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Abstract

The carbon monoxide methanation has possessed huge potential as an effective method to produce
synthetic natural gas (SNG). The basic requirements such as gh catalytic activity at low
temperatures (<300 °C) and high stability throughout all temperatures is needed for an ideal
methanation catalysts. The ultimate goal of the study is to examine the influential of different metal
promoters towards catalytic properties and catalytic CO methanation performance. A series of metal
promoters (Rh, Co, Pd and Zn) mesoporous ZSM5 re synthesized using an incipient-wetness
impregnation method and evaluated for catalytic CO methanation. XRD analysis showed that only
metal oxides and no metallic phase of Rh, Co, Pd and Zn were observed. The nitrogen physisorption
analysis showed that mZSM35 possessed high surface area and micro-mesoporosity with intra- and
interparticle pores. FESEM analysis illustrated that mZSMS5 had typical coffin-type morphology and
Rh metal dispersed on the surface of the support was confirmed by EDX analysis. Moreover, Rh (CO
conversion = 95%. CHa yield = 82%) and Co (CO conversion = 91%. CHa yield = 71%) promoters
showed significant improvement in CO methanation. On the other hand. Pd (CO conversion = 18%.
CHa yield = 12%) and Zn (CO conversion = 10%, CHa yield = 9%) promoters had only low benefit to
the CO methanation. This study affirmed that the catalytic activity of CO methanation was influenced

by the variation in the type of metal loading due to different nature of metallic phases and their

synergistic interaction with the supporting material.
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1. Introduction

Recent years, CO methanation has gained widespread attention in the production of synthetic

natural gas (SNG) and appeared to be a promising approach due to growing demand for natural gas as
an important future energy carrier [1-2]. The CO methanation reaction occurs as follows [3-4]:

3H, +CO > CH, +H,0 AHaosk = —206.1 kJ mol! )

In CO methanation, nickel-based catalysts [5-7] are undeniably known as the reference for
methanation benchmark. Unfortunately, e highly exothermic nature of the methanation reaction
have resulted in Ni sintering and carbon formation. Therefore, it is urgent need to design and develop
new material for CO methanation as the alternative for the well-established Ni-based catalysts. It is
noteworthy that supporting material played a significant role on the catalytic performance.
Mesoporous zeolite is a type of material, which is the combination of microporous structure with

additional intracrystalline or intercrystalline mesoporous. It demonstrated excellent catalytic activity

in alkylation and cracking [8]. methanol-to-olefins (MTO) [9-10], adsorption reaction [11] and COz

capture [12]. Gua et al. studied CO> methanation over mesoporous Ni/ZSM35, Ni/SBA-15,
Ni/MCM-41, Ni/Al203 and Ni/Si02. The presence of basic property and the metal-support synergistic

effect is the main reason of Ni/ZSM-5 as the most active methanation catalyst among all the

mesoporous supports. Moreover, it also presented superb anti-coking and anti-sintering properties
[13]. Therefore, mesoporous ZSM5 (mZSM35) can be a better alternative for CO methanation.
Besides. it is well known that different metal promoters exhibited different catalytic properties and
performance. In literatures, the cffective and convenient way to improve the catalytic methanation
activity is by addition of metal promoters. Furthermore, it should be noted that the rate controlling
step in CO methanation is believed to be CO dissociation in which this dissociation step is
structure-sensitive dependent and happen on metallic phase [14]. Panagiotopoulou [15] studied

hydrogenation of CO2 over RWTiO2, Ru/TiO2, Pt/Ti02 and Pd/TiOz catalysts. They reported that
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catalytic methanation activity of Rh catalyst is more active than Ru catalyst. On the contrary, Pd and
Pt catalyst are practically inactive. The results significantly depend on the nature of the metallic
phase. Zhang et al. [16] studied the promotional effect of cobalt on MoS: catalyst for CO methanation
using a density functional study. It is noted that cobalt metal demonstrated promoting effects on the
MoS: and provided easiness of OH species removal for continuous vacant of active sites which can be
always available for further adsorption and interaction. Martin et al. [17] examined the
structure-function relationship of Rh/Al203 and Rh/SiO2 towards CO2 methanation. They found that
the dissociation of CO: led to minor formation of RhOx is the reason for the enhanced activity in
Rh/AL20;5 catalyst. But, it is noteworthy that the cxisting metal promoters still suffered from
deactivation because of low surface areca of support material and low dispersion of loaded metal,
which can be avoidable by choosing a suitable supported metal material [18].

