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Abstract 

There are several crucial issues that need to be addressed in the field of applied catalysis. These issues 

are not only related to harmful environmental impact but also include process safety concerns, mass 

and heat transfer limitations, selectivity, high pressure, optimizing reaction conditions, scale-up is-

sues, reproducibility, process reliability, and catalyst deactivation and recovery. Many of these issues 

could be solved by adopting the concept of micro-reaction technology and flow chemistry in the applied 

catalysis field. A microwave assisted reduction technique has been used to prepare well dispersed, 

highly active Pd/Fe3O4 nanoparticles supported on reduced graphene oxide nanosheets (Pd-

Fe3O4/RGO), which act as a unique catalyst for Suzuki cross coupling reactions due to the uniform dis-

persion of palladium nanoparticles throughout the surface of the magnetite - RGO support. The Pd-

Fe3O4/RGO nanoparticles have been shown to exhibit extremely high catalytic activity for Suzuki cross 

coupling reactions under both batch and continuous reaction conditions. This paper reported a reliable 

method for Suzuki cross-coupling reaction of 4-bromobenzaldehyde using magnetically recyclable 

Pd/Fe3O4 nanoparticles supported on RGO nanosheets in a microfluidic-based high throughput flow re-

actor. Organic synthesis can be performed under high pressure and temperature by using a stainless 

steel micro tubular flow reactor under continuous flow reaction conditions. Optimizing the reaction 

conditions was performed via changing several parameters including temperature, pressure, and flow 

rate. Generally, a scalable flow technique by optimizing the reaction parameters under high-

temperature and continuous reaction conditions could be successfully developed. Copyright © 2019 

BCREC Group. All rights reserved 
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1. Introduction 

Over the past few decades, micro-reaction 

technology has been emerged as an ideal route 
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to solve several critical issues in many aspects 

including organic chemistry and applied cataly-

sis [1-8]. This new technology has created new 

promising horizons for chemical synthesis and 

industry via performing chemistry under      

continuous flow reaction conditions instead of 

the conventional batch chemistry [9-16]. This 
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newly adopted approach could achieve a signifi-

cant improvement via using safer micro-reactor 

processes [17-26]. This will definitely improve 

the capability of producing smaller scale syn-

thetic chemicals on demand and on site at 

which those products are urgently needed as 

well [27-29]. There are many challenges in the 

field of chemical industry like pollution, envi-

ronmental issues, process safety, and scale-up 

issues that could be minimized via using micro-

reactor technology [30-32]. Palladium-catalyzed 

coupling reactions are among the most widely 

applied reactions in the field of organic synthe-

sis although there are some disadvantages of 

using palladium in such reactions including its 

high price and also the high toxicity of the met-

al residue which is considered as a critical is-

sue, especially in the field of pharmaceutical in-

dustry [30-35]. Those disadvantages could be 

minimized by using very small amounts of pal-

ladium catalysts, however, there will be still 

some issues associated with homogeneous ca-

talysis like the lack of recyclability and contam-

ination from residual metals in the reaction 

products [20-22,24-28]. The key for solving this 

technical problem could be simply by using het-

erogenized homogeneous catalyst or heteroge-

neous catalyst as it is widely known. Heteroge-

neous catalysis has economic and environmen-

tal advantages if compared to the stoichio-

metric reactions due to the catalyst increasing 

ability of being easily separated and recycled 

[26-46]. 

Nanotechnology is widely used in several ca-

talysis applications as the particles at the nano 

scale can dramatically increase the exposed 

surface area of the active component of the cat-

alyst, hence enhancing the contact between re-

actants and catalyst in a way similar to that of 

the homogeneous catalysts. The use of magnet-

ic nanoparticles in such catalytic system has 

tremendous advantages including high catalyt-

ic activity, ease of recovery using an external 

magnetic field and the possibility of using wa-

ter as a solvent as well. Those proposed catalyt-

ic systems can be simply transition metal cata-

lysts such as palladium, copper, ruthenium, 

and nickel, which are used on silica, magnetic 

nanoparticles, polymers, and carbon based sup-

ports. Cross coupling, reactions are among the 

most strategic processes in the field of organic 

synthesis as they have many applications in 

pharmacy, agriculture, medicine, cosmetics and 

natural products. 

