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Abstract 

The present paper aims to give insight into the art in the field of the synthesis, characterization and 

applications of Pd(0) nanoparticles immobilized onto silica/starch composite (SS-PdNPs) for hydrogena-

tions and Suzuki coupling. Metal(0) nanoparticles immobilized onto silica/starch composite [SS-MNPs] 

were prepared from different metal acetylacetonate complexes [Co(acac)2], [Cu(acac)2], [Pd(acac)2],  

[Ru(acac)3], [Mn(acac)3], [Co(acac)3] by immobilizing onto silica/starch composite, followed by reduction 

with NaBH4. Excellent yield of the products, reusability and the facile work-up makes SS-PdNPs a 

unique catalyst for the reduction of nitroarenes/carbonyl compounds, , unsaturated carbonyl com-

pounds and Suzuki coupling under environmentally benign reaction conditions. All the catalysts were 

characterized by Fourier Transform Infra Red (FTIR), Atomic Absorption Spectroscopy (AAS) analyses,  

while the most active catalyst [SS-PdNPs] was further characterized by Scanning Electron Microscopy 

(SEM) and Transmission Electron Microscopy (TEM). Copyright © 2019 BCREC Group. All rights re-

served 
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1. Introduction 

Bio-composites represent the new generation 

of nanocomposites, and comprises of the combi-

nation of biopolymers and an inorganic material 

[1-2]. The biopolymer-containing hybrid compo-

site materials of silica have drawn attention ow-

ing to their promising properties and biocompat-

ibility with living matter [3-7]. However, poor 

mechanical properties and high permeability to 

water are the two main disadvantages of biopol-

ymers that recently nanotechnology helps to 
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solve. Polysaccharides being renewable, biode-

gradable and multifunctional are the attractive 

materials for silica bio-composite synthesis. Sili-

ca component in such hybrids is responsible for 

the properties like temperature and mechanical 

resistance, porosity, while the biopolymer offers 

extra functionality and framework to the hybrid 

matrices. Similar to conventional nanocompo-

sites, which involve synthetic polymers, these 

bio-hybrid materials exhibit improved structur-

al and functional properties of great interest for 

different applications. Mechanical properties of 

starch are influenced by many factors such as 
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amylose to amylopectin ratio in starch that 

plays an important role in the mechanical prop-

erties of the films [8-9]. However, starch alone 

has some disadvantages, such as: hydrophilic 

nature and poor mechanical properties [10]. 

Composites containing functional metal NPs 

have attracted a great deal of attention, due to 

their unique optical, electrical, and catalytic 

properties [11]. They can be prepared by the 

mechanical mixing of a support with metal 

NPs, the insitu polymerization of a monomer in 

the presence of metal NPs, or the insitu reduc-

tion of metal salts or complexes. Recent ad-

vances in the design and preparation of sup-

ported metal nanoparticles confirmed that a 

numerous variety of metal nanoparticles can 

nowadays be synthesized through different 

preparation routes and supports to give tai-

lored sizes, shapes and distributions, overcom-

ing the main drawbacks of traditional synthetic 

methodologies. It is well known that the 

amount of metal, the size of the particles, the 

preparation method, and the support composi-

tion play crucial roles in the performance of 

heterogeneous catalysts. By employing transi-

tion metal nanoparticles of uniform size and 

shape, the reaction activities and product selec-

tivities of many heterogeneous catalytic reac-

tions could be greatly influenced [12-13]. With 

the growing interest in the heterogeneous ca-

talysis, it is certain that organic/inorganic com-

posites will still continue to be a fast moving 

topic for next several years. 

It is well known that hydrogenation and Su-

zuki couplings catalyzed by Pd(0) nanoparticles 

are of significant importance in modern chemi-

cal transformations. The selective reduction of 

nitro compounds to amines is a synthetically 

important transformation leading to valuable 

starting materials and intermediates [14-15]. 

Recently, many novel reducing agents have 

been reported in literature [16-25]. However, 

the selective reduction of nitro group in the 

presence of other reducible functionalities in a 

molecule is a challenging task. In addition, re-

duction of aromatic nitro compounds often 

stops at an intermediate stage, leading to hy-

droxylamines, hydrazines, and azoarenes as 

side products [26]. The reduction of carbonyl 

compounds to alcohols is one of the most widely 

used and fundamental transformations in or-

ganic chemistry [27]. Transition metal cata-

lyzed hydrogenations [28-29], biocatalytic and 

chemical reductions [30-39] have been utilized 

to accomplish the reduction of the carbonyl 

group. Chemoselective reduction of conjugated 

carbonyl compounds is a useful functional 

group transformation. Selective 1,4-reduction 

of ,-unsaturated carbonyl compounds has not 

been developed much and has always been a 

challenging problem in organic synthesis [40-

42]. In case of chalcones having other reducible 

functional groups, the desired selectivity is 

hard to achieve. Some low-valent metal/Lewis 

acid reductive system [43-46], could selectively 

reduce the double bond of the -enone system 

to the corresponding saturated analogue with-

out affecting C=C bond present in the mole-

cule, but none of them had been reported to be 

used in the conversion of chalcones to dihydro-

chalcones. 

Suzuki cross-coupling reaction is an im-

portant method for carbon-carbon bond for-

mation, which is a highly useful and versatile 

technique needed for the development of mod-

ern drug discovery, and in the synthesis of 

many natural products, polymers and other or-

ganic compounds. Traditional synthesis of bi-

phenyl derivatives [47] such as the Scholl reac-

tion [48-49], the Gomberg-Bachmann reaction 

[50-51], or Ullmann-type couplings [52-53] re-

quire rather harsh conditions and often suffer 

from low yields in case of  unsymmetrically 

substituted biaryls, while recent strategies in-

cluding processes that involve directed ortho-

metalation, arelimited to a narrow range of 

substrates [54]. Catalytic cross-coupling reac-

tion of organotin [55-58], zinc [59],copper [60], 

boron [61], or magnesium compounds [62-64] 

constitute the most generally applicable strate-

gy for the synthesis of biaryls. Over the past 

decades, it has continuously been improved 

and reached an impressive level of perfor-

mance [65-68]. 

Due to our continued interest in the devel-

opment of heterogeneous catalysis [69-73], 

herein we report the synthesis of different met-

al(0) nanoparticles immobilized onto sili-

ca/starch composite (MNPs) and their catalytic 

activities have been evaluated for the selective 

reduction of nitroarenes/carbonyl compounds, 

,β-unsaturated carbonyl compounds and 

“Suzuki coupling” with a view to select the 

most effective recyclable and stable heteroge-

neous catalyst. 

 

2. Materials and Methods  

2.1 Materials and Characterizations 

The chemicals used were either prepared in 

our laboratories or  purchased from Aldrich 

Chemical Company or Merck. The 1H and 13C 

NMR data were recorded in CDCl3 or DMSO-d6 

on Bruker Avance III 400 MHz. The FTIR 

spectra were recorded on Perkin-Elmer FTIR 

spectrophotometer and mass spectral data 
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were recorded on Bruker Esquires 3000 (ESI). 