In the contemporary work, we examined the comparative study for CO methanation over a series of
metals (Rh, Co, Pd and Zn) supported on mesoporous ZSMS5 (mZSMS5). The selection of the metals
was based on the potential basis to replace the existing Ni-based catalysts. Rhodium and palladium
were proposed as the noble metal’s candidates. On the other hand, cobalt and zinc are representative
of non-noble metals. Although these metals have been studied over a variety of supports. but to the
best of our knowledge, the approach to introduce these metals onto mZSMS5 have not been reported
before. In the current work, the influence of the different metals in the physicochemical properties of
mZSM3 and their catalytic performance are presented and discussed. Various techniques including
XRD. N2 physisorption, FTIR, FESEM were used to characterize the structural, textural and
morphology f the catalysts. The CO conversion and the products yield (CHs and COz) were
investigated. Among all the promoted catalyst, Rb/mZSMS5 exhibited the best catalytic performance,
which was viewed as a promising candidate for CO methanation. Furthermore, we found that the
modification with different type of metals on mesoporous ZSM5 demonstrated different catalytic

activity. The metal-support synergistic effects are necessary for superior catalytic performance.
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3. Results and Discussion

3.1. Physicochemical Properties of Catalysts

Figure 1 shows the XRD diffraction analysis of all the catalysts. The XRD results show the typical
diffraction peaks at 20 = 7-10° and 22-25°, which also presented in typical MFI type zeolite [19]. The
introduction of the metals did not shift the peaks position, but the intensities of the peaks were slightly
decreased as compared to the bare mZSM3. However, the characteristic diffraction peaks of ZSM-5
still remained.

The broad peak at 20 = 34.5° was observed on Rh/mZSM35. which is assigned to (114) peak for

Rh20s particles in an orthorhombic structure [20]. The high dispersion of Rh species was confirmed

by the ence of other Rh-containing crystal phases. Vita et al. [21] reported that no evidence for the
existence of rhodium phase (elemental rhodium and/or Rh oxides) on CeO: was observed because of
low loading amount and well-dispersed Rh metal on the support. A peak at 20 = 37° was observed on
Co/mZSM5. which is a characteristic peak of crystalline CosQs, as reported by Li et al. [22] and
Diez-Ramirez et al. [23]. Some of the peak for Co oxides may be overlapped with the peak of
mZSM3, and thus, no peak of metallic Co was observed. For Pd/mZSMS35, a sharp diffraction peak
which assigned to PdO was observed at 20 = 34°, But, no diffraction peak at 20 = 40° and 46°, which
attributed to metallic Pd was observed [24-25]. Similar result was reported by Adams et al. [26]
whereby no diffraction peaks assigned to Pd species were detected on the TiO:z. SiO2 and AlOs
supports due to the small amount and well distribution Pd species on the surface of the support.
Furthermore, several peaks at 20 = 34.5° (002). 36.3° (101), 47.6° (102) and 56.7° (110), which are
characteristic peaks of ZnO wurtzite structure were observed on Zn/mZSMS [27]. In brief, the XRD
results indicated that no significance structural degradation was observed after metal introduction and
the impregnated metals (Rh, Co, Pd and Zn) are mainly exists as metal oxides form.

The nitrogen physisorption was employed to depict the porosity of the material. Figure 2

demonstrated the nitrogen physisorption isotherms of the metal-promoted mZSM3 catalysts. The
4
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presence of micropores was affirmed by nitrogen uptake at low relative pressure. According to
TUPAC classification, all catalysts exhibited isotherms with type IV pattern and H1 hysteresis loops.
signifying the characteristic of mesoporous materials. It showed co-existence of micro-mesoporosity
propertics in the material. Moreover, 2 pronounced steps occurred at P/Po = 0.2-0.4 and 0.9-1.0,
which attributed to capillary condensation of the intraparticles pores and interparticles pores,
respectively [28]. The results revealed a significantly increased in mesopores in Rh/mZSM3, as
demonstrated by the adsorption behavior in N2 adsorption-desorption isotherm, It is probably due to
the presence of external surface Rh particles which may causing blockage of the original pores
structure and created bigger pores. This also have led to the increased in intraparticle pores and total
pore volume in Rh/mZSMS3. The same phenomenon was also observed in metal loaded onto
aluminophosphate, which led to an increased in the adsorption-desorption volume probably due to the
formation of mesoporous structure [29]. Besides, Bautista et al. [30] claimed that the behavior in
dissimilarity of the mesopore size is attributed to the continuous pores restructuring of the material.