 Carbon based materials like graphene are 

generally considered as an ideal candidate for 

being used as supports for several catalysts as 

a result of their huge surface area, limited in-

teraction with the metal catalysts, besides oth-

er attractive features including thermal, chem-

ical stability, and easy recovery of noble metals 

like palladium from the spent catalysts. Also, 

the structural defects in graphene create new 

surface functionalities that enhance the inter-

actions with the anchored metal nanoparticles. 

Recently, although the synthesis and applica-

tions of magnetic nanoparticles (MNPs) of no-

ble metal nanoparticles supported on graphene 

is still considered as a new area of research but 

it has attracted more interest in catalysis re-

search and have been used in some industrially 

important reactions.  

Although carbon materials has an increas-

ing importance to be used as catalyst supports 

but there is also an endless research efforts to 

develop other alternative kinds of supports in-

cluding metal oxides. It is expected that this 

work provides a significant step toward the de-

velopment of new clean technologies for organ-

ic synthesis. This work is a kind of enhance-

ment of our previously work in preparing palla-

dium- magnetite nanoparticles supported on 

graphene (Pd-Fe3O4/RGO) under batch reaction 

conditions.  

The main purpose of this scientific research 

is to investigate the catalytic performance of 

the prepared catalyst under flow reaction con-

ditions through immobilization of the palladi-

um based catalyst into a cartridge, to be used 

on a microfluidic flow reactor. The use of a mi-

crofluidics-based flow reactor (X-CubeTM) offers 

a potential solution for the previously men-

tioned issues. It also provides a safe and easy 

use of immobilized catalysts placed in          

CatCartTM cartridges. Moreover, this technique 

enables the synthesis of several chemical prod-

ucts in a short time through optimization of the 

reaction conditions in just few minutes. Herein, 

It was reported the results on the cross-

coupling reactions of bromobenzaldehyde in the 

presence of phenyl boronic acid carried out in 

the flow reactor X-CubeTM using Pd-Fe3O4/RGO 

catalyst. A detailed investigation of the effects 

of the changes in the reaction conditions 

(temperature, flow rate) has been carried out. 

 

2. Materials and Methods  

2.1 Chemicals and Reagents 

All chemicals used in our experimental pro-

cedure were used as received without any fur-

ther purification. Palladium nitrate (10 wt. % 

in 10 wt. % HNO3, 99.999%) and hydrazine hy-

drate (80%, Hydrazine 51%) were purchased 
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from Sigma Aldrich. Deionized water (D.I. H2O) 

was used for all experiments, while high-purity 

graphite powder (99.9999%, 200 mesh) was 

purchased from Alfa Aesar. Aryl bromide, bro-

mobenzene and potassium carbonate were also 

purchased from Aldrich and used as received.  

 

2.2 Catalyst Characterization and Product 

Compositions 

TEM images were captured using JEOL 

electron microscope. X-ray photoelectron spec-

troscopy (XPS) analysis was implemented on a 

Thermo Fisher Scientific ESCALAB, while X-

ray diffraction patterns were identified using 

X’Pert PRO PANanalytical X-ray diffraction 

unit at room temperature. GC–MS measure-

ments were performed on Agilent gas chro-

matograph equipped with a mass selective de-

tector. 

