from vertices,
it is written as e = (v, w), which suggests an edge from v to w.

An e edge in a graph (directed or undirected) which connects
the vertices pair v and w is said to be incidental on v and w, then
v and w are said to be incidental on e and referred to as adjacent
vertices.If G is a graph (directed or undirected) with vertices v
and edges E, then it is written as G = (V, E). If it is not
specifically mentioned, the set E and V are assumed as finite and
V is assumed as not empty.

In the case in Fig. 1 above, the model making it will appear
as shown in Fig. 2.

Figure 2. Gaph Model Form a Highway System

The points in figure 1 are called vertices and the lines which
connect those vertices are called edge. Every vertex is named by
taking the first three letters of the appropriate city. The edges are
signed by e1, …, e13. In drawing a graph, the only important
information is the imaginary vertices linked by the imaginary
edges as well. If we start from a vertex v0, walk along a edge to
vertex v1, walk along another edge to vertex v2 and so on, and
finally arrive at vertex vn, we refer to such complete trip as path
from v0 to vn.

B. Spanning Tree

A T tree is a Spanning Tree of graph G if T is a subgraph of
G which contains all vertices of G. The characteristics of
Spanning Tree are:

1. All graph G links in this tree must not form a circle.

2. A graph G is said to be a tree if and only if G is

linked or form a path.

3. A linked graph G is said to be a tree if and only if it

is every edge forms a edge.

4. A linked graph G is said to be a tree if and only if it

has an N peak and N-1 edge.

The description of spanning tree is shown in Fig. 3.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 3, No. 2, 2014

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

31

Figure 3. Tree

From Fig. 3, it can be stated that figure (A) is a wrong figure
because it is not fit the characteristics of a tree as mentioned
earlier. Figure (B) is a correct tree because it fulfills the
characteristics of a tree.

C. Kruskal’s Algorithm

Kruskal’s algorithm is one to find a minimum spanning tree
in graph connectivity which gives options of always processing
the edge limit with the least weight [2]. This algorithm is run by
considering the graph’s biggest edge limit when searching for
track in node in a graph that has been put into a spanning tree. If
an edge limit is considered will integrate (with one of the points
not in the spanning tree), or the integration of a point in spanning
tree (one of which is not in the spanning tree), then the edge limit
and the final point is included in the spanning tree. Considering
one of the edge limits, algorithm continues by considering the
next larger edge limit weight. In this term, when the edge limit
weight values are the same, then it is unnecessary to determine
which weight must be chosen first. The algorithm will stop when
every point has been included in the spanning tree. Note that,
when spanning tree was made, there was a possibility that the
edge limit is not connected with the part of the main tree,
although in the end, they will integrate with the main tree.

III. METHODS

The first research conducted used the testing method on
Kruskal’s algorithm step by step. The algorithms are as follows:

E(1) is a set of edges from Minimum Genetic Tree

E(2) is a set of the remaining edges

V is a set of vertices

n is node or point

Steps:

E(1)=0, E(2)=E

WHILE E(1) consists less than n-1 edges and E(2)=0 DO

From the side of E(2) choose one with the lowest
value→ e(ij)

E(1)=E(2)-{ e(ij)}

IF V(i), V(j) is not included in the same tree,
THEN

Unite tree from V(i) and V(j) become one single
tree

END of IF

END of WHILE

END of Algorithm

IV. IMPLEMENTATION

Here is the source code for implementing the algorithm
above which is obtained from [3]:

public class Algorithms
{
 public static Graph KruskalsAlgorithm (Graph g)
 {

int n = g.getNumberOfVertices();
Graph result = new GraphAsLists (n);
for (int v = 0; v < n ; ++v)

result.addVertex (v);
PriorityQueue queue =

new BinaryHeap (g.getNumberOfEdges());
Enumeration p= g.getEdges();
while (p.hasMoreElements())
{

Edge edge = (Edge) p.nextElement();
Int weight= (Int) edge.getWeight();
queue.enqueue (new Assosiation (weight, edge));

}
Partition partition = new PartitionAsForest(n);
while(!queue.isEmpty() && partition.getCount() > 1)
{

Association assoc = (Association)
queue.dequeueMin();
Edge edge = (Edge) assoc.getValue ();
int n0 = edge.getV0 ().getNumber ();
int n1 = edge.getV1 ().getNumber ();
Set s = partition.find (n0);
Set s = partition.find (n1);
If (s !=t)
{
 partition.join (s,t);
 result.addEdge (n0,n1);
}

}
return result;

}
}

V. EXPERIMENT AND PRODUCT ANALYSIS

In conducting analysis for Kruskal’s algorithm a test is
employed by having implementation overall two algorithms
with the case example as follows:

Figure 4. Tree Representation

Initial step: if we look at the characteristics of a tree, then
the above graph does not fulfill the characteristics of a graph,

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 3, No. 2, 2014

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

32

because the track is circular. Thus, we will include Kruskal’s
algorithm to solve the problem above. The first step to run
Kruskal’s algorithm is arranging e (edge weight) in the right
order from the minimum value to the maximum. After the
arrangement (Exhibit 5.1) then we make the track for both
vertices with minimum weight.

