
Bulletin of Electrical Engineering and Informatics

Vol. 8, No. 4, December 2019, pp. 1507~1516

ISSN: 2302-9285, DOI: 10.11591/eei.v8i4.1578  1507

Journal homepage: http://beei.org/index.php/EEI

On the latency and jitter evaluation of software

defined networks

Paulson Eberechukwu Numan
1
, Kamaludin Mohamad Yusof

2
, Muhammad Nadzir Bin Marsono

3
,

Sharifah Kamilah Syed Yusof
4
, Mohd Husaini Bin Mohd Fauzi

5
, Salawu Nathaniel

6
, Elizabeth N.

Onwuka
7
, Muhammad Ariff Bin Baharudin

8

1,2,3,4,5,8
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia

6,7Federal University of Technology, Minna, PMB 65, Minna, Niger State, Nigeria

Article Info ABSTRACT

Article history:

Received Mar 29, 2019

Revised Jun 26, 2019

Accepted Jul 19, 2019

 Conventional networking devices require that each is programmed with

different rules to perform specific collective tasks. Next generation networks

are required to be elastic, scalable and secured to connect millions of

heterogeneous devices. Software defined networking (SDN) is an emerging

network architecture that separates control from forwarding devices. This

decoupling allows centralized network control to be done network-wide. This

paper analyzes the latency and jitter of SDN against a conventional network.

Through simulation, it is shown that SDN has an average three times lower

jitter and latency per packet that translate to improved throughput under

varying traffic conditions.

Keywords:

Jitter

Latency

Mininet

Next generation networks

Software defined networking

Conventional networks

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Kamaludin Mohamad Yusof,

Advanced Telecommunication Technologies Research Group,

School of Electrical Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia.

Email: kamalmy@utm.my

1. INTRODUCTION

Research on the future network is still on-going for solutions that will enable networks with better

flexibility, dynamic, and support of programmable resources [1-3]. Internet-of-Things (IoT) would place

tremendous challenges to the conventional network to accommodate IoT devices, which has limited battery

life and limited computing capability. IoT devices such as sensor nodes with Wi-Fi network adapters, motion

sensors, cameras, microphones and other types of electronic instrumentation. The network supporting IoT

devices also have to accommodate IoT-specific network tasks. Hence, Software Defined Networking (SDN)

[3, 4] as an emerging networking architecture that are highly scalable and flexible can be an alternative for

dynamic IoT network solution [5].

The concept of SDN decouples the control plane (CP) of conventional network devices from their

data plane (DP) as shown in Figure 1. The CP takes care of all routing decisions while the DP performs

packet forwarding and network control based on policy determined by the CP. With this separation, the

configuration devices done individually on devices has been moved towards the centralized control unit

[6, 7]. OpenFlow is one such protocol that enables the implementation of the SDN [8]. OpenFlow (OF) was

proposed as a clean slate protocol [9] and has been defined as the first standard by Open Networking

Foundation (ONF).

This paper analyzes the latency and jitter of SDN against a conventional network for connecting IoT

devices. Through simulation, it is shown that SDN has three times lower jitter and latency/packet that

translate to improved throughput under varying traffic conditions. The remainder of this paper is organized as

  ISSN: 2302-9285

Bulletin of Electr Eng and Inf, Vol. 8, No. 4, December 2019 : 1507 – 1516

1508

follow. The SDN paradigm, its motivation, describing the basic elements, interfaces and APIs are discussed

in Section 2. An OpenFlow enabled SDN architecture for IoT is detailed out in Section 3. In Section 4, the

OF based network model is proposed and later, simulation on Mininet is also discussed. In Section 5, the

simulation results are analyzed and discussed. Lastly, Section 6 concludes the paper and suggests potential

future research.

Figure 1. Conventional network vs software defined network

2. SOFTWARE DEFINED NETWORKING

SDN [10-13] has the ability to control, change, and manage network performance dynamically

through software. This is achieved through open interfaces in contrast to the closed and proprietary defined

boxes we have today. The SDN agenda allows for the centralization of network control. The centralized

control embeds all the intelligence and sustains a network-wide view of the data path elements and nodes

connecting them. This network-wide allows for easy modifications of network functions through the central.