SEM images were recorded using FEG SEM 

JSM-7600F Scanning Electron Microscope and 

Transmission Electron Micrographs (TEM) on 

H7500 Hitachi. The amount of metal in cata-

lysts was determined by AAS analysis and 

thermal analysis was carried out on Linsesis 

STA PT-1000 make thermal analyzer. 

 

2.2 General Procedure for the Synthesis of  

Metal(0) Nanoparticles Immobilized onto Sili-

ca/Starch Composite [SS-MNPs] 

A mixture of silica/starch composite [59b] (3 

g) and M(acac)n [0.5 mmol, 0.12 g Co(acac)2, 

0.13 g Cu(acac)2, 0.15 g Pd(acac)2, 0.19 g 

Ru(acac)3, 0.17 g Co(acac)3 and 0.12 g 

Mn(acac)3] in absolute ethanol (30 mL) was 

stirred at room temperature  for 3 h followed by 

slow addition of NaBH4 (0.5 g, 13 mmol). The 

reaction mixture was stirred for another 12 h 

and then filtered, washed with ethanol (3×15 

mL) followed by diethyl ether (2×15 mL). Fi-

nally the catalysts were vacuum dried at 100 

ºC for 5 h. 

 

2.3 General Procedure for the SS-PdNPs Cata-

lyzed Hydrogenation of Nitroarenes, Aldehydes 

and Ketones at Room Temperature 

To a mixture of nitroarene or aldehyde or 

ketone (1 mmol) and SS-PdNPs (0.2 g, 1.8 wt% 

Pd) in a round bottom flask (25 mL), water (5 

mL for nitroarenes) or water/ethanol (3:1, 5 mL 

for aldehydes or ketones) was added and the 

reaction mixture was stirred at room tempera-

ture using balloon filled hydrogen for an appro-

priate time (Table 2). After completion, the re-

action mixture was diluted with hot ethyl ace-

tate and filtered. The residue was washed with 

hot ethyl acetate (3×10 mL) followed by double 

distilled water (3×10 mL). The organic layer 

was washed with water and dried over anhy-

drous Na2SO4. Finally, the product was ob-

tained after removal of the solvent under re-

duced pressure followed by crystallization with 

EtOAc: pet ether/column chromatography. The 

catalyst was dried at 100 ºC for 2 h and could 

be used in subsequent reactions. 

 

2.4 General Procedure for the SS-PdNPs Cata-

lyzed Selective Reduction of C=C Double 

Bond in ,-unsaturated Ketones 

To a mixture of ,-unsaturated ketone (1 

mmol) and SS-PdNPs (0.2 g, 1.8 wt% Pd) in a 

round bottom flask (25 mL), acetonitrile (5 mL) 

Entry Catalyst 
AAS analysis 

(Metal wt%) 

1 SS-CoNPs 1.1 

2 SS-CuNPs 1.2 

3 SS-PdNPs 1.8 

4 SS-MnNPs 0.9 

5 SS-RuNPs 1.9 

Table 1. AAS analysisa (metal / g.cat) of SS-

MNPs 

a AAS analysis was carried on GBC Avanta-M Atomic 

Absorption Spectrometer. 

Entry Catalyst 

Reduction of nitro/carbonyl groupa  

  Suzuki couplingc 
Selective reduction of 

C=C double bondb   Nitroarene   Aldehyde  

Time 

(h) 

Yieldd 

(%) 
  

Time 

(h) 

Yieldd 

(%) 
 

Time 

(h) 

Yielde  

(%) 
  

Time 

(h) 

Yielde 

(%) 

1 SS-CoNPs 1 70   2 70  1 65   - - 

2 SS-CuNPs 1 60   2 65  1 50   -   

3 SS-PdNPs 0.5 92   1.5 90  1 90   0.25 94 

4 SS-MnNPs 1 50   2 60  1 60   - - 

5 SS-RuNPs 1 80   2 60  1 50   - - 

Table 2. Comparison of catalytic activities of different metal(0) nanoparticles immobilized onto sili-

ca/starch composite for the reduction of nitro and carbonyl groups/selective reduction of C=C double 

bond/Suzuki coupling 

aReaction conditions: nitrobenzene or benzaldehyde (1 mmol), SS-MNPs (4 mol% M, M= Cu, Ru, Pd, Co, Mn) using molecular 

H2in water (5 mL) for nitrobenzene, and water/ethanol (3:1) for benzaldehyde at room temperature. 
bReaction conditions: (E)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (0.242 g, 1 mmol), SS-MNPs (4 mol % M, M= Cu, Ru, Pd, 

Co, Mn) using molecular H2in CH3CN (5 mL) at room temperature. 
cReaction conditions: 4-bromoacetophenone (0.199 g, 1 mmol), benzeneboronic acid (0.145 g, 1.2 mmol), K2CO3 (0.207 g, 1.5 

mmol), TBAB (0.154 g, 1 mmol) and catalyst (4 mol% M, M= Cu, Ru, Pd, Co, Mn) using water (5 mL) as solvent at 100 ºC. 
dColumn chromatography yield. 

eIsolated yields.  
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was added and the reaction mixture was 

stirred at room temperature using balloon 

filled hydrogen for an appropriate time. The 

product was obtained after the similar work-up 

as given in Section 2.3. 

 

2.5 General Procedure for the SS-PdNPs Cata-

lyzed Suzuki Coupling in Aqueous Medium 

To a mixture of aryl halide (1 mmol),          

aryl/heteroaryl boronic acid (1.2 mmol), TBAB 

(1 mmol), K2CO3 (1.5 mmol) and SS-PdNPs (0.2 

g, 1.8 wt% Pd) in a round bottom flask (25 mL), 

water (5 mL) was added, and the reaction mix-

ture was stirred at 100 ºC for an appropriate 

time (monitored by TLC). The product was ob-

tained after the similar work-up as given in 

Section 2.3. The structures of the products were 

confirmed by 1H, 13C NMR, mass spectral data 

and comparison with authentic samples availa-

ble commercially or prepared according to the 

literature methods. 

 

3. Results and Discussion 

3.1 Characterization of Metal(0) Nanoparticles 

Immobilized onto Silica/starch Composite [SS-

MNPs] 

The textural properties of silica/biomaterials 

present a unique chemical environment in 

which nano-particles can be synthesized. Due 

to the presence of a silica backbone, the me-

chanical stability of the silica/starch composite 

is quite high compared to that of pure organic 

polymers or other microporous organic poly-

mers. So, we have chosen silica/starch material 

for the preparation of supported metal nano-

particles. Metal(0) nanoparticles immobilized 

onto silica/starch composite [SS-MNPs] were 

prepared from different metal acetylacetonate 

complexes [Co(acac)2, Cu(acac)2, Pd(acac)2, 

Ru(acac)3, Mn(acac)3, Co(acac)3] by immobiliz-

ing onto silica/starch composite, followed by re-

duction with NaBH4 (Scheme 1).  

