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	Variable speed control of wind turbine generator systems have been developed to get maximum output power at every wind speed variation, also called Maximum Power Points Tracking (MPPT). Generally, MPPT control system consists of MPPT algorithm to track the controller reference and generator speed controller. In this paper, MPPT control system is proposed for low speed wind turbine generator systems (WTGs) with MPPT algorithms based on optimum tip speed ratio (TSR) and generator speed controller based on field oriented control using type-2 fuzzy system (T2FS). The WTGs are designed using horizontal axis wind turbines to drive permanent magnet synchronous generators (PMSG). The results of verification of the system proposed through the simulation show that the MPPT control system based optimum TSR has been able to control the generator output power around the maximum point at all wind speeds.
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1. INTRODUCTION 
Indonesia's geographical conditions located in the tropics only have low wind speeds. Therefore, wind power plants that are suitable to be developed are low speed wind turbine generator systems (WTGs). Several types of generators have been used for WTGs, such as Permanent magnet synchronous generator (PMSG) [1], Doubly Fed Induction Generator (DFIG) [2] and Squirrel Cage Induction Generator (SCIG) [3]. PMSG is a type of generator that is widely used for low speed WTGs, because this machine has high efficiency and can be applied directly without a gearbox [1]. In this paper proposed low speed WTGS using PMSG which is driven by horizontal axis wind turbine in stand alone configuration.
To improve the WTGs efficiency, the maximum power control also called the Maximum Power Point Tracking (MPPT) is discussed in this paper. The maximum power of the WTGs can be obtained by controlling the generator speed at the maximum power point. This can be done by using a power converter that can regulate the voltage and frequency of the generator, hence the generator speed can be controlled. Generally, MPPT control systems for WTGs are designed on the generator side, which consists of the MPPT algorithm to find reference speeds at maximum power points and speed controllers to regulate the generator speed according to the reference speed at maximum power point. Several MPPT algorithms have been developed, such as optimum torque algorithm, optimum TSR, perturbation and observation algorithm and MPPT based on artificial intelligence [3-8]. MPPT control system based on the optimum TSR is proposed in this paper. This algorithm is more accurate than other algorithms for search the reference speed generator at the maximum power point, because calculation of the reference speed is directly based on the wind speed data obtained from the wind speed sensor, so the reference speed more precise than other algorithms.
PMSG speed control widely developed with vector control methods, such as direct torque control and field oriented control. The field oriented control method provides a smoother speed response than the direct torque control method [9] , so this method is chosen in this paper. In the field oriented control method, generator speed is controlled by regulating electromagnetic torque and flux indirectly by regulating the dq-axis stator current, where q-axis stator current presents electromagnetic torque and d-axis stator current represents the flux linkage of stator. Stator current regulation in the field oriented control method can be done in several strategies, such as constant torque angle, unity power factor, constant stator flux and maximum torque per Ampere. In this paper, a constant torque angle method is used, because it is simpler and easier to apply. In this method, the generator speed is only controlled by regulating the q-axis stator current, while the d-axis stator current is kept constant zero.
Several controller methods have been applied to adjust the q-axis stator current in field oriented control method, such as PI controller [7], sliding mode control [5], fuzzy logic control [3] and adaptive robust control [10]. In this paper, q-axis stator current of PMSG is regulated using type-2 fuzzy system  (T2FS) method. The mayor difference T2FS with type-1 fuzzy system are the memberships function T2FS are presented by upper membership function  and lower membership function. This makes T2FS  more accurate than type-1 fuzzy system to handle the uncertainty of membership function parameters [11-13], so T2FS output is more precise than type-1 fuzzy system. T2FS usage is expected to increase the reliability of the system to control the generator speed at maximum power point against the uncertainty of wind speed.


2. THE PROPOSED WIND TURBINE GENERATOR SYSTEM
The proposed stand alone wind turbine generator system (WTGs) is shown in Fig.1. The proposed WTGs  consists of horizontal axis wind turbine to convert wind power into mechanical power to drive the generator, three phase PMSG to convert the mechanical power of ind turbine into electrical power, voltage source converter to convert ac generator voltage to dc voltage and also as a medium to control the generator speed at maximum power point, dc voltage supply for PMSG speed control in the initial conditions, resistor load and MPPT control system based on optimum TSR control. MPPT control system consists of  a MPPT algorithm based on optimum TSR to obtain the reference speed at maximum power and the speed control based on field oriented control to adjust the generator speed according to the reference speed. In this method, the generator speed is regulated by adjust the reference of q-axis stator current using T2FS, while the reference of d-axis stator current is kept constant zero. Furthermore, the reference of dq-axis stator currents are compared to the measured stator current and its error is used as input of the hysteresis current regulator pulse width modulation (HCC-PWM) to modulate the voltage source converter switches. With this concept, the voltage source converter will control the dq-axis stator current according to the reference current obtained from T2FS, so that it will indirectly regulate PMSG speed according to the reference speed at the maximum power point.