Figure 2 shows an SDN architecture.

Figure 2. SDN architecture

Bulletin of Electr Eng and Inf ISSN: 2302-9285 

On the latency and jitter evaluation of software defined networks (Paulson Eberechukwu Numan)

1509

2.1. SDN fundamentals

The SDN technology is built on four key tenets; First is on CP-DP separation, second on a logically

centralized controller for the network-wide view, third for open interfaces between CP and DP devices, and

lastly, the use of external application to support the programming feature of the network [13]. SDN consists

of three layers and other APIs. The different layers have been discussed in [14] and APIs in [10, 15, 16].

a. Data Plane: The SDN DP are forwarding devices that are interconnected through wireless or wired

communication channels. They are merely responsible for carrying user data across the network

according to the path defined by the CP.

b. Control Plane: Forwarding devices are programmed by CP elements. The CP can therefore be seen as the

network brain. All control logic rests in the applications and controllers, which form the CP.

c. Northbound Interface: This is an API that essentially takes the network requirements from the SDN

applications and negotiates with the network controller that is responsible for providing applications with

optimal network resources and paths.

d. Southbound Interface: this API defines the communication protocol between forwarding devices and the

CP elements. This protocol formalizes the interaction between the CP and DP elements.

3. OPENFLOW NETWORK ARCHITECTURE

OF enabled network is different from conventional network infrastructure network by the

decoupling of CP and DP layers. The Network Operating System (NOS) [13, 16, 17] is a layer in-between

OF-enabled switch and a user-defined application that hosts the CP in an SDN. A communication between

NOS and OF-enabled switch to notify the network events is done with the help of OpenFlow Protocols

(OFP). A detailed architecture shown in Figure 3 and types of OFP is described in [6]. As illustrated in

Figure 3, the key elements of the OF technology are the flow tables installed in OF switches, a controller

installed in a remote host machine, and an OF secured protocol for the controller to communicate with

switches. The OF method offers a flexible ability for real-time addition and update of numerous roles in

the DP.

Figure 3. OpenFlow network architecture

In a conventional network architecture, when a packet arrives at the switches or routers, the packet

will be processed using the info from header field and thereafter, route back such data to a dedicated link.

The case is not the same for OF networks, as all the processing task is done by a centrally controlled unit and

all switches only perform data forwarding by looking up their respective flow tables [17]. On the arrival of a

packet, an OF enabled switch starts correlating the fields from the first flow table and moves on to the next

using the flow table entry as described in [6]. If there is a correlation, then the specific actions are executed as

  ISSN: 2302-9285

Bulletin of Electr Eng and Inf, Vol. 8, No. 4, December 2019 : 1507 – 1516

1510

defined by OF controller. One of the aims of centralized control of flows is to improve the speed of data

communication. Traditionally, in any arrival of a data packet to a networking switch, the switch starts

processing by executing initial networking protocols to resolve source and destination addresses. This task

takes time for execution and resolution of a dedicated link. But in an OF, anytime data packet arrives at a

switch, a controller resolves the address and simultaneously makes flow entries in a flow table of the switch

[6]. Now, whenever another data packet arrives at the same switch, it will directly go through its flow table

and forwards the data flow to a dedicated link, which not only saves time but also improves the data

communication efficiency.

4. EXPERIMENTAL SET-UP

The experimental set up used for this work will be described in this section. This work makes a case

for SDN as the future of networking by comparing the performance of OF-based network and conventional

networks in terms of packet latency and jitter. The purpose of this experiment is to show that the SDN

architecture design has an overall performance in terms of minimum jitter and average latency compared to

the conventional network. A custom topology designed for both networks under consideration and a

centralized controller placement approach was adapted to test the concept.