All the five SS-MNPs were characterized by 

FTIR and AAS analyses. In addition to this, the 

most active catalyst, SS-PdNPs was further 

characterized by Thermogravimetric analysis 

(TGA), Scanning Electron Microscopy (SEM) 

and Transmission Electron Microscopy (TEM). 

The FTIR spectrum of Pd(0) nanoparticles sup-

ported onto silica/starch substrate (SS-PdNPs, 

Figure 1) showed three bands at around 1642, 

802, and 576 cm-1, which are presumably due to 

as(Si-O-Si) and s(Si-O-Si) and bending modes 

of Si-O-Si, respectively. The weak band at 2089 

cm-1 is due to the stretching vibration of C-H 

and C-C bonds. Also, the band at 1418 cm-1 is 

associated with the stretching vibration of the 

C-O bond. 

The stability of the catalysts was deter-

mined by Thermo-gravimetric analysis (TGA). 

The TGA was recorded by heating the sample 

at the rate of 10 °C.min−1. The TGA curve of 

SS-PdNPs showed an initial weight loss up to 

100 °C which was attributed to the loss of re-

sidual solvent and water trapped onto the sur-

face of silica. The second weight loss above 251 

°C (and continuing to 404 °C) is related to the 

decomposition of starch from the silica sub-

strate (Figure 2). The amount of the metal sup-

ported onto silica/starch composite was deter-

mined by Atomic Absorption Spectroscopy 

(AAS). SS-PdNPs contained 1.8 wt% of palladi-

um. The AAS of all the five catalysts is pre-

sented in Table 1. 

The surface morphology of supported silica-

starch palladium(0) nanoparticles was studied 

using a Scanning Electron Microscopy (SEM). 

The SEM images showed that the catalyst has 

a porous structure with particle size in the 

range of 15-18 nm (Figure 3). The TEM images 

provided a direct observation of the morpholo-

gy and distribution of palladium nanoparticles 

onto the surface of silica/starch composite 

(Figure 4). The regular arrangement of the 

pores can be clearly observed. The Pd(0) nano-

particles are uniformly distributed with an av-

erage diameter of about 2 nm. No bulk aggre-

gation of the metal occurred indicating that 

palladium is dispersed evenly onto the surface 

the support material. 

The histogram revealing the size 

distributions of Pd(0) nanoparticles is shown in 

Figure 5 which is proposed according to the 
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Scheme 1. Synthesis of metal(0) nanoparticles 

immobilized onto silica/starch composite [SS-

MNPs]. 
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data obtained from the TEM image. The 

average size of the Pd nanoparticles was found 

to be 3.5 nm. 

 

3.2 Catalytic Testing for the Hydrogenation of 

Nitroarenes, Aldehydes, and Ketones at Room 

Temperature under Aqueous Medium 

In order to identify the best catalytic system 

for the reduction of nitro and carbonyl groups, 

various metal nanoparticles immobilized onto 

silica/starch composite were  synthesized (SS-

MNPs, M = Pd, Co, Cu, Mn, Ru)  and their cat-

alytic activities were evaluated for the reduc-

tion selecting nitrobenzene and benzaldehyde 

as the test substrates using molecular H2 at 

room temperature. The results are presented in 

Table 2. Among the different catalysts 

screened, palladium(0) nanoparticles immobi-

lized onto silica/starch composite [SS-PdNPs] 

provided the best results. 

The most widely used methods for the re-

duction of nitro groups make use of hydrazine 

hydrate or molecular hydrogen [40]. In the re-

cent years, due to stringent environmental leg-

islation, cleaner and safer procedures using 

molecular hydrogen became more attractive to 

the chemists. This method produces only water 

as a by-product and therefore no toxic and haz-

ardous wastes are produced. Thus, a lot of ef-

forts have been devoted to the development of 

catalytic hydrogenation of the organic nitro 

compounds using molecular hydrogen as the 

reductant. Screening of various solvent sys-

tems using SS-PdNPs catalyst showed that wa-

ter and water/ethanol mixture is the most suit-

Figure 2. TGA of SS-PdNPs 

Figure 1. FTIR spectra of SS-PdNPs 
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able solvent for reduction of nitro- and carbonyl 

groups respectively. The reaction worked selec-

tively and efficiently with a wide range of nitro 

substituted aromatic compounds under hydro-

gen atmosphere at room temperature (Scheme 

2, Table 3). 

Even in the presence of electron-donating 

groups (Table 3, entries 2a, 2b, 2d), the reac-

tion proceeded efficiently to afford the products 

in quantitative yields. It is worthy to note that 

the azoxy, azo and hydrazo compounds as the 

usual side products of reduction of nitroarenes 

were not observed in this method. To widen the 

scope of the catalytic system, various aldehydes 

(entries 3a-3e) and ketones (entries 3f-3h) were 

subjected to reduction to their corresponding 

alcohols (Scheme 2). However, the results were 

unsatisfactory. The reduction of carbonyl com-

pounds, which are poorly soluble in water, 

needed long reaction time for their completion, 

while water/ethanol mixture (3:1) improved the 

solubility and accelerated the reaction. Thus, 

for the reduction of carbonyl compounds, 

water/ethanol (3:1) was used as solvent. Aro-

matic aldehydes bearing electron-donating 

groups or electron-withdrawing groups were 

reduced to alcohols in excellent yields at room 

temperature. Reduction of ketones also under-

went smoothly and gave corresponding second-

ary alcohols in excellent yields. 

 

3.3 Catalytic Testing for the Selective Reduc-

tion of Carbon-carbon Double Bond in ,-

unsaturated Ketones at Room Temperature 

In order to optimize the reaction conditions, 

(E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one 

was selected as the test substrate and the reac-

tion was carried out under different set of con-

ditions with respect to different solvents, tem-

peratures and supported metal catalysts. In or-

der to select the most efficient catalyst, the re-

action with test substrate was carried out with 

Figure 5. A histogram representing the size 

distribution of Pd nanoparticles on the 

silica/starch substrate 

Figure 3. SEM image of SS-PdNPs 

Figure 4. TEM image of SS-PdNPs 

 
NO2
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NH2

R

R'

O

R SS-PdNPs, H2

r.t., H2O/Ethanol (3:1)
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R

R' = H, CH3

SS-PdNPs

1 2

3 4

Scheme 2. SS-PdNPs catalyzed reduction of 

nitroarenes, aldehydes and ketones. 
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2a: 0.5h, 93% 

 NH2

 
2b: 1h. 90% 

 NH2

H2N
 

2c: 2h, 87% 

NH2 

 
2d: 4h, 85% 

 NH2

HO

 
3a: 1.5h, 90% 

 OH

 
3b: 2h, 92% 

 

Cl

OH

 
3c: 5h, 83% 

 

H3CO

OH

 
3d: 2h, 87% 

 

O2N

OH

 
3e: 1h, 85% 

 

Br

OH

 
3f: 1.5h, 87% 

 OH

 
3g: 3h, 80% 

 OH

H3C
 

3h: 1.5h, 85% 

 

Br

OH

Table 3. SS-PdNPs catalyzed reduction of nitroarenes, aldehydes and ketonesa,b 

a Reaction conditions: nitroarene or aldehyde or ketone (1 mmol), SS-PdNPs  (0.2 g,  1.8 wt% Pd) at room tempera-

ture using molecular H2in water (5 mL) for nitroarenes and water/ethanol (3:1, 5 mL) for aldehydes and ketones. 
b Isolated yields/Column chromatography yield. 