Figure 1. The proposed stand alone WTGs
2.1. Horizontal Axis Wind Turbine
Horizontal axis wind turbine (HAWT) is used to drive the generator based on the mechanical power it captures from wind speed. The mechanical power of a wind turbine (Pm) is determined by wind speed (vw), air density (ρ), blade radius of wind turbine (R)  and wind turbine power coefficient (Cp), which is written :


							(1)

Power coefficient (Cp) is the ratio between the mechanical power produced by a wind turbine (Pm) and the wind power captured by a wind turbine blade. The Cp value is determined by pitch angle of blade (β) and tip-speed ratio (λ) [5]. TSR is the ratio of wind turbine rotation speed to wind speed, which is written as:


									(2)
2.2. Permanent Magnet Synchronous Generator
The MPPT control system based on optimum TSR for Permanent Magnet Synchronous Generator (PMSG) is applied by controlling the PMSG speed in vector control method. In vector control method, PMSG is modeled in dq-axis form. The stator current of PMSG in dq-axis can be written as :


							(3)

						(4)

where Rs, ψm, and ωe are the stator resistance, permanent magnet flux and the electrical speed of PMSG, respectively. vd,vq and Ld, Lq are the stator voltages and the stator inductances, respectively. The mechanical dynamic of PMSG can be written as :



   with   					(5)   

where J, B, ωm and np are inertia moment, friction coefficient, mechanical speed and pole pair number of PMSG, respectively.


3. OPTIMUM TIP SPEED RATIO CONTROL
Optimum Tip-Speed Ratio (TSR) control is designed based on the mechanical characteristics of the wind turbine. The mechanical power of a wind turbine varies according to changes in wind speed and mechanical speed of the wind turbine. Mechanical power has one maximum point at each wind speed, which is at the maximum power coefficient point (Cpmax) and optimum TSR (λopt), as shown in Fig. 2.



                 
                                        (a)                                                                    (b)
Figure 2. Wind turbine characteristics. (a) Mechanical power curve and     (b) Power coefficient versus TSR
Optimum TSR control consists of MPPT algorithm based on optimum TSR to searching the reference speed at maximum power point and speed controller to regulate the generator speed according to the reference speed. The reference speed at the maximum power point in the optimum TSR algorithm is calculated based on (2), which is written as:


									(6)

where λopt values in (2) are obtained through wind turbine testing. The generator speed controller is design using FOC method based on a constant torque angle . In this method, the generator speed is controlled by regulating the torque indirectly through controlling the q-axis stator using T2FS, while the d-axis stator current is kept constant zero. Fig. 3 show the scheme of speed controller using T2FS.





Figure 3. The scheme of speed controller using T2FS

T2FS is used to obtain the reference electromagnetic torque Te* with input speed errors e and speed error changes de. Afetr Te* is obtained from T2FS, then the reference dq-axis stator current can be written as :



  and   							(7)

Generator speed control based on FOC is applied by regulating the stator current through voltage source converter. Stator current regulation is done by adjusting the converter switch modulation based on hysteresis current regulator pulse width modulation (HCC-PWM). PWM pulses are obtained using a hysteresis band with input the reference stator current from the speed controller and a measured stator current. This makes the stator current become controlled according to the reference current from the speed controller, therefore the generator operates at a speed corresponding to the reference speed at the maximum power point.


3.1. Type-2 Fuzzy System
Type-2 Fuzzy System (T2FS) uses an interval membership function that has a Footprint of Uncertainty (FOU) which is limited by upper membership function (UMF) and lower membership function (LMF), thus the uncertainty of input parameters is easier to overcome  [11-13]. T2FS structure consists of fuzzification, fuzzy inference, rule base and output processor which consists of type reduction and defuzzification, as shown in Fig. 4.




Figure 4. T2FS structure
Fuzzification is the process of mapping real input data (crisp input) into a fuzzy set with linguistic variables. The T2FS input for speed control in Fig. 3 is e and speed error changes de. If the input is expressed as x, then the crisp input membership function can be presented as :


							(8)


   and   			(9)

If crisp output is expressed as y, then the crisp output membership function can be presented with :


						(10)

The membership function of crisp input and output are represented by triangular and trapezoidal membership functions with linguistic variables negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM) and positive big (PB), as shown in Fig. 5.