4.1. Custom network topology

 There are two basic types of control model supported by SDN, each having its own different

specialty based on the infrastructure and requirements. They are the centralized and the distributed controller

architecture. There is also a hybrid control model which combines the advantages of the centralized and the

distributed control models. In this work, the centralized control model has been considered as a proof of

concept. The centralized control model entails using a single central controller to manage and supervise the

entire network. In this model, the intelligence relies on a single decision unit. All the routing related

information such as statistics, errors, and faults are collected and communicated to the controller with the

help of OF.

 An example of a custom centralized network control model used in this work is shown in Figure 4.

From Figure 4, a host node sends a packet to the forwarding device and then the forwarding device sends it to

the controller. This packet is processed and the flow table is updated. The controller only processes the initial

packet of any flow from any forwarding device and updates the flow table accordingly. Depending on this

flow table entry, all other packets of the same source get similar treatment to reach the desired destination.

This flow rule is set by the controller and the forwarding device has no ability to update them without any

instructions from the controller. One of the benefits of the SDN is that the forwarding device is free from any

computation related tasks. However, this central control model has its own issues, which is not limited to a

single point-of-failure, reliability, and scalability. An alternate approach is to make the control plane in a

distributed fashion to execute applications of a centralized controller. In a network architecture with more

than one CP, the distributed architecture could still have a central control unit through the logically

centralized CP [13, 18-20].

Figure 4. Custom network model of SDN

Bulletin of Electr Eng and Inf ISSN: 2302-9285 

On the latency and jitter evaluation of software defined networks (Paulson Eberechukwu Numan)

1511

4.2. SDN architecture emulation tool

Mininet is a network emulation tool created by a group of researcher to be used as a tool for

development, teaching and research in network technologies. It creates a realistic virtual network, running

real kernel, switch and application code on a single machine. Mininet [2, 6, 15, 21-23] has gained wide

popularity because first, only a few network emulation software exist for the purpose of implementing SDN

standard. In addition, you can easily interact with your network using the Mininet Command Line Interface

(CLI). Mininet works on various platforms like Windows, Linux, and MAC. For this work, all the

experiments conducted was done using a computer with the following specifications as shown in Table 1.

Table 1. Computer system specification
Computer Configuration

HP Pavilion Desktop

Linux operating system Ubuntu 16.04 64 bits

8 GB RAM

2GB VGA RAM

1000 GB of hard disk space

Intel ® Core ™ i5-7400 CPU 2.4GHz processor

Mininet and Mininet Controller (POX9, NOX10, Beacon12, FloodLight13, Maestro etc.) preinstalled

Java/Python language support

 Mininet has the capabilities that enable researchers or network programmers to create

software-defined network prototype in a simple manner. The created prototype could be implemented into

hardware for testing and validation. Some of the basic command syntax in Mininet and their functions as

used in this work are explained in Table 2.

Table 2. Basic command syntax in Mininet and their functions as used in this work
Command Line Description

Creating a Network

sudo mn—topo single,
3—mac –switch ovsk –

controller remote

A network can be created in MINET with a single command; this command creates a virtual network of

three switches connected linearly and three virtual hosts, each host configured to the corresponding switch.

Interacting with a Network

Mininet> h1 ping h2

In Minimet the entire virtual network can be controlled and manage from a single console, command is used

to test connectivity between hosts. For example, test the connectivity between host h1 and h2. It will keep

checking the connectivity between hosts until we stop the command

Mininet> h1 ifconfig -a To show the host’s h1-eth0 and loopback (Io) interface

Mininet> pingall
Alternatively, you can test the connectivity between all hosts by typing this command, it checks the

connectivity/reachability among all hosts in the network.

mininet> xterm h1 h2

Another way to run interactive command and watch debug output is to run xtrem for one or more hosts. The

command xterm h1 h2 open the exterm terminal for the host h1 and h2. Enter command in xterm of h1 i.e.

ping ―IP address assigned to h2‖. It will start checking the connectivity between host h1 and h2. Similarly,
we can ping the host h1 from h2 using command in h2 xterm terminal ping ―IP address assigned to h1.‖

Sudo mn -x
Alternatively, to start mininet xterm display option: To open xtrem display in Mininet, use command as
follows; this is the basic xterm display command when we run this command on Mininet it startup xterm

display host h1, h2, switch s1, and controller c0.

