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Abstract  

In this contribution, perovskite catalysts (ABO3) were probed that site A and site B were occupied by 

lanthanum and transition metals of manganese or cobalt, respectively, with stoichiometric ratios as 

well as 20 % over-stoichiometric ratios of B/A. The perovskite samples were synthesized using a gel-

combustion method and characterized by BET, XRD, SEM and O2-TPD analyses. After mounting in a 

fixed bed reactor, the catalysts were examined in atmospheric pressure conditions at different temper-

atures for oxidation of 1000 ppm trichloroethylene in the air. Evaluation of over-stoichiometric cata-

lysts activity showed that the increased ratio of B/A in the catalysts compared to the stoichiometric one 

led to BET surface area, oxygen mobility, and consequently catalytic performance improvement. The 

lanthanum manganite perovskite with 20 % excess manganese yielded the best catalytic performance 

among the probed perovskites. Copyright © 2018 BCREC Group. All rights reserved 
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1. Introduction  

Volatile organic compounds are an im-

portant class of atmospheric pollutants in all 

urban and industrial areas. The pollutants can 

be classified through two types: indoor and out-

door perspectives. In the indoor environment, 

volatile organic compounds are produced in 

many industries, including petrochemical and 

paint industries [1]. The largest human re-

sources of the organic gases are related to the 

vehicle exhausts followed by emissions of power 

plants and the use of solvents [2]. Many organic 

compounds are toxic, carcinogenic, mutagenic 

and responsible for allergic symptoms such as 

asthma or eczema as well as formation of smog 

and ozone depletion [1]. More volatile organic 

compounds, especially chlorinated volatile or-

ganic compounds are widely produced in indus-

tries as solvents, and as chemicals in the plas-

tics industry, synthetic resins and so forth. Tri-

chloroethylene that is probably one of the most 
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common chlorinated volatile organic com-

pounds (CVOCs) and is produced in many 

above-mentioned industries is resistant against 

dechlorination due to the presence of a double 

bond beside the chlorine atoms [3]. Catalytic 

oxidation is one of the most common used tech-

nique for controlling emissions of volatile or-

ganic compounds. The activity of the catalyst in 

this process depends on the type of the volatile 

organic compound in the gas mixture, the pol-

lutant concentration and so on. Poisoning, de-

activation, and sensitivity to heat or mass 

transfer limitations are among the factors re-

stricting catalytic oxidation activity [2]. Cata-

lysts utilized in the catalytic oxidation of vola-

tile organic compounds are assorted into two 

major categories: noble metals (Pt, Pd, Rh, Au, 

etc.) and transition metals (Co, Mn, Cu, Fe, Ni, 

etc.). Noble metals possess higher catalytic ac-

tivity than other metals. However, their utiliza-

tion suffers from their rather high price. More-

over, the deterioration of noble metals occurs as 

being exposed to chlorine, phosphorus and hal-

ogenated compounds in the oxidation of volatile 

organic compounds reaction [2]. 

Among the comparatively cheap catalysts 

that are proposed, perovskites exhibited prom-

ising results for the oxidation of volatile organ-

ic compounds [4]. Essentially, perovskites are a 

group of isomorphic compounds with the struc-

tural formula of ABO3 that are cube-shaped. In 

these compounds, 12 A (larger cations) and 6 B 

(smaller cations) are coordinated by oxygen an-

ions. Each oxygen atom is surrounded by two 

cations in position B and four cations in posi-

tion A [5]. Elements occupying site A in the 

perovskite structure are mainly lanthanoide 

and/or alkaline earth metals and site B ele-

ments are transition metals [6].  

Perovskites possess relevant properties that 

make them catalytically appealing. These prop-

erties include stability of various valence states 

of transition metals ions (site B) in perovskite 

structure, the presence of structural defects, 

non-stoichiometric structures in site A and B 

and in the amount of oxygen in the structure, 

high mobility of oxygen, high thermal stability, 

low cost and no poisoning by sulfur, phospho-

rus and halogens [4]. Oxidation activity of per-

ovskite catalysts is determined primarily by 

the kind of the element in Site B [7]. Perovskite 

catalytic activity of ABO3 for oxidation of car-

bon monoxide and hydrocarbons such as pro-

pane and methanol shows that the catalytic ac-

tivity varies as: LnCoO3  ˃ LnMnO3  ˃˃ LnFeO3 

[8]. In some reports, Co- and Mn- containing 

catalysts, exhibited comparable activities 

[9,10]. 