Figure 3 demonstrated NLDFT re size distribution of the catalysts. All catalysts demonstrated
pore size distribution in the range of < 20 A and 35-70A. It can be observed that the introduction of
metals altered the pore size distribution of the catalysts. The high number of pores at ~35A was
observed for Pd/mZSMS35, might be duec to the pore blockage by Pd metal loading. Besides,
Zn/mZSM35 showed an obviously decreased in the pores at ~40A. with the simultaneously increased
the pores at ~12A.

Table 1 summarizes ge textural propertics of the catalysts. The surface area of mZSMS3,
Rh/mZSMS5, Co/mZSM35, Pd/mZSM5 and Zn/mZSMS are 857, 642, 594, 520 and 674 m? g’',
respectively. In addition, the total pore volume of mZSMS5, Rh/mZSM5, Co/mZSM5, Pd/mZSM5
and Zn/mZSM5 are 0.2303, 0.2580, 0.2610, 0.2090 and 0.2530 cm® g', respectively. It can be

concluded that introduction of the metals led to the decrease in surface area. In addition, two different

trends of total pore volumes were observed: total pore volume increased after introduction of Rh, Co

5
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and Zn. While, it is decreased with Pd loading. It can be postulated that the location of loaded Rh, Co,
and Zn is on the exterior part of the mZSMS35. On the other hand, Pd located in the inner of the mZSM35
pores. It is noteworthy that suitable textural properties are believed be one of the factors for
excellent catalytic activity by providing higher exposure of the active metal-reactant gases
interactions and improved the reactant-product diffusion efficiency.

The examination of the functional groups in the catalyst was done by FTIR analysis. Figure 4
displays the FTIR spectra in the range of 4000-400 cm’' for fresh metal-promoted mZSM35 catalysts.
The stretching vibration of hydroxyl group and bending vibration of water molecules were presented
in the band at 3460 cm™' and 1680 cm™!, respectively. The absorption region of zeolite is shown in the
region of 1300-400 cm', due to the presence of SiO4 and AlO4 tetrahedron units. The characteristic
band of the external and internal asymmetric stretching vibration were located at 1280 " and 1150
em™', respectively. Moreover, the presence of external symmetric stretching was showed in a small
band at 800 cm™'. Two sharp bands were observed at 580 cm™' and 450 cm™ can be ascribed to the
framework double four membered ring vibration and T-O bending vibration (Si-O and Al-O) of MFI
type zeolites [31-32]. The FTIR results showed no shifting in the peak positions for metal-loaded
mZSM3 catalysts as compared with the bare mZSMS35 (not shown). indicating there is no structural
framework difference present in the catalysts.

Figure 5 illustrates FESEM images and EDX analysis of mZSM5 and Rh/mZSM35. Both mZSM5
and Rh/mZSM35 demonstrated coffin-shaped morphology. The mZSMS35 showed a smooth surface
morphology while some of Rh particles were dispersed on the mZSMS5 surface was observed for

Rh/mZSM5. To confirm the presence of Rh on the surface of the support, EDX analysis was carried

out. From the analysis, it confirmed the approximately 5 wt% of Rh loading on mZSM3 support.

3.2. CO Methanation Performance

Figure 6 shows the catalytic performance results for all the catalyst in 150-450 °C. At 450 °C, the

6
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CO conversion and CH4 yield followed order of: Rh/mZSM-5 > Co/mZSM-5 > Pd/mZSM-35 >
Zn/mZSM-5. Only low CO conversion was obtained for bare mZSM35 (not shown). It should be noted
that the presence of small amount CO: as the side product of the methanation reaction. This is due to
the co-occurrence of methanation reaction th the accompanying of water-gas shift reaction
(WGSR). Overall, the most active catalyst was Rh/mZSM-5, while the poorest catalyst was
Zn/mZSM-5. The results presented the variation of metals loaded on mZSM-3 will demonstrated
different physicochemical properties and lastly affected the O methanation activity of the catalysts.
We correlated the relationship of catalytic activity with properties of the catalyst (crystal structure,
textural propertics and structural propertics), but no obvious trends were scen. The Rh promotional
effect towards catalytic performance could be combination results of all the properties and formation
of more available active sites (Rh metal for H2 dissociation and mZSM35 for CO adsorption and
interactions). Moreover, the synergistic effect of both Rh metal and ZSM35 support could be
responsible for this enhancement [13., 33-34]. The good performance of Rh/mZSMS5 in CO
methanation could be attributed to a synergy between well dispersed Rh metal, large surface area and
suitable micro-mesoporosity of mZSM3 support. However, this synergistic effect needs to be further
clarification in the future work. In the recent study of Kim et al. [3 5]. high methanation activity of
Ruw/TiOz catalyst have been reported, which simply governed by “synergy™ interaction of Ru and TiOz
support (in anatase and rutile phase), and further led to formation of more dispersed and active Ru
species.