In order to see the help menu
Sudo mn -h To see a list of available commands

Mininet>help Alternatively, this command shows various options which can write on Mininet CLI.

Mininet>nodes Shows the nodes available in the current network of Mininet.
Mininet>dump Shows the dump information about all nodes available in the current Mininet network.

Mininet>Dpctl To control and edit flow tables.

Mininet>Iperf To run TCP speed test.
sudo mn -c To clear or clean up Mininet

Mininet>exit To Exit Mininet

5. PERFORMANCE EVALUATION AND DISCUSSIONS

In order to evaluate the performance of the SDN architecture over the conventional networking

architecture, the system has been emulated and the results are analyzed. The traditional way of measuring

network performance is packet latency and jitter. Jitter is the amount of variation in latency/response time, in

milliseconds. Jitter can be approximated as the difference between the maximum packet latency and

minimum packet latency over a given period of time. Network latency is the term used to indicate any kind of

delay that happens in data communication over a network. High latency creates bottlenecks in any network

communication. It prevents the data from taking full advantage of the network pipe and effectively decreases

  ISSN: 2302-9285

Bulletin of Electr Eng and Inf, Vol. 8, No. 4, December 2019 : 1507 – 1516

1512

the communication bandwidth. The impact of latency on network bandwidth can be temporary or persistent

based on the source of the delays. The emulation for SDN is done using Mininet as previously described and

GNS3 emulator was used for conventional networking. In this work, the time difference between consecutive

sequence was also analyzed. The performance mainly depends on the hardware components like the number

of processors, memory, hard disk and the network connection between the nodes.

To measure jitter, we take the difference between samples, then divide by the number of samples. If

there is a change in network conditions (for instance, there is a sudden burst on the network and queues start

to build on an interface) then this jitter will increase. The transit time between two consecutive packets will

not be the same anymore: the second packet will have to go through a longer queue, spending more time, and

generating positive jitter. Once this burst is over, the queue will progressively reduce, reversing the situation.

Out of two consecutive packets, the second one will spend less time in the queues, and will therefore generate

negative jitter. In a network, latency measures the time it takes for some data to get to its destination across

the network. It is usually measured as a round trip delay. That is the time taken for information to get to its

destination and back again. The round-trip delay is an important measure because a computer that uses a

TCP/IP network sends a limited amount of data to its destination and then waits for an acknowledgment to

come back before sending any more. Thus, the round-trip delay has a key impact on the performance of the

network. Latency is usually measured in milliseconds (ms).

5.1. Conventional network architecture

A network set up shown in Figure 5 was designed in GNS3. After the network design, the latency of

the packets can be evaluated by conducting a ping test between the hosts. Figure 6 shows the latency and

jitter analysis of the conventional network model. From Figure 6(a) the results of the latency for packets sent

from host H1 to host H2 is either same or more. Normally, at the point the first packet sent arrives at the

switch, the switch checks its MAC table for the corresponding destination address in the MAC table. Since

this is the first packet and there is no entry for the address, the switch forwards the packet to the router for the

routing decisions. The router makes the routing decisions and sends the routing decision entry to switch. The

switch forwards the packet accordingly and flushes the entry. This process is repeated for all packets that

arrive at the switch. Therefore, this account for the high latency experienced by all the packets. From Figure

6(b), the time variation in latency/response time in milliseconds has been shown. This excessive jitter makes

the service unusable by negatively impacting service quality. This is not acceptable and for a large-scale

network where packets will travel through multi-hops.

Figure 5. Set up of the conventional network architecture as emulated in GNS3

Bulletin of Electr Eng and Inf ISSN: 2302-9285 

On the latency and jitter evaluation of software defined networks (Paulson Eberechukwu Numan)

1513

(a) (b)

Figure 6. Performance of the conventional network model, (a) Latency, (b) Jitter

5.2. Software defined network architecture

Mininet, as explained in previous section, provides a comprehensive environment for prototyping

SDNs. Mininet was used to create the set-up of the network as shown in Figure 7. The topology shown in

Figure 7 is created using a single line command described in Table 2.