Possessing general structure of ABO3, per-

ovskites are also reported having non-

stoichiometric defects. These defects can be an-

ionic or cationic. Few research groups dealt 

with non-stoichiometric examination of site B/

A in the perovskites. “La1−εMn1−εO3” notation 

instead of “LaMnO3+δ” was suggested for the 

stoichiometric lanthanum manganite perov-

skite, where ε=δ/(3+δ) [11]. This notation ad-

mitted fully occupied oxygen lattice and cation 

vacancies that represents real unit of the hex-

agonal phase and declined presence of excess 

(interstitial) oxygen. O'Connell et al. [12] sug-

gested the non-stoichiometric perovskites is 

more active than the stoichiometric ones, due 

to ease of oxygen release. Esmaeilnejad et al. 

[5] investigated the impact of over-

stoichiometric manganese in lanthanum-

manganese nanocatalysts on the reduction of 

oxidation temperature of exhaust gas emitting 

from gasoline engines and found that about 20 

% additional Mn increases the activity and re-

sistance of the catalyst.  

This paper aims to achieve an efficient per-

ovskite for oxidative removal of trichloroeth-

ylene. This compound is one of the major pollu-

tants in some petrochemical industry and is 

considered as a dangerous carcinogen in the In-

ternational Agency for Research on Cancer 

classification and the Environmental Protec-

tion Agency [13]. Therefore, we studied activity 

of LaBO3 (B = Mn and Co) in two stoichio-

metric and over-stoichiometric states of site B 

to A (B/A= 1.0 and 1.2) in the catalytic aerobic 

oxidation of 1000 ppm trichloroethylene at dif-

ferent temperatures.  

 

2. Materials and Methods  

2.1 Catalyst preparation    

LaMn1+xO3 and LaCo1+xO3 perovskites-type 

catalysts were synthesized in two stoichio-

metric (x=0.0) and over-stoichiometric (x=0.2) 

states by microwave assisted gel combustion 

method. In order to prepare the catalysts, cal-

culated amounts of metal nitrate salts 

(lanthanum nitrate (La(NO3)3.6H2O), manga-

nese nitrate (Mn(NO3)2.4H2O) and cobalt ni-

trate (Co(NO3)2.6H2O)) as oxidizer and sorbitol 

(C6H14O6) as organic fuel mixed together. All 

the used materials were purchased from Merck 

Company. Stoichiometric ratio of fuel to oxidiz-

er were used in all of the synthesis. Then, 2 mL 

of deionized water was added to the mixture, 

and mixing operation was conducted on a hot 
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plate at ~130 oC for 15 minutes so that a com-

pletely homogeneous and gel-like mixture was 

obtained. In order to perform the combustion 

operation, the mixture was placed in the micro-

wave (850 watts) with 100 % power, less than 

20 seconds. After combustion and ignition that 

were followed by releasing a large quantity of 

gases, the resulting powder was calcined in air 

atmosphere at 600 °C for 5 hours and sieved to 

particle size of 0.152-0.251 mm (60-100 mesh 

size). The combustion synthesis reactions of 

LaMn1+xO3 and LaCo1+xO3 perovskites are as 

follows:  

 

 

(1) 

 

 

 

(2) 

 

 

 

2.2  Characterization of catalysts  

X-ray powder diffraction (XRD) analyses 

were investigated for the crystalline structures 

of the catalysts by a Philips PW1800 diffrac-

tometer using Cu-Kα radiation. Diffraction in-

tensity was measured to be 20° ˂ 20 ˂ 70° for 

all samples with the step size of 0.03° and a 

count time of 2 seconds per each step. The re-

sulting spectra were detected by comparing 

with data in the Joint Committee on Powder 

Diffraction Standards (JCPDS). The average 

size of the synthesized crystals (dXRD, nm) was 

calculated by Debye-Scherrer equation: 

 

        (3) 

  

 

where b is the true half-peak width, l is the 

wavelength of the used X-ray, and q is the an-

gle between diffracted and input rays.  