A continuous flow reactor named Tha-

lesNano X-Cube™ is used in order to perform 

chemical reactions under inert conditions, tem-

peratures up to 200 °C and pressures up to 150 

bar. It has been recently reported that carbon-

carbon reactions formation is more efficient us-

ing X-Cube™ in comparison to batch mode. The 

reaction solvent was allowed to flow through 

the X-Cube™ system for 10 minutes in order to 

equilibrate the filled CatCart cartridge, where 

the catalyst was previously loaded using a 

manual piston. A sample of the starting mate-

rials in the reaction solvent was pumped 

through the X-Cube™, the total amount of 

product mixture was collected to sample vial 

and the column was washed with the eluent to 

remove any material still absorbed to the Cat-

Cart;  the product mixture was analyzed by 

GC-MS. 

 

2.3 Graphene Oxide Synthesis 

The modified Hummers and Offeman meth-

od was used to prepare graphene oxide. In typi-

cal synthesis, high purity graphite powder 

(99.9999%, 200 mesh) was oxidized using a 

mixture of H2SO4/KMnO4. Graphite (4.5 g, 

0.375 mol) and NaNO3 (2.5 g, 0.0294 mol) were 

mixed in a conical flask, while the mixture was 

then maintained in an ice bath.  

Concentrated H2SO4 (115 mL, 2.157 mol) 

was added under continuous stirring while 

KMnO4 (15 g, 0.095 mol) was then slowly add-

ed over a time period of 2.5 h.  Deionized water 

(230 mL) was slowly added to the previous 

mixture and once the mixture temperature be-

came stable it was kept around 80 ºC. Then, af-

ter 20 min., deionized water (700 mL) was add-

ed followed by drop wise addition of (10%) H2O2 

(20 mL, 0.667 mol). The resulting yellowish-

Scheme 1. High-temperature/pressure capillary flow reactor 
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brown cake of solid was washed using 1M HCl 

and then washed with hot deionized water. The 

graphite oxide powder was then dried under 

vacuum overnight. Resultant graphite oxide 

could be readily exfoliated to completely water 

dispersed graphene oxide (GO) by ultra-

sonication. 

 

2.4 Synthesis of Graphene Supported Pd-Fe3O4 

Catalyst to be Loaded into CatridgeTM 

Graphene oxide (GO) was used as an ideal 

support for the catalyst preparation. In typical 

synthesis, GO (60 mg) was dispersed in 50 mL 

of water for 1 h to produce an aqueous disper-

sion of graphene oxide using a sonication bath. 

Then, deionized water (50 mL) in which appro-

priate amount of Palladium nitrate (10 wt. % in 

10 wt. % HNO3, 99.999%, 200 L) and Fe 

(NO3)3.9H2O (190.5 mg, 0.471 mmol) were add-

ed and sonicated for another 1 h. The solution 

was added to the aqueous dispersion of gra-

phene oxide (GO) while maintaining stirring. 

After stirring the whole mixture for 3 h, the re-

ducing agent hydrazine hydrate (2 mL) was 

added at room temperature and the solution 

was immediately heated via using a microwave 

for (120) s and the color was then changed to 

dark black color, indicating the complete chem-

ical reduction. Hence, the final product was 

washed with hot deionized water 3-5 times; 

ethanol 2-3 times, and then dried in oven at 80 

ºC. 

 

2.5 General Procedure for Suzuki Cross-

Coupling under Flow Reaction Conditions 

Aryl bromide (0.51 mmol, 1 eq.) was dis-

solved in a mixture of 4 mL H2O: EtOH (1:1) 

and placed in a 10-mL microwave tube. Then, 

aryl boronic acid (0.61 mmol, 1.2 eq.) and Po-

tassium carbonate (1.53 mmol, 3 eq.) were add-

ed, and finally the resulting mixture is intro-

duced to flow continuously over the palladium-

magnetite supported on graphene nanoparti-

cles catalyst (Pd-Fe3O4/G) with different tested 

catalyst loading. The following catalyst 

amounts (10, 25, 35, 50, and 100 mg) were pre-

viously loaded into CatCart cartridgeTM, and 

then heating took place at the assigned tem-

perature and time. The progress of the reaction 

was monitored using GC-MS analysis to an ali-

quot of the reaction mixture. 