 
6a: 1.5h, 85% 

 O

 
6b: 1h, 85% 

 O

 
6c: 2.75h, 87% 

 O
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6d: 1.5h, 85% 

 O

MeO
 

6e: 2h, 78%  

 O

  

6f: 1h, 90% 

 O

Cl

  

6g: 1.25h, 83% 

 O

O2N
  

6h: 2h, 87% 

 O

Cl
  

6i: 2.5h, 88% 

 O

O2N

  

  

6j: 1.5h, 80% 

 O

MeO Cl

  

Table 4. SS-PdNPs catalyzed selective reduction of C=C double bond in , unsaturated ketonea,b  

aReaction conditions: , -unsaturated ketone (1 mmol), molecular H2 (ballon), SS-PdNPs (0.2 g, 1.8 wt% Pd),  

acetonitrile (5 mL) at room temperature. 
bIsolated yield. 
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different SS-MNPs [where M = Pd, Co, Cu, Ru, 

Mn]. After carrying out series of reactions, it 

was found that SS-PdNPs catalyzes the reac-

tion selectively with excellent yield (Table 2). 

Further, the reaction with test substrate was 

also carried out using different solvents such as 

toluene, acetonitrile, ethanol and water. Among 

these, acetonitrile was found to be best solvent 

at room temperature, since with toluene and 

water, conversion was poor and in case of etha-

nol moderate results were obtained. To test the 

generality and versatility of the developed pro-

cedure, ,-unsaturated ketones substituted 

with different groups were subjected to selec-

tive reduction under the selected conditions 

and excellent results were obtained (Scheme 3, 

Table 4). 

 

3.4 Catalytic Testing for the Suzuki Coupling 

in Water  

In order to select the optimum reaction con-

ditions for  the Suzuki coupling,                          

4-bromoacetophenone and benzene boronic acid 

were selected as the test substrates and the re-

action was carried out under different set of 

conditions with respect to different supported 

palladium catalysts, solvents and tempera-

tures. To find out the most efficient catalyst for 

the desired coupling, reaction was carried out 

in the presence of different supported palladi-

um catalysts.  The results are shown in Table 

5. It was found that SS-PdNPs was superior to 

the other two catalysts in terms of selectivity, 

reaction time and yield (Table 2, Table 5). 

In the recent years, there has been consider-

able attention dedicated to the development of 

organic reactions in water [27]. So, we attempt-

ed the reaction between 4-bromoacetophenone 

(1 mmol) and benzene boronic acid (1.2 mmol), 

K2CO3 (1.5 mmol)  as base in the presence of 

SS-PdNPs using water as solvent and found 

that reaction was successful but complete con-

version did not took place. This may be due to 

the poor solubility of substrates in water. In or-

der to further improve the reaction conditions, 

TBAB (1 mmol) was added and found that com-

plete conversion of 4-bromoacetophenone took 

place with quantitative yield in 15 min. Thus, 

TBAB enhances the rate of reaction by trans-

ferring haloarene to the aqueous phase and 

hence reacting with phenyl boronic acid faster. 

K2CO3 was selected as the base, since it is inex-

pensive and easily available. The generality of 

the developed protocol was studied by choosing 

different aryl halides substituted with both 

electron-donating and electron-withdrawing 

groups, and good to excellent results were ob-

tained (Scheme 4, Table 6). Heteroarylboronic 

acids are generally considered as the poor sub-

strates for the Suzuki coupling, our methodolo-

gy making use of SS-PdNPs found to be highly 

efficient for the Suzuki coupling of S-

heteroarylboronic acids in water (entry 10, Ta-

ble 6). 

 

3.5 Effect of Catalyst Loading on the Reduction 

of Nitro/Carbonyl Groups, Selective Reduction 

of C=C Double Bond and Suzuki Coupling 

Finally, to investigate the effect of catalyst 

on the reaction, different  amounts of catalysts 

were tested. The test reactions were carried 

out using different amounts of the catalyst i.e. 

0.05 g, 0.10 g,  0.15 g,  0.2 g, and 0.25 g. The 

results showed that the addition and 

increasing the concentration of catalyst, the 

rate of reaction was enhanced (Figure 6). 

This may be due to the availability of large 

number of active sites on the surface of cata-

lystwhich increases with the amount of the 

 O

Cl

SS-PdNPs

 H2, CH3CN, r.t.

O

Cl

Scheme 3. SS-PdNPs catalyzed selective re-

duction of ,β-unsaturated ketones. 

 
+ ArB(OH)2

SS-PdNPs, K2CO3

TBAB, H2O, 100 oC

R Br R Ar

7 8 9

Scheme 4. SS-PdNPs catalyzed synthesis of 

biaryls/polyaryls via Suzuki coupling. 

Entry Catalystb 
Time 

(min) 

Yield 

(%)c 

1 ASS-Pd(acac)2 [59b] 15 60 

2 SiO2-Pd(acac)2 [59c] 15 70 

3 SS-PdNPs 15 90 

Table 5. Comparison of SS-PdNPs with other 

supported catalysts for Suzuki couplinga 

aReaction conditions: 4-bromoacetophenone (0.199 

g, 1 mmol), benzeneboronic acid (0.145 g, 1.2 mmol), 

K2CO3 (0.207 g, 1.5 mmol), TBAB (0.154 g, 1 mmol) 

and catalyst (1.8 wt% Pd) using water (5 mL) as 

solvent at 100 ºC. 
bCatalyst: amine functionalized silica/starch-

Pd(acac)2 [ASS-Pd(acac)2]; silica functionalized-

Pd(acac)2 [SiO2-Pd(acac)2]; silica/starch palladi-

um(0) nanoparticles [SS-PdNPs]. 
cIsolated yields. 
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9a: 0.25h, 90% 

 

 
9b: 0.5h, 90% 

 
9c: 0.25h, 89% 

 
9d: 0.5h, 90% 

 
9e: 1.5h, 85% 

 
9f: 1h, 85% 

 
9g: 0.75h, 80% 

 
9h: 1h, 75% 

 
 

9i: 2h, 70% 
 

9j: 0.75h, 80%  

Table 6. SS-PdNPs catalysed Suzuki coupling under aqueous medium at 100 ºCa,b  

aReaction conditions: aryl halide (1 mmol), benzeneboronic acid/2-thiophene boronic acid (1.2 mmol), K2CO3 (1.5 

mmol), TBAB (1 mmol), SS-PdNPs (0.2 g, 1.8 wt% Pd) and water (5 mL) at 100 ºC . 
bIsolated yields. 