The morphology and particle size of the cat-

alysts was determined by SEM analysis using 

TESCAN Vega device. The specific surface are-

as (SBET) of the catalysts were determined by 

Nova Station A manufactured by 

Quantachrome NovaWin2 Company. Specific 

surface area was determined at the liquid ni-

trogen temperature, which was obtained by ad-

sorption and desorption isotherms of nitrogen. 

The O2-temperature programmed desorption 

(O2-TPD) analysis was investigated by a multi-

purpose device of CHEMBET-3000 Model man-

ufactured by Quantachrome Company. Prior to 

each TPD run, the catalyst was first preheated 

up to 300 °C under a flow of oxygen and was 

kept at this temperature for 1 h. Then, the cat-

alyst under the above-mentioned gas flow was 

cooled down to the room temperature. After 

ending this process, oxygen was absorbed on 

the catalyst surface and the catalyst is fully ox-

idized. Then, the catalyst was then flushed 

with a flow helium at room temperature for a 

period of 30 min to clean the catalyst surface 

from the weakly and physically bounded ox-

ygens. Eventually, the catalyst temperature 

was increased to 1000 °C with the rate of 10 oC/

min under helium flow (as neutral environ-

ment) and desorbed oxygens was detected by a 

thermal conductivity detector. 

 

2.3  Catalyst activity evaluation  

An experimental setup was developed for 

testing the catalysts activity for trichloroeth-

ylene oxidation and shown in Figure 1. In or-

der to examine the activity of the catalysts for 

the catalytic oxidation experiments, 0.1 g of 

each catalyst was placed in the reactor on a 

small piece of acid washed quartz wool. The 

fixed bed reactor was made from quartz with 

the inner and outer diameter of 7 and 9 mm, 

respectively. An electrical furnace was used to 

heat the reactor around the reactor. Furnace 

temperature was adjusted by a temperature 

controller. K-type thermocouples were used for 

monitoring and controlling temperature of the 

reactor. 

The catalyst was first heated up to 600 °C 

with heating rate of 10 oC/min under a flow of 

air (30 cc/min). It should be noted that prior to 

testing, each of mass flow controllers are cali-

brated for the specific gas. Then, the reactor 

temperature was lowered and exhaust gases 

from the reactor were analyzed by Agilent 

6890N gas chromatography (equipped with 

FID and a CP-Sil 52 CB column) at specified 

temperatures and after establishment of 

steady state conditions at any temperature. All 

the experiments were carried out at fixed con-

centration of trichloroethylene (1000 ppm in 

air) and gas hourly space velocity (GHSV) of 

8500 h-1. The trichloroethylene conversion was 

calculated based on the inlet and outlet concen-

tration: 

 

 (4) 
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3. Results and Discussion 

3.1  Catalyst characterizations 

3.1.1  X-ray Diffraction  

 In order to study the crystalline structure of 

the synthesized catalysts including LaMnO3, 

LaCoO3, LaMn1.2O3, and LaCo1.2O3, the XRD 

patterns were acquired that are shown in Fig-

ure 2a and b. In the LaMnO3 sample, the ob-

served peaks are attributed to the presence of 

lanthanum-manganese perovskite (JCPDS 32-

0484). This indicates that the perovskite is 

formed in a single-phase process and other 

probable compounds, such as manganese or 

lanthanum oxides were not detectable by XRD 

technique. In the case of LaCoO3 sample, the 

comparison of this spectra (Figure 2b) with 

JCPDS charts indicates that this sample is es-

sentially lanthanum cobaltite perovskites type 

mixed oxides. Therefore, the formation of per-

ovskite structure is also confirmed and other 

ingredients such as cobalt or lanthanum oxides 

were not observed. This observation is support-

ed by other studies [14]. 

Figures 2c and d show XRD spectrum of per-

ovskites with the 20% over-stoichiometry of Mn 

and Co (LaMn1.2O3 and LaCo1.2O3), respective-

ly, that did not differ with the spectrum of the 

stoichiometric perovskites (Figures 2a and b). 