 

3. Results and Discussion 

The mechanism of deactivation of the cata-

lyst is mainly due to the formation of aggregat-

ed Pd nanoparticles which leads to the de-

crease in the surface area and saturation of the 

coordination sites. The palladium content in 

catalyst was determined by means of inductive-

ly coupled plasma (ICP-OES). Palladium con-

tent was found to be 9.2 wt % compared to 10 

using ICP-OES. After completion of the experi-

ments, the Pd-Fe3O4/G was separated from the 

cartridge for characterization. The reaction so-

lution was analyzed by ICP-MS, and the palla-

dium content in the solution was determined to 

be 700 ppb. Such a small amount of leached 

palladium may argue against complete hetero-

geneity of the catalytic system in this reaction. 

However, further evidence on the nature of the 

catalytic mechanism is the failure to observe 

reactivity after the removal of the supported 

nanoparticles from the reaction medium. 

In Scheme 2, a 4-bromobenzaldehyde was 

selected instead of bromobenzene that was se-

lected before in our previously published 

work64 for two reasons, the first reason is to 

avoid homo coupling reaction that may occur 

under these reaction conditions and the second 

reason is to avoid formation of any solid prod-

ucts that may be produced from this reaction 

under the reaction conditions which may lead 

to clogging of tubes of instruments in which the 

reactants flow over the catalyst. In addition to 
Scheme 2. Suzuki cross-coupling reaction 

with Pd-Fe3O4/RGO 

Run Temperature (ºC) MW. Time (min.) Solvent (mL) Conversion (%) 

1 80 10 4 100 

2 80 10 4 100 

3 80 10 4 100 

* Run 1:  0.5 mol. % (Pd-Fe3O4 / G) Catalyst – Solvent ( C2H5OH : H2O  = 1: 1) 

* Run 2:  0.5 mol. % (Pd-Fe3O4 / G) Catalyst – ( C2H5OH : H2O : THF = 1 : 1 : 1)  

* Run 3:  0.5 mol. % (Pd-Fe3O4 / G) Catalyst – ( C2H5OH : H2O : THF = 1.8 : 1.8 : 0.4) i.e ( C2H5OH : H2O : THF = 4.5 : 4.5 : 1) 

Table 1. Conversion percentage using different ratios of solvent systems for Pd-Fe3O4/RGO catalyst* 
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those precautions that were taken into consid-

eration; different ratios of solvent systems were 

investigated to find the optimum conditions un-

der which we could run the experiment with 

highest possible conversion. So, as in Table 1, it 

was possible to obtain 100% conversion by 

changing the ratios of water, ethanol, and THF 

to obtain the highest possible conversion with 

using the minimum amount of THF to make 

sure that all products will be in liquid form to 

avoid any undesired solid products that may 

cause clogging. The change of solvent system 

was to optimize conditions in order to avoid any 

blocking in the microreactor channels. 

It is obvious from Table 2 below, that the 

screening experiments that were performed in 

Table 1 were critical experiments as conversion 

is changing dramatically according to several 

factors like reaction temperature, catalyst load-

ing, and the most important factor, which is the 

solvent system ratios. Different solvent sys-

tems were investigated in order to select the 

best solvent system that prevent any kind of 

clogging in the flow reactor as shown in Tables 

1 and 2. According to the data collected from 

previously mentioned experiments in Table 2 

along with changing the solvent system ratios 

and the catalyst loading amount should be var-

ied, it was possible to optimize the reaction 

conditions as shown in Table 3. Generally, it 

was found that increasing catalyst loading 

from 50 mg to 100 mg, increasing temperature 

and decreasing the flow rate of reaction mix-

ture over the catalyst in the CatCart cartridge 

enabled us from increasing the conversion per-

centage. It could be possible to collect about 30 

mL of the product with conversion about 100%. 

In Table 4, it was found that increasing the 

reaction temperature from 80 ºC to 100 ºC and 

decreasing the flow rate from 0.8 mL/min. to 

Run 
Temperature 

(ºC) 

Flow Rate 

(mL/min.) 