Entry Catalyst 

Reduction of nitro/carbonyl 

groupa 
 Selective re-

duction of C=C 

double bonda 

 Suzuki couplinga 

Aniline  Alcohol  

Time 

(h) 

Yieldb 

(%) 
 

Time 

(h) 

Yieldb 

(%) 
 

Time 

(h) 

Yieldb 

(%) 
 

Time 

(h) 

Yieldb 

(%) 

1 No catalyst 3 5  3 traces  2 traces  1 NRd 

2 Silica 3 15  3 5c  2 5c  1 5c 

3 Starch 3 15  3 5c  2 5c  1 5c 

4 Silica/starch composite 3 20  3 10  2 15  1 10c 

5 SS-PdNPs 0.5 93  1.5 90  1 90  0.25 90 

6 SiO2-Pd(acac)2 0.5 75  1.5 70  1 75  0.25 70 

7 ASS-Pd(acac)2 0.5 70  1.5 65  1 70  0.25 60 

Table 7. Comparison of activity of SS-PdNPs with different catalysts/precursors  

aReaction conditions: Reduction of nitro/carbonyl group- nitrobenzene or benzaldehyde (0.123 g or 0.106 g, 1 

mmol), H2, catalyst  (0.2 g for entries 2-4; and 4 mol% Pd for entries 5-7) at room temperature in water (5 mL) 

for nitrobenzene and water/ethanol (3:1, 5 mL) for benzaldehyde. Selective reduction of C=C double bond; (E)-1-

(4-chlorophenyl)-3-phenylprop-2-en-1-one (0.242 g, 1 mmol), H2, catalyst (0.2 g for entries 2-4; and 0.2 g, 4 mol% 

Pd for entry 5-7) at room temperature in CH3CN (5 mL). Suzuki coupling; 4-bromoacetophenone (0.199 g, 1 

mmol), benzeneboronic acid (0.145 g, 1.2 mmol), K2CO3 (0.207 g, 1.5 mmol), TBAB (0.154 g, 1 mmol) and catalyst 

(0.2 g for entries 2-4; and 4 mol% Pd for entries 5-7) using water (5 mL) as solvent at 100 ºC. 
bIsolated yield. 
cColumn chromatography yield. 
dNo reaction. 
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catalyst. Thus, 0.2 g (1.8 wt%) has been taken 

as an optimal catalyst concentration for the 

studied reaction. 

In order to find out the role of SS-PdNPs as 

the heterogeneous catalyst, the reduction 

(using nitrobenzene and benzaldehyde as test 

substrate), selective reduction of selective re-

duction of C=C bond in ,−unsaturated ke-

tones (using (E)-1-(4-chlorophenyl)-3-

phenylprop-2-en-1-one as test substrate) and 

Suzuki coupling (using 4-bromoacetophenone 

and benzeneboronic acid as test substrates) 

was carried out in the presence of silica,starch, 

silica/starch composite, SS-PdNPs and without 

using catalyst. Out the different catalysts, SS-

PdNPs catalyzes the reaction efficiently in 

terms of selectivity, reaction time and yield. 

The results are summarized in Table 7. 

 

3.6 Heterogeneity and Recyclability 

To rule out the contribution of homogeneous 

catalysis, the reaction in case of entry 2c, 

(Table 3) was carried out until the conversion 

was 50% (0.25 h) and at that point the solid 

was filtered off at the reaction temperature. 

The liquid phase was then transferred to an-

other flask and again allowed to react, but no 

further significant conversion was observed. 

This indicates that no active species was pre-

sent in the supernatant (no palladium was de-

tected in the supernatant by AAS analysis). Af-

ter evaluating the reaction results, the catalyst 

was collected, washed with solvents and then 

used again in the next reaction. The catalytic 

activity was maintained with high selectivity 

in all the reaction runs, which indicates an ex-

cellent recyclability (Table 8). 

In order to examine the shape and morphol-

ogy of the catalyst after five reaction runs, 

SEM and TEM measurements were carried 

out, and it seemed that the catalyst has not 

suffered to serious damage during the reac-

tions. The average diameter of the SS-PdNPs 

was estimated to be somewhat similar to the 

fresh catalyst. However, irrespective of the cy-

cle, the catalyst was invariably active. The 

amount of loaded Pd on the surface is 1.75 wt% 

after five successive runs, which indicates no 

leaching during the repeated runs. 

 

4. Conclusions 

In conclusion, we found that palladium(0) 

nanoparticles could be easily immobilized onto 

silica/starch surface, and which act as highly 

active and reusable catalyst for promoting hy-

drogenations and Suzuki couplings to produce 

the corresponding products in excellent yields 

with high chemo-selectivity and acceptable re-

action times. Such designer materials have a 

significant impact in many areas including 

increasing applications in industrial catalytic 

processes. However, the preparation of these 

supported metal nanoparticles should be 

promoted in a more sustainable way, thus 

reducing waste generation and the use of toxic 

compounds with improved manufacturing 

safety as well as decreasing the production 

costs. 
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Figure 6. Effect of catalyst loading. Reaction 

conditions: anitrobenzene (1 mmol), SS-PdNPs 

(different loadings), molecular H2 in water (5 

mL) at room temperature (reduction of nitro-

benzene) ;  b (E ) - 1 - (4 -ch loropheny l ) -3 -

phenylprop-2-en-1-one (0.242 g, 1 mmol), SS-

PdNPs (different loadings), molecular H2in 

CH3CN (5 mL) at room temperature (selective 

reduction of C=C); cReaction conditions: 4-

bromoacetophenone (0.199 g, 1 mmol), ben-

zeneboronic acid (0.145 g, 1.2 mmol), K2CO3 

(0.207 g, 1.5 mmol), TBAB (0.154 g, 1mmol)and 

SS-PdNPs (different loadings) using water (5 

mL) as solvent at 100 ºC (Suzuki coupling). 
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Appendices 

Spectral data of Amines and Alcohols 

Aniline (Table 2, entry 1) 

 
1H NMR (CDCl3): 3.72 (bs, 2H, NH2), 6.74-6.76 (d, 

2H, J= 8 Hz, Harom), 6.85-6.88 (t, 1H, J= 6 Hz, Harom), 

7.24-7.28 (t, 1H, J= 8 Hz, Harom). 
13C NMR (CDCl3): 115.24, 118.55, 129.40, 146.63. 

IR (νmax in cm-1): 3360 (NH stretch). 

MS (ESI): 93 (M)+. 

 

4-Toluidine (Table 2, entry 2) 

 
1H NMR (CDCl3): 2.30 (s, 3H, CH3), 3.56 (bs, 2H, 

2×NH2), 6.64-6.67 (d, 2H, J= 12 Hz, Harom), 7.01-7.04 

(d, 2H, J= 12 Hz, Harom). 
13C NMR (CDCl3): 20.51, 115.33, 127.83, 129.80, 

143.86. 

IR (νmax in cm-1): 2905 (NH stretch). 

MS (ESI): 107 (M)+. 

 

1,4-Diamino benzene (Table 2, entry 3) 

 
1H NMR (CDCl3): 4.01 (bs, 4H, NH2), 6.25-6.30 (m, 

4H, Harom). 
13C NMR (CDCl3): 117.01, 138.22. 