Thus, it could be concluded that the additional 

cobalt and manganese oxides in the over-

stoichiometric perovskites are either amor-

phous or they are scattered as very small crys-

tals in the perovskite. Consequently, they are 

not detectable by XRD technique. In this re-

gard, Van Roosmalen et al. reported the exclu-

sive existence of perovskite structure in XRD 

spectrum for lanthanum-manganese perovskite 

with La/Mn ratio between 0.908 and 1.202 at 

1123 K in air [15].  

The average crystalline size of the synthe-

sized perovskites (dXRD) are calculated by De-

bye-Scherrer equation (Equation 1) and shown 

in Table 1. As exhibited in Table 1, the average 

sizes of the synthesized crystals range from 14 

to 23 nm. Perovskites are reported possessing 

dXRD equal or even higher than our results. For 

instance, Sinquin et al. [16] studied on the    

LaMnO3 and LaCoO3 perovskites synthesized 

by sol-gel method and reported the occurrence 

of crystalline with mean size of 20 nm and 67 

nm, respectively. 

In many instances, particle size diversity is 

a consequence of different calcination tempera-

ture with the elaboration method being identi-

cal. In the other hand, parameters such as per-

ovskite synthesis method as well as precursor 

types play undeniable role in determining tex-

tural and structural properties of the prepared 

materials. 

 

3.1.2  SEM 

Morphology of the synthesized catalysts was 

analyzed by SEM. Figure 3a and 3b show  

LaMnO3 and LaCoO3 perovskites, respectively. 

It is evident that the synthesized perovskites 

have a spongy and porous structure with large 

voids. Formation of these features is attributed 

to the escape of a large amount of gas during 

the combustion of organic species used in the 

preparation process that in agreement with 

other studies [17]. 

 

3.1.3  BET analysis 

Specific surface area of the synthesized   

catalysts was determined by BET technique as 

Figure 2. XRD patterns of fresh (a) LaMnO3, 

(b) LaCoO3, (c) LaMn1.2O3, and (d) LaCo1.2O3 

perovskites synthesized by gel-combustion 

method  
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Figure 1. Schematic diagram of the experi-

mental setup for catalytic oxidation of trichloro-

ethylene  
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shown in Table 1. Specific surface area of stoi-

chiometric perovskites of LaMnO3 and LaCoO3 

equals to 16 and 13 m2/g, respectively. General-

ly, low amounts of specific surface areas have 

been reported for perovskites in the literature 

[18-20]. Taran et al. [21] found that the specific 

surface area of the perovskite LaMnO3 pre-

pared by Pechini method and calcined at 900°C 

being about 3.2 m2/g. Sinquin et al. [16] studied 

perovskites synthesized by sol-gel method. This 

study showed specific surface area of LaCoO3 

and LaMnO3 being 1.17 and 9.2 m2/g, respec-

tively, revealing the dependence of the particle 

size and specific surface area of the samples to 

the synthesis method. In addition, other stud-

ies such as Álvarez-Galván et al. [22] and Ziaei 

et al. [17] synthesized LaMnO3 with distinct 

synthesis methods and reported that the specif-

ic surface area of the perovskite is largely af-

fected by the synthesis method and gel-

combustion is the one of the best methods in 

this area. Therefore, the recipe utilized in our 

paper led to a praiseworthy result for the spe-

cific surface area. 

Elaboration of over-stoichiometric perov-

skites is accompanied by some alterations in 

the structure of catalysts that are reflected as 

significant specific surface area raise as com-

pared to stoichiometric ones. The BET surface 

area increases from 16 to 24 m2/g with the 20% 

excess Mn for lanthanum manganite perov-

skite. Similarly, the observation stands for La-

CoO3 and LaCo1.2O3 possessing specific surface 

areas of 13 and 18 m2/g, respectively. There-

fore, it could be concluded that over-

stoichiometric addition of Mn and Co to the 

perovskite structure led to about 50 % and 30 

% increase at BET specific surface area, re-

spectively. 