Amount 

(mL) 

Conversion 

(%) 

1 80 1 10 53 

2 80 1 10 17 

3 80 1 10 14 

4 80 1 10 13 

5 100 0.7 10 31 

6 100 0.7 10 15 

7 100 0.7 10 14 

8 100 0.7 10 13 

9 100 0.7 10 9 

10 120 0.6 10 18 

11 120 0.6 10 15 

12 120 0.6 10 12 

* 50 mg of (Pd-Fe3O4 / G) Catalyst – ( C2H5OH : H2O : THF = 1 : 1 : 1) 

Table 2. Conversion percentage using different reaction temperatures for Pd-Fe3O4/RGO catalyst* 

Run 
Temperature 

(ºC) 

Flow Rate 

(mL/min.) 

Amount 

(mL) 

Residence 

Time (min.) 

Conversion 

(%) 

1 80 0.8 10 12.5 100 

2 80 0.8 10 12.5 95 

3 80 0.8 10 12.5 87 

4 80 0.8 10 12.5 76 

5 80 0.8 10 12.5 64 

6 80 0.8 10 12.5 59 

* 100 mg of (Pd-Fe3O4 / G) Catalyst – ( C2H5OH : H2O : THF = 4.5 : 4.5 : 1)  

Table 3. Conversion percentage using 80 ºC reaction temperatures for Pd-Fe3O4/RGO catalyst* 
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0.7 mL/min. did not make any enhancement in 

conversion percentage, as it was still possible to 

collect about 28 mL of the product with conver-

sion about 100%. 

In Table 5, it was found that maintaining 

the reaction temperature at 100 ºC and de-

creasing the flow rate from 0.7 mL/min to 0.6 

mL/min make a great enhancement in conver-

sion percentage as it became possible to collect 

about 60 mL of the product with conversion 

about 100%. 

In Table 6, it was found that maintaining 

the reaction temperature at 100 ºC and de-

creasing the flow rate from 0.6 mL/min to 0.5 

mL/min decreased the enhancement that was 

achieved in conversion percentage as it became 

possible to collect just 40 mL of the product 

with conversion about 100%. After the reaction 

has been completed, the catalyst was removed 

from the cartridge and washed with ethanol 

and then it is easily removed from catalyst-

ethanol mixture via applying an external mag-

Run 
Temperature  

(ºC) 

Flow Rate 

(mL/min.) 

Amount 

(mL) 

Residence 

Time (min.) 

Conversion 

(%) 

1 100 0.6 20 33.3 98 

2 100 0.6 20 33.3 97 

3 100 0.6 20 33.3 90 

4 100 0.6 40 66.6 76 

5 100 0.6 20 33.3 62 

6 100 0.6 20 33.3 44 

7 100 0.6 20 33.3 24 

* 100 mg of (Pd-Fe3O4 / G) Catalyst – ( C2H5OH : H2O : THF = 4.5 : 4.5 : 1)  

Table 5. Conversion percentage using 100 oC reaction temperatures for Pd-Fe3O4/RGO catalyst* 

Run 
Temperature 

(ºC) 

Flow Rate 

(mL/min.) 

Amount 

(mL) 

Residence 

Time 

(min.) 

Conversion* 

( %) 

Conversion** 

( %) 

Conversion*** 

( %) 

1 100 0.5 20 40 100 100 78 

2 100 0.5 20 40 96 94 65 

3 100 0.5 20 40 46 40 35 

4 100 0.5 20 40 20 18 15 

5 100 0.5 20 40 20 16 12 

6 100 0.5 20 40 20 14 10 

7 100 0.5 20 40 17 10 8 

† 100 mg of (Pd-Fe3O4 / G) Catalyst – ( C2H5OH : H2O : THF = 4.5 : 4.5 : 1)  

* Conversion for the catalyst first run. 