Figure 7. Set up of the conventional network architecture as emulated in mininet

As shown in Figure 8(a), the first packet takes 35.48ms. The time taken by the first packets in SDN

is more compared to the consecutive packets, consecutive packets take much less time compared to the first

packet in SDN. The reason for the time taken by the first packet in comparison to other packets is that the

routing decision happens only for the first packet of a flow. Once the controller updates itself with the flow

rule for the first packet, the switch buffers the flow rule in its flow table after thirty seconds [13, 24]. This

accounts for why the time variation in latency/response time (jitter) were low or the same as shown in

Figure 8(b). It eliminates the necessity of contacting the controller for routing decision for every packet, thus

reducing the latency of the consecutive packets after the first packet. The consecutive packets are forwarded

by the switch without contacting the controller for the routing decision. After thirty seconds, the buffer is

timed out, the flow table is cleared the same procedure repeats.

  ISSN: 2302-9285

Bulletin of Electr Eng and Inf, Vol. 8, No. 4, December 2019 : 1507 – 1516

1514

(a) (b)

Figure 8. Performance of the software network model, (a) Latency, (b) Jitter

5.3. Comparison of conventional and SDN network latency results

A comparison of the average latencies for the Tradition network and SDN is shown in Table 3.

From Table 3, for the conventional network architecture, the minimum RRT for packets sent is 4.749ms with

an average RRT of 7.256ms and a maximum RRT of 10.111ms. While for SDN architecture, the minimum

RRT is 0.040ms with an average RRT of 1.969ms and a maximum RRT of 35.507ms. SDN has an overall

performance in terms of minimum and average latency compared to the conventional network. With an

average latency of over 3x lower than that of the conventional network, SDN can be seen as the future

of networking.

Table 3. Comparison of the average latencies for the conventional network and SDN
Network Model Minimum Latency Maximum Latency Average Latency

Conventional Network 4.749ms 10.111ms 7.25605ms

SDN 0.040ms 35.507ms 1.96940ms
Difference 4.709ms 25.396ms 5.28665ms

6. CONCLUSION

SDN is an interesting paradigm in networking that will change how network is built designed and

operated. SDN promises networks that are open, proprietary independent, flexible and programmable. It will

create new revenue opportunities for the network service providers through the creation of software-based

applications. As far as the future of networking is concerned, the deployment of SDN can be designed

efficiently to become faster, resilient, scalable, dynamic, reliable and most importantly secure. In this paper,

the performance of SDN was analyzed by network connectivity test between hosts in an SDN architecture

and a conventional network architecture. On the basis of results obtained, it is concluded that the

performance of OF-enabled network with an average latency of over 3x lower is better than the conventional

network. Ultimately, SDN improves network efficiency by reducing network overheads generated from

frequent communication attempt between the CP and DP every time a packet is received. In SDN, the use of

one CP architecture may not guarantee optimal results and also represent a single point of failure. Hence, the

use of distributed CP architecture is recommended, although it also has its own peculiar challenges which

includes how to place the controllers to guarantee optimal performance.

REFERENCES
[1] G. Wang, T. Ng, and A. Shaikh, "Programming your network at run-time for big data applications," in Proceedings

of the first workshop on Hot topics in software defined networks ACM, 2012, pp. 103-108.

[2] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda and Ligia Rodrigues Prete, "Using Mininet for emulation and

prototyping Software-Defined Networks," 2014 IEEE Colombian Conference on Communications and Computing

(COLCOM), Bogota, 2014, pp. 1-6.

[3] A. L. Valdivieso Caraguay, L. I. Barona Lopez and L. J. Garcia Villalba, "Evolution and Challenges of Software

Defined Networking," 2013 IEEE SDN for Future Networks and Services (SDN4FNS), Trento, 2013, pp. 1-7.

[4] B. Lantz, B. Heller, and N. McKeown, "A network in a laptop: rapid prototyping for software-defined networks," in

Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks: ACM, 2010, p. 19.