 

3.1.4  O2-TPD 

Figure 4 (a) shows oxygen mobility in the 

synthesized perovskites acquired by O2-TPD 

analysis. Two distinct characteristic peaks are 

observable in O2-TPD profiles of the probed 

perovskites: (1) The earliest peak locating in 

the range of 300-700 oC corresponds to a oxy-

gen. This is attributed to the oxygen adsorbed 

on the anionic vacancies existing on the surface 

with rather more mobility. (2) The second peak 

above 700 oC is related to b oxygen. This is ap-

pointed to the oxygen species with stronger 

bonds that are usually released from the perov-

skite lattice bulk. Therefore, the release of b 

oxygen requires elevated temperatures as com-

paring to a oxygen species. It is worthwhile to 

mention that the amount of the oxygen re-

leased in the second peak (> 700 oC) usually 

does not play an important role in the oxida-

tion of trichloroethylene because this com-

pound totally oxidizes at temperatures below 

600 oC. Thus, the first peak that plays an im-

portant role in the catalytic activity, is calcu-

lated for perovskites (LaMnO3, LaCoO3, 

LaMn1.2O3 and LaCo1.2O3). The total amount of 

a-oxygen desorbed (mmol O2/mol catalyst), cal-

culated from the first peak area of the catalysts 

is calculated and plotted in Figure 4b. As seen 

Figure 3. SEM micrographs of the (a) LaMnO3, and (b) LaCoO3 synthesized by gel-combustion method  

a b 

Catalyst dXRD (nm) SBET (m2/g) 

LaMnO3 16 16 

LaCoO3 23 13 

LaMn1.2O3 14 24 

LaCo1.2O3 20 18 

Table 1. Crystallites average size (dXRD) and 

BET specific surface areas (SBET) of as pre-

pared perovskite by gel-combustion method 

and calcined at 600 in air  
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in the Figure 4, mobility of oxygen in the cata-

lysts studied are as follows: LaMn1.2O3 ˃ LaM-

nO3˃ LaCo1.2O3 ˃ LaCoO3. 

As can be noted, oxygen mobility is higher 

in Mn-containing perovskites than the ones 

containing Co, which is in synchronization with 

previous studies. For instance, O2-TPD graph 

in Nitadori et al.'s study [8] showed that mobili-

ty of oxygen at temperatures range of 150-500 °

C in LaMnO3 is higher than that of LaCoO3. Al-

so, oxygen mobility in O2-TPD investigation in 

the over-stoichiometric perovskites (x=0.2) is 

higher than stoichiometric ones (x=0.0) for the 

both lanthanum manganite and lanthanum co-

baltite perovskites. Most studies indicated that 

catalytic activity is directly proportional to the 

oxygen mobility. Spinicci et al. [14] compared 

perovskites LaBO3 (B=Mn, Co) for catalytic oxi-

dation of benzene and concluded that LaMnO3 

shows higher activity due to more surface oxy-

gen species (based on the results of TPD analy-

sis).  

Another study investigated perovskite La1-

xSrxMnO3 in normal oxidation of butane. The 

results demonstrated that the augmented ac-

tivity of the catalyst with Sr substitution is in 

synchronization with increased amount of oxy-

gen disposed in the O2-TPD studies [23]. Li et 

al. [24] used LaMnO3 and LaMn0.955B0.05O3 

(B=Pd, Pt, and Rh) perovskites in the oxidation 

of methanol and reported that substitution of 

Mn by Pt (LaMn0.95Pt0.05O3) showed the best re-

sults in oxidation of methanol and the highest 

oxygen mobility in O2-TPD analyses. 

3.2  Evaluation of catalytic activity in the 

oxidation of trichloroethylene 

3.2.1  Comparison of LaMnO3 and LaCoO3 stoi-

chiometric perovskites  

Figure 5 shows oxidation activity of the stoi-

chiometric perovskite catalysts, LaMnO3 and 

LaCoO3, for oxidation of 1000 ppm trichloro-

ethylene in the air. As can be noted in the Fig-

ure 5, the existence of Mn in Site B of perov-

skite LaBO3 instead of Co leads to enhanced 

catalytic performance in oxidation of trichloro-

ethylene. This may be due to higher specific 

surface area of the catalysts (Table 1), and su-

perior oxygen mobility (Figure 4b) in the perov-

skite LaMnO3. Other researchers have found 

similar results: for instance, Spinicci et al. [14] 

compared LaMnO3 and LaCoO3 perovskites 

prepared by citrate method and concluded that 

LaMnO3 is more active than LaCoO3 in the oxi-

dative catalytic removal of chlorinated volatile 

organic compounds. 