** Conversion for the catalyst second run. 

** Conversion for the catalyst third run  

Table 6. Conversion percentage using 100 ºC reaction temperatures for Pd-Fe3O4/RGO catalyst† 

Run 
Temperature 

(ºC) 

Flow Rate 

(mL/min.) 

Amount 

(mL) 

Residence 

Time (min.) 

Conversion 

(%) 

1 100 0.7 10 14 90 

2 100 0.7 10 14 86 

3 100 0.7 10 14 75 

4 100 0.7 10 14 63 

5 100 0.7 10 14 55 

6 100 0.7 10 14 48 

7 100 0.7 10 14 26 

* 100 mg of (Pd-Fe3O4 / G) Catalyst – ( C2H5OH : H2O : THF = 4.5 : 4.5 : 1) 

Table 4. Conversion percentage using 100 oC reaction temperatures for Pd-Fe3O4/RGO catalyst* 
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netic field using a strong magnet and washed 

again several times with ethanol and dried un-

til constant weight in order to be used in the 

next run. 

Table 6 shows that the catalyst performance 

is decreasing in second and third run compared 

to the first run due to catalyst deactivation that 

was confirmed by catalyst TEM image as in 

Figure 2. Hence, the remaining resulting mix-

ture was finally extracted with CH2Cl2 (3 × 50 

mL). The organic layers were combined, dried 

over anhydrous MgSO4, and filtered. The sol-

vent in the filtrate was removed under vacuum 

to give a solid product which was further puri-

fied by flash chromatography using hexane: 

ethyl acetate as the eluent. So, from the previ-

ous study it was finally deduced that the opti-

mum conditions to evaluate the catalytic activi-

ty of Pd-Fe3O4 supported on Graphene under 

continuous flow reaction conditions using Tha-

les Nano X-Cube flow reactor is using 100 mg 

of catalyst in CatCart cartridge with a flow 

rate 0.6 mL/min for the reactants over the cat-

alyst under 100 ºC as a reaction temperature.  

Characterization of the graphene supported 

Pd-Fe3O4 samples prepared by the HH-MWI, 

method was implemented using several tech-

niques including XRD, XPS, and TEM anal-

yses. Figure 1 displays the XRD patterns of Pd-

Fe3O4/RGO sample prepared by the simultane-

ous reduction of GO and palladium nitrate – 

iron nitrate mixture using HH under MWI. 

Figure 1. XRD Pattern of Palladium-Fe3O4 / 

RGO catalyst. 

Figure 2. TEM images of Pd-Fe3O4/RGO catalyst; (a) before the reaction, (b) after the reaction when 

removed from cartridgeTM.  

Figure 3. Catalyst separation using a strong 

magnet. 
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There is a very small broad peak around 2θ of 

26.7º in the Pd-Fe3O4/G sample that could sug-

gest the presence of a minor component of mul-

tilayer graphene. While, the presence of Pd na-

noparticles could enhance the interaction 

among a few graphene layers, the noticed weak 

intensity of the 2θ of 26.7º peak indicates that 

the extent of multilayer graphene in the Pd-

Fe3O4/RGO sample is insignificant.  

Generally, the XRD pattern clearly indicates 

that the produced catalyst is enriched with 

Fe3O4 and metal Pd (0). The palladium shows 

the typical characteristic sharp diffraction peak 

at 2θ of 40º. The XRD patterns indicate the 

presence of (Fe3O4) magnetite with reference 

code (ICDD-00-003-0863). It is remarkable that 

the sharp diffraction peak at 2θ of 40º which is 

characteristic to palladium and also the charac-

teristic peak (*) of Fe3O4 is shown as a sharp 

diffraction peak at 2θ of 35º. The very small 

broad peak around 2θ of 26º in Pd-Fe3O4/RGO 

sample could suggest the presence of a minor 

component of multilayer graphene.  