IR (νmax in cm-1): 3010 (NH stretch). 

MS (ESI): 108 (M)+. 

 

4-Aminophenol (Table 2, entry 4) 

 
1H NMR (CDCl3): 3.92 (bs, 2H, NH2), 4.95 (s, 1H, 

OH), 6.29-6.31 (d, 2H, J= 8 Hz, Harom), 6.48-6.50 (d, 

2H,J= 8 Hz, Harom). 
13C NMR (CDCl3): 116.70, 116.82, 117.74, 140.02, 

148.50. 

IR (νmax in cm-1): 3010 (NH stretch). 

MS (ESI): 109 (M)+. 

 NH2

 NH2

 NH2

H2N

 NH2

HO
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Benzyl alcohol (Table 2, entry 5) 

 
1H NMR (CDCl3): 2.00 (bs, 1H, OH), 4.23 (s, 2H, 

CH2), 7.19-7.23 (m, 5H, Harom). 
13C NMR (CDCl3): 65.23, 126.25, 126.27, 129.02, 

140.22. 

IR (νmax in cm-1): 3442 (O-H stretch), 2927 (CH2 

stretch).  

MS (ESI): 108 (M)+. 

 

4-Chlorobenzyl alcohol (Table 2, entry 6) 

 
1H NMR (CDCl3): 2.27 (s, 1H, OH), 4.64 (s, 2H, 

CH2), 7.27-7.30 (d, 2H,J= 12 Hz, Harom), 7.32-7.35 (d, 

2H,J= 12 Hz, Harom). 
13C NMR (CDCl3): 64.46, 128.29, 128.66, 133.32, 

139.25. 

IR (νmax in cm-1): 3362 (O-H stretch), 2909 (CH2 

stretch).  

MS (ESI): 142 (M)+,144 (M+2). 

 

4-Methoxybenzyl alcohol (Table 2, entry 7) 

 
1H NMR (CDCl3): 3.52 (s, 3H, OCH3), 2.02 (bs, 1H, 

OH), 4.51 (s, 2H, CH2), 6.70-6.72 (d, 2H,J= 8 Hz, 

Harom), 7.06-7.08 (d, 2H, J= 8 Hz, Harom). 
13C NMR (CDCl3): 55.90, 68.11, 113.51, 113.63, 

128.20, 133.54, 159.60. 

IR (νmax in cm-1): 2937 (CH2 stretch), 3390 (O-H 

stretch). 

MS (ESI): 138 (M)+. 

 

4-Nitrobenzyl alcohol (Table 2, entry 8) 

 
1H NMR (CDCl3): 2.02 (bs, 1H, OH), 4.23 (s, 2H, 

CH2), 7.45-7.48 (d, 2H, J= 12 Hz, Harom), 8.12-8.15 (d, 

2H, J= 12 Hz, Harom). 
13C NMR (CDCl3): 68.23, 121.37, 128.43, 147.66, 

147.68. 

IR (νmax in cm-1): 3508 (O-H stretch), 2926 (CH2 

stretch). 

MS (ESI): 153 (M)+. 

 

4-Bromobenzyl alcohol (Table 2, entry 9) 

 
1H NMR (CDCl3): 2.00 (bs, 1H, OH), 4.51 (s, 2H, 

CH2), 7.08-7.10 (d, 2H, J= 8 Hz, Harom), 7.36-7.38 (d, 

 
OH

 
OH

Cl

 
OH

MeO

 
OH

O2N

 
OH

Br

2H, J= 8 Hz, Harom). 
13C NMR (CDCl3): 65.20, 122.02, 129.50, 131.80, 

131.92, 140.24. 

IR (νmax in cm-1): 3357 (O-H stretch), 2915 (CH2 

stretch).  

MS (ESI): 185 (M)+, 187 (M+2). 

 

Phenyl ethanol (Table 2, entry 10) 

 
1H NMR (CDCl3): 1.59 (s, 3H, CH3), 2.00 (bs, 1H, 

OH), 4.17-4.23 (q, 1H, CH), 7.27-7.35 (m, 5H, Harom). 
13C NMR (CDCl3): 25.07, 64.46, 70.66, 128.29, 

128.66, 139.25. 

IR (νmax in cm-1): 3480 (O-H stretch),2978 (CH 

stretch). 

MS (ESI): 122(M)+. 

 

4-Methylphenyl ethanol (Table 2, entry 11) 

 
1H NMR (CDCl3): 1.49 (s, 3H, CH3),2.01 (bs, 1H, 

OH), 2.35 (s, 3H, -CH3), 4.64-4.70 (q, 1H, CH), 6.99-

7.02 (d, 2H, J= 12 Hz, Harom), 7.07-7.10(d, 2H,J= 12 

Hz, Harom). 
13C NMR (CDCl3): 22.91, 24.55, 75.73, 127.55, 

137.38. 

IR (νmax in cm-1): 3346 (O-H stretch), 2973 (CH 

stretch).  

MS (ESI): 136(M)+. 

 

4-Bromophenyl ethanol (Table 2, entry 12) 

 
1H NMR (CDCl3): 1.45 (s, 3H, CH3),1.97 (bs, 1H, 

OH), 4.41-4.45 (q, 1H,CH), 7.10-7.13 (d, 2H,J= 12 

Hz, Harom), 7.36-7.39 (d, 2H,J= 12 Hz, Harom). 
13C NMR (CDCl3): δ22.54, 75.72, 121.94, 129.63, 

131.92, 131.95, 140.02. 

IR (νmax in cm-1): 3354 (O-H stretch),2975 (CH 

stretch). 

MS (ESI): 199(M)+, 201 (M+2). 

 

 

 

 

 

 

 

 

 

 OH

 OH

 OH

Br
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Spectral data of reduced C=C double 

bond in ,-unsaturated ketonea,b 

1,3-diphenylpropan-1-one (Table 3, entry 1) 

 
1H NMR (CDCl3): 3.06-3.09 (t, 2H,J= 6 Hz, CH2), 

3.30-3.33 (t, 2H, J= 6 Hz, CH2), 7.18-7.96 (m, 10H, 

Harom). 
13C NMR (CDCl3): 32.80, 43.92, 126.04, 127.75, 

127.80, 128.92, 133.42, 136.74, 139.52, 198.22. 

IR (νmax in cm-1): 3062 (aromatic C-H stretch), 1682 

(C=O stretch), 2922 (CH2 stretch). 

MS (ESI): 210 (M)+. 

 

1-(4-Methylphenyl)-3-phenyl-propan-1-one 

(Table 3, entry 2) 

 
1H NMR (CDCl3): 2.32 (s, 3H, CH3), 3.05-3.08 (t,2H, 

J= 6 Hz, CH2), 3.26-3.29 (t, 2H, J= 6 Hz, CH2), 7.12-

7.22 (m, 5H, Harom), 7.35-7.37 (d, 2H,J= 8 Hz, Harom), 

7.77-7.79 (d, 2H,J= 8 Hz, Harom). 
13C NMR (CDCl3): 24.22, 33.45, 44.01, 125.08, 

127.88, 128.54, 128.77, 133.84, 139.54, 142.64, 

199.05. 