For accuracy, catalytic activity evaluation 

of the catalysts was repeated three times to ob-

tain the average value which are reported.     

Error bars indicate maximal and minimal con-

versions measured at each temperature in re-

producibility experiments under identical reac-

tion conditions. The results of error bars are 

shown in Figure 5. An acceptable error range 

in all of the catalysts are observed. 

Table 2 shows T50 and T90, defined as the 

temperature required to convert 50 % and 90 % 

of trichloroethylene. Changing Co to Mn in Site 

Figure 4. (a) O2-TPD profiles and (b) amount of desorbed a-oxygen (mmol O2/mol catalyst) of LaMnO3, 

LaCoO3, LaMn1.2O3, and LaCo1.2O3 perovskites synthesized by gel-combustion method and calcined at 

600oC  
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B of perovskite LaBO3 reduce T50 and T90 about 

50 and 60°C, respectively. 

Several studies were conducted on the oxi-

dation of trichloroethylene using various tran-

sition metal catalysts as well as noble metals. 

The presence of a double bond with chlorine at-

om enhances the resistance of trichloroethylene 

(CHCl=CCl2) against dehydrochlorination. For 

example, trichloroethylene degradation using 

Pt/Al2O3 catalysts requires high temperatures 

around 500 °C [23]. Recent researches aiming 

at oxidative catalytic removal of trichloroeth-

ylene has been published; A CeO2 catalyst 

which was reported having T90 above 500 °C 

[22], a Pt/Al2O3 catalyst with T90 greater than 

520 °C [25], T90 of a SO4ZrO2 catalyst being 

equal to 575 °C and the value achieved by a Pd/

SO4ZrO2 catalyst is around 550 °C [26]. 

 

3.2.2  Comparison of stoichiometric perovskites 

with over-stoichiometric ones 

Figure 6 depicts the results of the oxidation 

activity of the synthesized stoichiometric perov-

skites of LaMnO3 and LaCoO3 besides over-

stoichiometric perovskites of LaMn1.2O3 and 

LaCo1.2O3 for oxidation of 1000 ppm trichloro-

ethylene in the air.  It was found that increas-

ing the ratio of Mn/La and Co/La in the lantha-

num manganite and lanthanum cobaltite per-

ovskites from 1 to 1.2 leads to the improved 

catalytic performance in oxidation of trichloro-

ethylene. This observation may be due to high-

er specific surface area of catalysts (as a conse-

quence of Mn/La ratio increasing, Table 1) as 

well as higher oxygen mobility (Figure 4b). 

Table 2 shows that as compared with stoi-

chiometric LaMnO3, a reduction of about 60 

and 20 oC for T50 and T90, respectively, is ob-

servable for over-stoichiometric LaMn1.2O3 per-

ovskite. In the case of LaCoO3 perovskite, the 

reductions are 22 and 28 oC, respectively. Ac-

cording to open literature, partial substitution 

in the B site of the perovskite and/or over-

stoichiometry may be responsible for enhanced 

activities of perovskite through structural 

changes related to oxygen vacancies or altera-

tion of cation capacities [18,27-28].  

Among all the synthesized catalysts, 

LaMn1.2O3 yielded the best activity in trichloro-

ethylene catalytic oxidation. Moreover, BET 

and O2-TPD analyses indicated that specific 

surface area and oxygen mobility corresponds 

with LaMn1.2O3 was higher than other probed 

perovskite-type catalysts. 

LaMnO3 is frequently reported being among 

the most active perovskites that can exist in 

non-stoichiometric mode in one or two sub-

networks. Recent research has shown that non-

stoichiometric perovskite with structural de-

fects in Mn is more active than stoichiometric 

Mn-containing perovskite in oxidation of me-

thane. The creation of such vacancies can in-

crease α oxygen activity of the network and 

thus catalytic activity enhances. Spinicci et al. 