   
                                            (b)                                                                                  (a)



(c)

Figure 5. Membership functions of T2FS. a) input e, b) input de and c) output u

Figure 5 shows that input e is presented with seven membership functions, input de has five membership and output functions u has seven membership functions. The T2FS rule is designed with the concept of diagonal rules. There are 35 rules used to determine T2FS output. T2FS rules are formulated by (11) and the T2FS rule base is detailed in Table 1:


				(11)


  and .			(12)

Based on the rules in (11), T2FS inference with meet operations can be written as :


						(13)

with firing strength :


					(14)

		

Table 1. Rule base of T2FS
	   e de
	NB
	NM
	NS
	Z
	PS
	PM
	PB

	PB
	Z
	PS
	PS
	PM
	PM
	PB
	PB

	PS
	NS
	NS
	Z
	PS
	PS
	PM
	PM

	Z
	NM
	NS
	NS
	Z
	PS
	PS
	PM

	NS
	NM
	NM
	NS
	NS
	Z
	PS
	PS

	NB
	NB
	NB
	NM
	NM
	NS
	NS
	Z




After a fuzzy inference system, then type reduction is done using Center of Sets (COS), which is written as :


						(15)

where YCOS is a type-1 fuzzy interval, yl is the left point or the minimum value of y and yr is the right point or the maximum value of y, which can be calculated by the Karnik-Mendel algorithm, as shown in Fig. 6.





Figure 6. Flowchart of Karnik-Mendel algorithm
After yl and yr are obtained from the karnik-Mendel algorithm, the output of T2FS can be calculated by using :


									(16)

The reference electromagnetic torque as the output of speed controller can be written as :


									(17)
	
Based on the reference electromagnetic torque in (17), the q-axis stator current can be calculated using (7).


4. RESULTS AND ANALYSIS 
The proposed optimum TSR control of WTGs based on T2FS is verified through simulation. The proposed system as shown in Fig. 1 consists of hrozontal axis wind turbine with blade radius 2 meter, PMSG with permanent magnet flux 0.175 Weber, pole pair numbers 18, momen of inertia 0.089 kg m2 and friction coefficient 0.005 N.m.s/rad.
The first simulation was carried out to see the characteristics of wind turbines. The first simulation was carried out to see the characteristics of wind turbines at wind speeds that varied from 5 m/sec to 8 m/sec. Fig. 7 shows the simulation results. The mechanical power of a wind turbine varies according to changes in wind speed and changes in rotor speed, as shown in Fig. 7(a). The mechanical power of a wind turbine has one maximum point at each wind speed. This maximum power point is at the point of maximum power coefficient and optimum TSR point. The simulation results show that this wind turbine has a maximum power coefficient of 0.5312 and an optimum TSR of 8.09, as shown in Fig. 7(b). This value will be used as a reference to validate the proposed MPPT control system.


[image: ]    [image: ]
                                             (a)                                                                                      (b)

Figure 7. Wind turbine characteristics, (a) Mechanical power, (b) power coefficient versus TSR.

Subsequent simulations were carried out to test the proposed MPPT control system with varying wind speeds, as shown in Fig. 8(a). The MPPT control system based optimum TSR is carried out by controlling the generator speed at the maximum power point. Fig. 8(b) shows the generator speed response. The design of the generator speed control system with T2FS-based FOC method has been able to control the generator speed according to the reference speed generated by the MPPT algorithm with a maximum error 9 rpm at transient conditions and ±2 rpm at steady state, as shwon in Fig. 8(c). This shows that the T2FS design has provided accurate results for controlling electromagnetic torque through setting the q-axis stator current. This can be seen from the torque response in Fig. 8(d). T2FS has successfully controlled electromagnetic torque to follow the mechanical torque of a wind turbine at its maximum power point, hence the generator speed also follows the reference speed at the maximum power point.
The performances of the proposed MPPT control system can be seen in Fig. 9. Generator output power varies according to changes in wind speed, as shown by Fig. 9(a). This generator output power variation is the maximum power point variation due to changes in wind speed. It is can be seen from the response of the wind turbine power coefficient and TSR as shown by Fig. 9(b) and 9(c). The wind turbine TSR remain at the optimum point 8.09 even though the wind speed changes.


[image: ]      [image: ]
                                           (a)                                                                                      (b)
[image: ]    [image: ]
                                           (c)                                                                                       (d)

Figure 8. PMSG performances , (a) wind speed, (b) rotor speed, (c) rotor speed error, (d)  torque


The wind turbine power coefficient also remains at a maximum point 0.5312 although wind speeds vary. This shows that the MPPT control system design with T2FS-based optimum TSR method has successfully controlled the generator output power at maximum points at all wind speeds. Fig. 9 (d) shows the generator output voltage response on dc loads whose values vary according to changes in wind speed.


[image: ]        [image: ]
                                          (a)                                                                                        (b)
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                                           (c)                                                                                       (d)

Figure 9. The performances of optimum TSR control , (a) power, (b) TSR, (c) power coefficient,                 (d)  DC voltage


5. CONCLUSION 
The proposed MPPT control system for direct driven WTGs based on optimum TSR using T2FS has successfully controlled the generator output power at maximum power points at all wind speeds. This can be seen from the response of the wind turbine power coefficient that stays around the maximum point of 0.5312 and the TSR response which remains at the optimum point of 8.09 even though the wind speed varies. This shows that the T2FS design proposed to control electromagnetic torque by adjust the stator current has produced a generator speed that corresponds to the reference speed at the maximum power point obtained from the MPPT algorithm.
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