Figure 5. Initial Step

Step 1: in the line with the table order, then what to do first
is making track V3 – V11 with the edge weight 2 (track with
bold lines).

Figure 6. Step 1

Step 2: the next order is V6 – V10 with the edge weight 2. It
appears that the track is separated from step 1. However,
considering the characteristics of the independent Kruskal’s
algorithm which means that there is a possible edge limit
(vertex) unconnected with the part of the main tree, although
eventually will join the main tree, it can happen.

Figure 7. Step 2

Step 3: the next order is V8 – V9 with the edge weight 4.

Figure 8. Step 3

Step 4: the next order is V1 – V4 with the edge weight 4.

Figure 9. Step 4

Step 5: the next order is V11 – V12 with the edge weight 6.

Figure 10. Step 5

Step 6: the next order is V1 – V2 with the edge weight 6.

Figure 11. Step 6

Step 7: the next order is V8 – V7 with the edge weight 6.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 3, No. 2, 2014

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

33

Figure 12. Step 7

Step 8: the next order is V5 – V7 with the edge weight 6.

Figure 13. Step 8

Step 9: the next order is V8 – V10 with the edge weight 6.

Step 10: the next order is V6 – V8 with the edge weight 7.
This path is not allowed because it will form a circle in path
V6 – V8 – V10.

Step 11: the next order is V2 – V1 with the edge weight 8.
This path is not allowed because vertex V2 – V1 has been
passed. In fact, the requirement of a tree only allows it to be
passed once.

Figure 14. Step 11

Step 12: the next order is V3 – V4 with the edge weight 9.

Step 13: the next order is V2 – V6 with the edge weight 10.

Step 14-16: this order is unnecessary to be done because it
forms a circle.

TABLE I. STEP OF PATH DETERMINATION IN KRUSKAL’S ALGORITHM

Step v e

1 3-11 2 Add to tree

2 6-10 2 Add to tree

3 8-9 4 Add to tree

4 1-4 4 Add to tree

5 11-12 6 Add to tree

6 1-2 6 Add to tree

7 8-7 6 Add to tree

8 5-7 6 Add to tree

9 8-10 6 Add to tree

10 6-8 7 Reject because it forms a circuit

11 2-1 8 Reject because it forms is turned back

12 3-4 9 Add to tree

13 2-6 10 Add to tree

14 6-5 10 Reject because it forms a circuit

15 4-5 10 Reject because it forms a circuit

16 5-8 10 Reject because it forms a circuit

Total weight ------------------ 61

Other examples of Kruskal’s Algorithm are as follows:

2

1

8
10 4

5 6

10

10
2

6

6

2

3 2
7 9

8

10

8
7

7

12

11 13

14

42
7

7

9

2

1

8
10 4

5 6

10

10
2

6

6

2

3 2
7 9

8

10

8
7

7

12

11 13

14

42
7

7

9

Genetic tree cost : 72

Case 1 Solution 1

2

1
5 2

9

5

8

12

11

9

10
6

6

5

7

3
3

10

3

6

2

10
7

2

1
5 2

9

5

8

12

11

9

10
6

6

5

7

3
3

10

3

6

2

10
7

Genetic tree cost : 72

Case 2 Solution 2

12

5
95 61

2

8 1110

7

4

4

5

7

3

5

7410

8

2
6

5

6

12

5
95 61

2

8 1110

7

4

4

5

7

3

5

7410

8

2
6

5

6

Genetic tree cost : 72

Case 3 Solution 3

Figure 15. Other Examples

VI. CONCLUSION

After testing and comparison of the crucial algorithm, then
the conclusion can be drawn as follows:

A. Strength

1) The existence of weight sorting will ease the searching

for the shortest path.

2) Considering the characteristics of Kruskal’s independent

algorithm, it will ease and enhance the formation of path track.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID International Journal on Informatics for Development, e-ISSN :2549-7448
Vol. 3, No. 2, 2014

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

34

B. Weaknesses

If the number of vertices is very large, it will slower than the
Dijkstra’s algorithm because it must sort thousands of vertices
first, then forming the path.

REFERENCES

[1] R. Johnsonbaugh, Discrete Mathematics, Seventh. Pearson Prentice Hall,

2009.

[2] G. Brassard and P. Bratley, Fundamental of Algorithmics. Pearson, 1995.

[3] B. R. Preiss, Data Structures and Algorithms with Object-Oriented Design

Patterns in Java. John Wiley & Sons, 1999.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