Bulletin of Electr Eng and Inf ISSN: 2302-9285 

On the latency and jitter evaluation of software defined networks (Paulson Eberechukwu Numan)

1515

[5] C.-C. Lo, H.-H. Chin, M.-F. Horng, Y.-H. Kuo, and J.-P. Hsu, "a flexible network management framework based

on OpenFlow technology," in International Conference on Industrial, Engineering and Other Applications of

Applied Intelligent Systems: Springer, 2014, pp. 298-307.

[6] I. Z. Bholebawa, R. K. Jha, and U. D. Dalal, "Performance analysis of proposed OpenFlow-based network

architecture using mininet," Wireless Personal Communications, vol. 86, no. 2, pp. 943-958, 2016.

[7] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, "Software defined networking: State of the art and research

challenges," Computer Networks, vol. 72, pp. 74-98, 2014.

[8] K. Govindarajan, K. C. Meng, H. Ong, W. M. Tat, S. Sivanand and L. S. Leong, "Realizing the Quality of Service

(QoS) in Software-Defined Networking (SDN) based Cloud infrastructure," 2014 2nd International Conference on

Information and Communication Technology (ICoICT), Bandung, 2014, pp. 505-510.

[9] N. McKeown et al., "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM Computer

Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

[10] S. Hangloo and S. Kumar, "Software-Defined Networking: A Survey," Computer Networks. 2018.

[11] N. McKeown, "Software-defined networking," INFOCOM keynote talk, vol. 17, no. 2, pp. 30-32, 2009.

[12] H. Kim and N. Feamster, "Improving network management with software defined networking," in IEEE

Communications Magazine, vol. 51, no. 2, pp. 114-119, February 2013.

[13] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig, "Software-Defined

Networking: A Comprehensive Survey," in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[14] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, "Software-defined networking: Challenges and

research opportunities for future internet," Computer Networks, vol. 75, pp. 453-471, 2014.

[15] F. Keti and S. Askar, "Emulation of Software Defined Networks Using Mininet in Different Simulation

Environments," 2015 6th International Conference on Intelligent Systems, Modelling and Simulation, Kuala

Lumpur, 2015, pp. 205-210.

[16] F. Hu, Q. Hao and K. Bao, "A Survey on Software-Defined Network and OpenFlow: From Concept to

Implementation," in IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2181-2206, Fourthquarter 2014.

[17] A. Lara, A. Kolasani and B. Ramamurthy, "Network Innovation using OpenFlow: A Survey," in IEEE

Communications Surveys & Tutorials, vol. 16, no. 1, pp. 493-512, First Quarter 2014.

[18] C.-S. Li and W. Liao, "Software defined networks," IEEE Communications Magazine, vol. 51, no. 2,

pp. 113-113, 2013.

[19] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, "Fabric: a retrospective on evolving SDN," in

Proceedings of the first workshop on Hot topics in software defined networks: ACM, 2012, pp. 85-90.

[20] Y. Kanaumi, S. Saito and E. Kawai, "Toward large-scale programmable networks: Lessons learned through the

operation and management of a wide-area OpenFlow-based network," 2010 International Conference on Network

and Service Management, Niagara Falls, ON, 2010, pp. 330-333.

[21] M. Sood, "SDN and Mininet: Some Basic Concepts," International Journal of Advanced Networking and

Applications, vol. 7, no. 2, p. 2690, 2015.

[22] N. Pallavi, A. Anisha, and V. Leena, "Detection of Incongruent Firewall Rules and Flow Rules in SDN," in

Artificial Intelligence and Evolutionary Computations in Engineering Systems: Springer, 2017, pp. 13-21.

[23] D. Kumar and M. Sood, "Software Defined Networking: A Concept and Related Issues," International Journal of

Advanced Networking and Applications, vol. 6, no. 2, p. 2233, 2014.

[24] F. Souad and M. Moughit, "Evaluation of MTCP over POX Controller." International Journal of Scientific &

Engineering Research. December 2016, vol 7 no. 12, 1079-1086.