The diffraction peaks (2θ) of Pd-Fe3O4 /RGO 

at 40, 46.8, and 68.2 are ascribed to the (111), 

(200), and (220) planed of Pd nanoparticle 

(NPs) which are similar to pure palladium and 

also to the peaks of Pd/Fe3O4 as shown. 

Figure 2 displays representative TEM imag-

es of the Pd-Fe3O4/RGO catalyst before and af-

ter reaction. The TEM images show the pres-

ence of uniform well-dispersed Pd-Fe3O4 nano-

particles on Graphene.  From these TEM imag-

es; it is obvious that the catalyst has excellent 

dispersion of Pd-Fe3O4 on the graphene surface 

and also it has smaller particle size which is a 

very important and decisive factor in catalysis. 

This is very consistent with the catalytic activi-

ty data obtained from experimental testing of 

this catalyst under batch reaction conditions. It 

is very interesting to note the role of Pd+2 in as-

sisting the formation of magnetite nanoparti-

cles onto the surface of the nanosheets of gra-

phene.  

Generally, it is clear that palladium pres-

ence is a decisive factor in avoiding the agglom-

eration of products after microwave-assisted 

reduction of graphene oxide with Fe+2 alone us-

ing hydrazine hydrate. From these TEM imag-

es; it was found that the particle size of Pd was 

Pd was (4-6 nm) and Fe3O4 was (16-18 nm) as 

shown in the previously mentioned figure. 

Figure 4 shows the unique magnetic proper-

ties of the Pd-Fe3O4 supported on Graphene 

catalyst when using an external magnetic field.  

The magnetic properties of catalyst were meas-

ured using Vibrating Sample Magnetometer 

(VSM) analysis. Figure 4 presents the magnet-

ic hysteresis loop of Pd/Fe3O4 supported on Figure 4. Magnetic hysteresis loops of         

Pd-Fe3O4 /RGO. 

Figure 5. (a) XPS - C 1S, (b) XPS - Fe 2p, (c) XPS - Pd 3d before reaction, (d) XPS - Pd 3d  after reac-

tion for Pd/Fe3O4 supported on Graphene. 
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Graphene.  This figure simply shows the hyste-

resis curves obtained for the prepared catalyst 

with an applied field sweeping from -20 to 20 

kOe.  

The obtained hysteresis loop confirmed the 

super-paramagnetic behavior at room tempera-

ture with nearly zero coercivity and extremely 

low remnant magnetization values. The lack of 

remaining magnetization while removing the 

external magnetic field is consistent with the 

super-paramagnetic behavior observed in the 

nano-sheets of graphene that were decorated 

with Pd/Fe3O4 nanoparticles.  

The XPS technique is more sensitive and re-

liable technique used for the analysis of the 

surface oxides compared to XRD. The Pd-

Fe3O4/G was found to have a C1s binding ener-

gy around 284.5 eV as illustrated in Figure 5a. 

Samples showed that the binding energy (the 

energy difference between the initial and final 

states of the photoemission process) of Fe 2P 

3/2 was 710.5 eV, indicating that Fe was pre-

sent as Fe3O4 and also the binding energy of Fe 

2P 1/2 was 723.7 eV indicating that Fe was pre-

sent in the oxidation state of Fe3O4 as illustrat-

ed in Figure 5b. Figure 5c shows that most of 

Pd is in the form of Pd0 which besides excellent 

dispersion of palladium on graphene surface as 

shown previously in TEM images is consistent 

with experimental data that reveals the excel-

lent catalytic activity of the prepared catalyst. 

The binding energies of Pd 3d5/2 were 334.8, 

335.14 eV, while were 340.1, 340.57 eV for Pd 

3d3/2 corresponding to Pd0. Similarly; the bind-

ing energies of Pd 3d3/2 was 341.38, 343.2 eV, 

and Pd 3d5/2 was 336.23, 337.85 eV correspond-

ing to Pd (II) which as indication that Pd0  was 

converted to Pd (II) after reaction was done as 

shown in Figure 5d. 