The improvement of the catalyst in term of catalytic activity with the introduction of metals onto
supporting material was also reported in the previous literatures [36-42]. Panagiotopoulou et al. [36]
reported the apparent activation energy and products selectivity in solo- or co-methanation of
CO/COz2 were depended on the nature of the Ru, Rh, Pt, Pd metallic phase. Besides, Tada et al. [37]

evaluated the effect of CO conversion activity and products selectivity with the introduction of

secondary metals (Ni, Co, Fe, La, K, Ni-La) onto Ru/TiO2. They found that CO methanation activity
7
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was significantly affected with the addition of La as secondary metal on Ru species for improving the
electron density and further facilitated CO bond dissociation. Aziz et al. [38] studied eries of 12
metal-based mesostructured silica nanoparticles (MSN) catalysts on CO2 methanation. The active
sites that are responsible for this methanation reaction are basic metallic surface centers and/or
oxygen vacancy sites. Miyao et al. [39] reported that the enhancement in CO methanation activity
was observed after the addition of vanadium to the Ni/Al20; catalyst with inhibition of water-gas
shift reaction activity. Bacariza et al. [40] investigated the study of magnesium-promoted on Ni-based
USY zeolites in CO2 ethanalion. The results showed that lower content of Mg improved the
methanation activity by enhanced Ni particles dispersion and CO: activation. Cao et al. [41] favored
CO methanation of KIT-6 zeolite at low reaction temperature by Niand V surface modification. They
3
stated that the CO dissociation was improved by electron transferring gom V species to Ni’ and the
enhancernent Hz uptake and Ni dispersion is attributed to the presence of suitable V amount. The
enhancement of La promoted Ni supported on Y- and Beta- zeolites towards CO:z methanation
activity was study by Quindimil et al. [42]. The introduction of La promoter increased the surface
basicity, Ni dispersion and CO: adsorption capacity of the zeolites. Based on previous literatures, the
enhancement in activity was dependent on the intrinsic essence of the metallic phase, which affected

the activation and dissociation of CO/COz, and further accelerate the methanation activity

accompanied with inhibiting the side reactions.

4. Conclusions

A series of metal-based mesoporous ZSM35 catalysts (Rh/mZSM35, Co/mZSM35, Pd/mZSM35 and
Zn/mZSM5) prepared using dual templating and conventional incipient wetness impregnation
method were tested towards CO methanation. The XRD results confirmed the successfully
synthesized of ZSM3 support and the loaded metals were in the form of metal oxides. The nitrogen

physisorption results showed that all metal-promoted mZSM35 possessed both micropores and
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mesopores. Co-existing of both micro-mesoporosity in ZSM35 gave an impact on the catalytic activity
of CO methanation. At 450 °C, the catalytic performance of CO methanation arranged in the
sequence of RhmZSM-5 > Co/mZSM-5 > Pd/mZSM-5 > Zn/mZSM-5. Rh/mZSM5 showed‘tla best
performance with CO conversion = 95% and CHy yicld = 82%. While, Zn/mZSM35 is the poorest

catalyst with CO conversion = 10% and CHa yield = 9%. This study clearly showed the improvement
in the CO methanation activity was significantly governed by the effect of metal promoters on

mZSM5. The good activity in Rh/mZSM35 probably due to the synergistic effect of both Rh metal and

mZSM35 support.
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Table 1

Table 1 Physicochemical properties of the mZSM5-based catalysts.

Adsorbents Surface area Total pore volume
(m*/g) (cm’/g)
mZSM3 857 0.2303
Rh/mZSM5 642 0.2580
Co/mZSM5 594 0.2610
Pd/mZSM5 520 0.2090
Zn/mZSM5 674 0.2530
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