IR (νmax in cm-1): 3058 (aromatic C-H stretch), 1681 

(C=O stretch), 2921 (CH2 stretch). 

MS (ESI): 244 (M+). 

 

3-(4-Methoxyphenyl)-1-(4-methylphenyl) 

propan-1-one (Table 3, entry 3) 

 
1H NMR (CDCl3): 2.42 (s, 3H, CH3),3.02-3.05 (t, 2H, 

J= 6 Hz, CH2), 3.25-3.28 (t, 2H,J= 6 Hz, CH2), 3.82 

(s, 3H, OCH3), 6.72-6.74 (d, 2H,J= 8 Hz, Harom), 7.01-

7.03 (d, 2H, J= 8 Hz, Harom), 7.15-7.17 (d, 2H, J= 8 

Hz, Harom), 7.75-7.77 (d, 2H,J= 8 Hz, Harom) 
13C NMR (CDCl3): 24.33, 32.85, 43.90, 55.92, 

114.20, 128.71, 128.71, 128.85, 131.82, 133.85, 

142.25, 157.22, 198.15. 

IR (νmax in cm-1): 3060 (aromatic C-H stretch), 1683 

(C=O stretch), 2951 (CH2 stretch). 

MS (ESI): 256 (M++1). 

 

3-(4-Methoxyphenyl)-1-phenylpropan-1-one 

(Table 3, entry 4) 

 

 O

 O

CH3

 O

CH3H3CO

 O

H3CO

1H NMR (CDCl3): 3.03-3.06 (t, 2H, J= 6 Hz, CH2), 

3.25-3.28 (t, 2H, J= 6 Hz, CH2), 3.80 (s, 3H, OCH3), 

6.83-6.85 (d, 2H, J= 8 Hz, Harom), 7.05-7.07 (d, 2H, 

J= 8 Hz, Harom), 7.75 7.98 (m, 5H, Harom). 
13C NMR (CDCl3): 32.82, 43.90, 55.92, 114.22, 

128.70, 128.82, 131.80, 133.22, 136.81, 157.91, 

197.24. 

IR (νmax in cm-1): 3065 (aromatic C-H stretch), 1691 

(C=O stretch), 2925 (CH2 stretch). 

MS (ESI): 241 (M)+. 

 

1,3-(4,4’-Dimethylphenyl)propan-1-one 

(Table 3, entry 5) 

 
1H NMR (CDCl3): 2.34 (s, 3H, CH3), 2.42 

(s,3H,CH3), 3.03-3.06(t, 2H, J= 6 Hz, CH2), 3.26-3.29 

(t, 2H, J= 6 Hz, CH2), 7.15-7.18 (d, 4H, J= 12 Hz, 

Harom), 7.82-7.85 (d, 4H,J= 12 Hz, Harom). 
13C NMR (CDCl3): 24.33, 32.82, 43.90, 128.70, 

129.02, 133.82, 135.63, 142.80, 198.22. 

IR (νmax in cm-1): 3059 (aromatic C-H stretch), 1685 

(C=O stretch), 2919 (CH2 stretch). 

MS (ESI): 239 (M)+. 

 

1-(4-Chlorophenyl)-3-phenylpropan-1-

one(Table 3, entry 6) 

 
1H NMR (CDCl3): 3.12-3.15 (t, 2H, J= 6 Hz, CH2), 

3.37-3.40 (t, 2H, J= 6 Hz, CH2), 7.08-7.78 (m, 7H, 

Harom), 8.03-8.05 (d, 2H,J= 8 Hz, Harom). 
13C NMR (CDCl3): 32.45, 44.02, 125.22, 127.80, 

128.75, 128.82, 134.95, 138.72, 139.55, 200.01. 

IR (νmax in cm-1): 3060 (aromatic C-H stretch), 1683 

(C=O stretch), 2951 (CH2 stretch). 

MS (ESI):244 (M+), 246 (M++2). 

 

3-(4-Nitrophenyl)-1-phenylpropan-1-one 

(Table 3, entry 7) 

 
1H NMR (CDCl3): 3.40-3.43 (t, 2H,J= 6 Hz, CH2), 

3.70-3.73 (t, 2H, J= 6 Hz, -CH2), 7.23-7.85 (m, 5H, 

Harom) 7.90.-7.92 (d, 2H,J= 8 Hz,Harom), 8.28-8.30 (d, 

2H, J= 8 Hz, Harom) 
13C NMR (CDCl3): 31.89, 45.05, 121.02, 128.77, 

128.89, 133.25, 136.84, 145.62, 198.05. 

IR (νmax in cm-1): 3013 (aromatic C-H stretch), 1675 

(C=O stretch), 2963 (CH2 stretch). 

 MS (ESI): 255 (M+). 

 

 

 O

H3C CH3

 O

Cl

 O

O2N
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3-(4-Chlorophenyl)-1-(4-methylphenyl) pro-

pan-1-one (Table 3, entry 8) 

 
1H NMR (CDCl3): 2.35 (s, 3H, CH3), 3.04-3.08 (t, 

2H, J= 8 Hz, CH2), 3.24-3.28 (t, 2H, J= 8 Hz, CH2), 

7.21-7.33 (m, 4H, Harom), 7.84-7.87 (d, 2H, J= 12 Hz, 

Harom), 7.93-7.96 (d, 2H, J= 12 Hz, Harom). 
13C NMR (CDCl3): 24.30, 32.84, 43.90, 128.72, 

128.84, 129.05, 129.22, 130.54, 137.64, 142.22, 

200.02 

IR (νmax in cm-1): 3056 (aromatic C-H stretch), 1682 

(C=O stretch), 2942 (CH2 stretch). 

MS (ESI): 258 (M)+, 260 (M++2). 

 

3-(4-Nitrophenyl)- 1 -(4-methylphenyl) pro-

pan-1-one (Table 3, entry 9) 

 
1H NMR (CDCl3): 3.03-3.07 (t, 2H, J= 8 Hz, CH2), 

3.28-3.32 (t, 2H, J= 8 Hz, CH2), 7.18-7.20 (d, 2H, J= 

8 Hz, Harom), 7.26-7.28 (d, 2H, J= 8 Hz, Harom), 7.56-

7.58 (d, 2H, J= 8 Hz, Harom), 7.94-7.96 (d, 2H,J= 8 

Hz, Harom). 
13C NMR (CDCl3): 26.66, 32.80, 43.90, 127.23, 

127.25, 127.68, 128.95, 135.72, 139.80, 145.87, 

198.24. 

IR (νmax in cm-1): 3032 (aromatic C-H stretch), 1679 

(C=O stretch), 2945 (CH2 stretch). 

MS (ESI):270 (M)+. 