BIOGRAPHIES OF AUTHORS

Paulson Eberechukwu Numan received his Bachelors in Engineering degree (Electrical and

Electronics) in 2012 from the Federal University of Technology Akure, Ondo state, (Nigeria’s

topmost University of Technology). He obtained his Master of Engineering degree

(Telecommunications and Electronics) in 2017 with a distinction and a recipient of the Best Post

Graduate Student Award (BPGSA) from the prestigious Universiti Teknologi Malaysia (UTM),

Johor, Malaysia. He is currently pursuing the Doctor of Philosophy Degree with the School of

Electrical Engineering, Faculty of Engineering, UTM. His general research interest lies in the

field of wireless communications, computer networking system design and optimization. In

particular, he is interested in Software Defined Networks (SDN), Internet of Things (IoT),

Cognitive Radio Networks (CRN), and Wireless Sensor Networks (WSN).

Kamaludin Mohamad Yusof received the B.Eng degree in Electrical-Electronics Engineering

and M.Eng degree in Electrical Engineering from Universiti Teknologi Malaysia. He received

Ph.D degree from University of Essex, U.K. He is currently a senior lecturer in the Division of

Communication Engineering, School of Electrical Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia and member of Advanced Telecommunication Technology. His

current research interests include Internet-of-Things, Big Data and Software-Defined Network.

  ISSN: 2302-9285

Bulletin of Electr Eng and Inf, Vol. 8, No. 4, December 2019 : 1507 – 1516

1516

Muhammad Nadzir Marsono received the B.Eng. in Computer Engineering in 1999 and M.Eng.

in Electrical Engineering in 2001, from Universiti Teknologi Malaysia. He received Ph.D. in

Electrical and Computer Engineering from the Dept. of ECE, University of Victoria BC Canada

in 2007. His current research interest include system level integration, multi-processor

system-on-chip, network-on-chip, network algorithmics, and network processor architectures.

Mohd Husaini Mohd Fauzi received the B.Eng in Computer Engineering in 2011 and M.Eng. in

Electrical Engineering in 2015, from Universiti Teknologi Malaysia. He is currently pursuing the

Doctor of Philosophy Degree with the School of Electrical Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia. His current research interest includes Wireless Sensor Network

(WSN), Internet of Things (IoT), Fog Computing, Computer Networks and Systems,

Localization and Tracking, Network Performance and Software define Network.

Salawu Nathaniel received the B.Eng. and M.Eng. degree from Federal University of

Technology, Minna, Niger State, Nigeria in 2002 and 2010 respectively. He got his Ph.D in

Electrical engineering from the Universiti Teknologi Malaysia. His current interests include

wireless communication systems, cellular communication networks, handover issues in wireless

communication networks.

Prof. Elizabeth N. Onwuka obtained a Bachelor of Engineering (B.Eng.) Degree from Electrical

and Computer Engineering Department, Federal University of Technology (FUT) Minna, Niger

State, Nigeria, in October 1992; a Master of Engineering (M.Eng.) Degree, in

Telecommunications, from Electrical and Computer Engineering Department, FUT, Minna,

Niger State, Nigeria, in March 1998; and Doctor of Philosophy (PhD) Degree, in

Communications and Information Systems Engineering, from Tsinghua University, Beijing,

People’s Republic of China, in June 2004. Her research interest includes Mobile

communications network, Mobile IP networks, Handoff management, Paging, Network

integration, Resource management in wireless networks, spectrum management, and Big Data

Analytics.

Muhammad Ariff Baharudin received his B.Eng degree in Electrical-Mechatronics Engineering

and M.Eng degree in Electrical-Electronics and Telecommunications Engineering from

Universiti Teknologi Malaysia and also M.Eng degree in Communications Engineering from

Shibaura Institute of Technology (SIT), Japan. He received his Ph.D degree from SIT, Japan. He

is currently a senior lecturer in the Division of Communication Engineering, School of Electrical

Engineering, Engineering Faculty and a member of the Advanced Telecommunication

Technology (ATT) research group at Universiti Teknologi Malaysia. His current research

interests include Internet-of-Things, Big Data, Connected Vehicles, Mobile Computing and

Localization.