Actually this is also consistent with the re-

sults that confirmed that the catalyst was cata-

lytically deactivated as most of Pd0 was con-

verted to Pd+2. This deactivation was also due 

to the agglomeration that was noticed on gra-

phene surface after reaction was done as previ-

ously shown in TEM images as in Figures 2a,b. 

Those TEM images clearly demonstrate the ag-

glomeration and accumulation of the Pd-Fe3O4 

nanoparticles on the surface of graphene. 

Figure 6 gives an overview about the cata-

lyst half life under the optimum reaction condi-

tions that were previously investigated. In this 

figure, it is obvious that the catalytic activity of 

the catalyst was very high (about 100% conver-

sion) during the first 90 minutes from starting 

the reaction and then started to decrease grad-

ually. Table 7 summarizes some of the critical 

data that was collected in the experimental 

work done. It gives an overview of the relation 

between the catalyst loading in (mg) of catalyst 

and its effect on the conversion percentage un-

der different selected flow rates. Figure 7 gives 

an overview about the catalyst loading depend-

ency under different reaction conditions. From 

this figure, it is obvious that decreasing the 

flow rate for the same catalyst loading lead to 

an increase in the conversion percentage while 

Figure 6. Catalyst half-life under optimum 

reaction conditions. 
Figure 7. Catalyst loading dependency under dif-

ferent reaction conditions. 

Catalyst 

Loading 

(mg) 

Conversion (%) 

Flow Rate 0.5 

mL/min. 

Flow Rate 

0.6 mL/min. 

 Flow Rate 0.7 

mL/min. 

100 100 98 90 

50 73 68 58 

25 64 56 48 

10 43 28 17 

Table 7. Catalyst loading dependency for Pd-

Fe3O4/RGO catalyst 
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increasing the catalyst loading for the same 

flow rate lead to an increase in the conversion 

percentage as well. 

To investigate the extent of Pd leaching 

from prepared catalyst, the reaction was car-

ried out in the presence of 0.2 mol% catalyst at 

100 °C for 40 min using a flow rate 0.5 mL/min. 

Upon the completion of the reaction period, the 

resulting product mixture was hot filtered and 

the Pd content was determined in the filtrate to 

be 220 ppm based on the ICP-OES analysis. 

Moreover, the filtrate solution was subjected to 

the same reaction using fresh reagents of bro-

mobenzene and phenylboronic acid and no fur-

ther catalytic activity was observed in this so-

lution. This confirms that the catalyst is not re-

acting by leaching/redeposition but it is obvi-

ously in a strictly heterogeneous mode. 

 

4. Conclusion 

Applying the flow chemistry technique using 

X-Cube resulted in remarkable results for eval-

uating the catalytic activity of palladium-

magnetite supported on graphene that was pre-

pared under batch reaction conditions for being 

used in Suzuki cross coupling reactions of        

4-bromobenzaldehyde with phenyl boronic acid. 

It is remarkable to notice that higher conver-

sion rate and selectivity have been obtained in 

this system when compared with batch meth-

ods. This high catalytic activity is due to the 

role of structural defects in graphene sheets 

through creating new surface functionalities 

and hence enhances the interactions with the 

anchored metal nanoparticles. It is remarkable 

that adopting the flow chemistry approach ena-

bled shorter time, higher conversion rate and 

selectivity compared to the conventional batch 

methods. Reaction parameters (solvent, cata-

lyst, temperature) were rapidly optimized in 

the reactions. The short time of optimization al-

lowed to a large number of optimizing reactions 

and facilitated generalization of the experienc-

es. The catalyst showed high catalytic activity 

towards Suzuki cross - coupling reaction with 

100% conversion showing that the flow chemis-

try provided a distinctive route of higher selec-

tivity and conversion rate compared to the con-

ventional batch route and also within a shorter 

time as it is more easy to change parameters 

like temperature, pressure, and flow rate and 

reach optimized conditions in few minutes (2-4 

minutes).  
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