 

1-(4-Chlorophenyl)-3-(4-methoxyphenyl) 

propan-1-one (Table 3, entry 10) 

 
1H NMR (CDCl3): 3.04-3.07 (t, 2H, J= 6 Hz, CH2), 

3.28-3.31 (t, 2H, J= 6 Hz, CH2), 3.98 (s, 3H, OCH3), 

6.95-6.98 (d, 2H, J= 12 Hz, Harom), 7.25-7.68 (m, 4H, 

Harom), 7.97-8.0 (d, 2H, J= 12 Hz, Harom). 
13C NMR (CDCl3): 24.30, 32.84, 43.90, 121.92, 

128.71, 128.73, 133.84, 142.88, 145.02, 146.66, 

199.05. 

IR (νmax in cm-1): 3003 (aromatic C-H stretch), 1677 

(C=O stretch), 2964 (CH2 stretch).MS (ESI):275(M)+. 

 

 

 

 

 

 

 

 

 O

Cl CH3

 O

O2N CH3

 O

H3CO Cl

Spectral data of Cross coupling Suzuki re-

action 

Biphenyl (Table 2, entry 1) 

 
1H NMR (CDCl3): 7.48-7.74 (m, 10H, Harom). 
13C NMR (CDCl3): 127.74, 127.92, 129.33, 136.58. 

IR (νmax in cm-1): 3105 (aromatic C-H stretch). 

MS (ESI): 154 (M)+. 

 

4-Acetylbiphenyl (Table 2, entry 2) 

 
1H NMR (CDCl3): 2.64 (s, 3H, COCH3), 7.40-7.49 

(m, 5H, Harom), 7.61-7.63 (d, 2H,J= 8 Hz, Harom), 7.67-

7.69 (d, 2H,J= 8 Hz, Harom). 
13C NMR (CDCl3): 26.66, 127.23, 127.25, 128.26, 

128.94, 128.95, 135.72, 139.80, 145.87, 198.24. 

IR (νmax in cm-1): 3040 (aromatic C-H stretch), 2920 

(C-H stretch), 1690 (C=O stretch). 

MS (ESI): 196 (M)+. 

 

4-Phenylbenzonitrile (Table 2, entry 3) 

 
1H NMR (CDCl3): 7.43-7.53 (m, 3H, Harom), 7.60-

7.63 (d, 2H,J= 12 Hz, Harom), 7.69-7.71 (d, 2H, J= 8 

Hz, Harom), 7.74-7.76 (d, 2H,J= 8 Hz, Harom). 
13C NMR (CDCl3): 110.89, 118.99, 127.25, 127.75, 

128.15, 128.69, 128.97, 129.14, 132.62, 132.91, 

139.18, 145.69. 

IR (νmax in cm-1): 3051 (aromatic C-H stretch), 2235 

(CN stretch).  

MS (ESI): 179 (M)+. 

 

Biphenyl-4-carboxaldehyde (Table 2, entry 

4) 

 
1H NMR (CDCl3): 7.40-7.71 (m, 5H, Harom), 7.75-

7.77 (d, 1H, J= 8 Hz, Harom), 7.95-7.97 (d, 1H, J= 8 

Hz, Harom), 8.17-8.19 (d, 2H, J= 8 Hz, Harom), 10.02 (s, 

1H, -CHO). 
13C NMR (CDCl3): 127.70, 127.95, 128.47, 129.32, 

130.46, 136.22, 142.35, 191.50. 

IR (νmax in cm-1): 3042 (aromatic C-H stretch), 2922 

(C-H stretch), 1688 (C=O stretch). 

MS (ESI): 183 (M)+. 
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4-Phenylphenol (Table 2, entry 5) 

 
1H NMR (CDCl3): 5.01 (s, 1H, -OH), 6.85-6.87 (d, 

2H, J= 8 Hz, Harom)7.38-7.55 (m, 7H, Harom). 
13C NMR (CDCl3): 116.40, 127.77, 127.90, 129.18, 

129.33, 136.55, 157.44. 

IR (νmax in cm-1): 3597 (O-H stretch), 3045 (aromatic 

C-H stretch).  

MS (ESI): 170 (M)+. 

 

4-Phenylphenylamine (Table 2, entry 6) 

 
1H NMR (CDCl3): 4.95 (bs, 2H, -NH2), 6.88-6.90 (d, 

2H,J= 8 Hz, Harom), 7.45-7.68 (m, 7H, Harom). 
13C NMR (CDCl3): 116.80, 126.54, 127.73, 127.92, 

128.55, 128.76, 136.56, 147.28. 

IR (νmax in cm-1): 3200 (N-H stretch), 3042 (aromatic 

C-H stretch). 

MS (ESI): 169 (M)+. 

 

1-Phenylnaphthalene (Table 2, entry 7) 

 
1H NMR (CDCl3): 7.30-7.77 (m, 14H, Harom). 
13C NMR (CDCl3): 125.22, 126.36, 126.36, 126.81, 

127.71, 127.92, 129.33, 129.42, 133.15, 133.54, 

136.54, 136.72. 

IR (νmax in cm-1): 3055(aromatic C-H stretch). 

MS (ESI): 205 (M)+. 

 

4-(Phenyl) biphenyl (Table 2, entry 8) 

 
1H NMR (CDCl3): 7.45-7.46 (m, 4H, Harom), 7.70-

7.72 (m, 4H, Harom), 8.01-8.03 (m, 4H, Harom). 
13C NMR (CDCl3): 122.07, 126.17, 126.38, 126.80, 

129.08, 135.61, 140.20, 141.08. 

IR (νmax in cm-1): 3050 (aromatic C-H stretch).  

MS (ESI): 230 (M)+. 
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5-Phenyl-1-H-indole (Table 2, entry 9) 

 
1H NMR (CDCl3): 6.61-6.64 (d, 1H,J= 12 Hz, Harom), 

7.23-7.24 (m, 1H, Harom), 7.41-7.45 (m, 5H, Harom), 

7.66-7.69 (d, 2H, J= 12 Hz, Harom), 7.86-7.89 (d, 1H, 

J= 12 Hz, Harom),8.15 (bs, 1H, NH). 
13C NMR (CDCl3): 102.40, 111.62, 117.05, 124.33, 

127.72, 127.91, 129.30, 134.45, 136.54, 143.71. 

IR (νmax in cm-1): 3250(N-H stretch), 3048 (aromatic 

C-H stretch). 

MS (ESI): 195 (M)+. 

 

2-(4-Acetylphenyl)thiophene (Table 2, en-

try 10) 

 
1H NMR (CDCl3): 2.61 (s, 3H, COCH3), 7.02-7.08 (t, 

2H, J= 12 Hz, Harom), 7.20-7.23 (d, 1H, J= 12 Hz, 

Harom), 7.36-7.39 (d, 1H, J= 12 Hz, Harom),7.52-7.55 

(d, 2H, J= 12 Hz, Harom), 7.90-7.93 (d, 2H, J= 12 Hz, 

Harom).  
13C NMR (CDCl3): 29.36, 128.01, 128.59, 128.65, 

129.84, 131.85, 133.20, 136.71, 139.73, 198.90. 

IR (νmax in cm-1): 3051 (aromatic C-H stretch), 2801 

(C-H stretch), 1720 (C=O stretch), 1582 (C-S 

stretch). 

MS (ESI): 203 (M)+. 
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