[11] showed that activity of a non-

stoichiometric perovskite with defect in site B 

is higher than stoichiometric perovskite.  

It can be assumed a simple power-law ki-

netic model for modeling the catalytic oxidation 

of trichloroethylene (Equation (1):  

       

  (1)   

 

where (-rTCE) is the reaction rate of TCE oxida-

tion (mol kgcatalyst-1.s-1), PTCE is the TCE partial 

pressure (Pa) and k is the reaction rate con-

stant (mol kgcatalyst-1.s-1.Pa-n), which is supposed 

to have an Arrhenius dependence on tempera-

ture (k = A exp(-Ea/RT)). Miranda et al. [30, 

31] have proposed first-order kinetics for the 

oxidation of trichloroethylene with different 

catalysts. In the case of first-order kinetics, the 

integrated kinetic equation is expressed in 

Equation (2). 

 

        (2) 

  

where xTCE is the TCE fractional conversion, W 

the catalyst weight (kg), and F the molar feed 

flow rate (mol.s-1). For LaMn1.2O3, LaMnO3, 

LaCo1.2O3, and LaCoO3 catalysts, activation en-

ergy (Ea) for the zero order reaction are 17.9, 

18.3, 19.6, and 20.2 kJ.mol-1, respectively.  

Miranda et al. [30,31] have proposed that 

zero order kinetics model could be related to 

Figure 5. Oxidation of 1000 ppm of trichloro-

ethylene in air on 0.1 g of LaMnO3 and LaCoO3 

perovskites. Error bars indicate maximal and 

minimal conversions measured at each temper-

ature in reproducibility experiments under 

identical reaction conditions  
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Langmuir-Hinselwood, Eley-Rideal, or Mars-

van-Krevelen mechanism models by assuming 

reaction between strongly adsorbed oxygen and 

trichloroethylene, reaction of adsorbed trichlo-

roethylene on the surface of catalyst with gas 

phase oxygen, or interactions of trichloroeth-

ylene with an oxygen-rich part of the catalyst, 

respectively. 

3.3  Structural analysis of the used cata-

lysts  

XRD spectra of the over-stoichiometric syn-

thesized catalysts acquired after oxidation re-

action of 1000 ppm trichloroethylene in the 

temperature range of 25-600 oC. Figure 7 

shows these spectra for fresh and used 

LaMn1.2O3 and LaCo1.2O3 perovskites. The ob-

tained XRD spectra revealed that the fresh and 

spent samples were nearly the same. There-

fore, not only perovskite structure was re-

mained intact during the oxidation reaction, 

but also no new detectable phase(s) may be 

formed in the samples, thus the corresponding 

phases of the probed perovskites are preserved 

under the reaction conditions. The perovskite 

structure is maintained because oxygen in the 

air can be adsorbed on the surface and replen-

ishes the oxygen of the perovskite. Thus, the 

oxygen in the air plays an important role in 

maintaining structure of perovskite phase. 

 

4. Conclusions 

LaMn1+xO3 and LaCo1+xO3 perovskites were 

synthesized using gel combustion method, stoi-

chiometric (x=0.0) and over-stoichiometric 

(x=0.2), that employed for oxidation of 1000 

ppm trichloroethylene in air. As demonstrated 

by XRD analysis, the aforementioned perov-

skites were exclusively consisted of a single 

phase in order that no other metal oxides were 

detected. In the case of over-stoichiometric 

samples, it was found that additional cobalt 

and manganese oxides may be amorphous or 

they are scattered as very small crystals in per-

ovskite that are not detectable by XRD tech-

nique. Moreover, Mn-containing perovskites 

compared to perovskites containing Co in both 

stoichiometric and over-stoichiometric modes 

exhibited higher specific surface area as well 

as oxygen mobility. These may lead to the im-

proved catalytic activity of the Mn-containing 

perovskites. Also over-stoichiometric perov-

skites possessed enhanced activity in compari-

son with stoichiometric ones. As T50 and T90 be-

ing equal to 340 and 480 oC, respectively, 

LaMn1.2O3 perovskite had superior perfor-

mance among the investigated catalysts.       
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